首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycosides, 3-acetyl-(?)-epicatechin 7-O-β-glucopyranoside (1), 3-acetyl-(?)-epicatechin 7-O-(6-isobutanoyloxyl)-β-glucopyranoside (2), 3-acetyl-(?)-epicatechin 7-O-[6-(2-methyl-butanoyloxyl)]-β-glucopyranoside (3), (5Z)-6-[5-(2-hydroxypropan-2-yl)-2-methyl-tetrahydrofuran-2-yl]-3-methylhexa-1,5-dien-3-O-β-glucopyranoside (4), hydroquinone O-[6-(3-hydroxyisobutanoyl)]-β-galactopyranoside (5), 4-(4-O-β-glucopyranosyl-phenoxy)-1-O-β-glucopyranosyl-1,3-benzenediol (6), 7,8-erythro-dihydroxy-3,4,5-trimethoxy-phenyl-propane8-O-β-glucopyranoside (7), 6,7-dimethylbenzofuranol 5-O-β-xylopyranosyl-(1  6)-β-glucopyranoside (8), along with 30 known glycosides, were isolated from Breynia fruticosa and Breynia rostrata (Euphorbiaceae). Their structures were determined on the basis of spectroscopic analysis and chemical methods.  相似文献   

2.
Three new phenylethanoid glycosides, 2-(3-hydroxy-4-methoxyphenyl)ethyl 1-O-β-d-allopyranoside (hodgsonialloside A, 1), 2-(3-hydroxy-4-methoxyphenyl)ethyl 1-O-β-d-glucopyranosyl-(1  4)-β-d-allopyranoside (hodgsonialloside B, 2) and 2-(3-methoxy-4-hydroxyphenyl)ethyl 1-O-β-d-allopyranoside (hodgsonialloside C, 3) were isolated from the leaves of Magnolia hodgsonii in addition to six known compounds, tyrosol 4-O-β-d-xylopyranosyl-(1  6)-β-d-glucopyranoside (4), kaempferol 3-O-neohesperidoside (5), kaempferol 3-O-rutinoside (6), kaempferol 3-O-α-l-rhamnopyranosyl-(1  2)-[α-l-rhamnopyranosyl-(1  6)]-β-d-glucopyranoside (7), (+)-syringaresinol O-β-d-glucopyranoside (8), and oblongionoside C (9). The structure elucidation of these compounds was based on analyses of physical and spectroscopic data including 1D and 2D NMR experiments.  相似文献   

3.
For further structure–activity relationships (SAR) research of furostan saponin, two icogenin analogues: (25R)-22-O-methyl-furost-5-en-3β,26-diol-3-O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside 1 and (25R)-22-O-methyl-furost-5-en-3β,26-diol-3-O-α-l-rhamnopyranosyl-(1  2)-α-d-glucopyranoside 2, with valuable disaccharide moieties, were synthesized from diosgenin through eight steps. Both of the analogues behaved the similar cytotoxic activities with icogenin, towards nine types of human tumor cells herein.  相似文献   

4.
Thirty-six naturally occurring compounds, including four C10-acetylenic glycosides and a lignan, were isolated from the whole plants of Saussurea cordifolia. Their structures were elucidated by means of spectroscopic and chemical methods to be 4,6-decadiyne-1-O-β-d-apiofuranosyl-(1  6)-β-d-glucopyranoside (1), 4,6-decadiyne-1-O-α-l-rhamnopyranosyl-(1  6)-β-d-glucopyranoside (2), (8E)-decaene-4, 6-diyn-1-O-α-l-rhamnopyranosyl-(1  6)-β-d-glucopyranoside (3), (8Z)-decaene-4,6-diyn-1-O-β-d-apiofuranosyl-(1  6)-β-d-glucopyranoside (4), and (2R, 3S, 4S)-4-(4-hydroxy-3-methoxybenzyl)-2-(5-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-tetrahydrofuran-3-ol (5).  相似文献   

5.
A new dihydrochalcone, 2‘,4‘-dihydroxy-3‘-methoxy-3,4-methylenedioxy-8-hydroxymethylene dihydrochalcone 1 and two new steroidal saponins, (25S)-ruscogenin-1-O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside 2, (25S)-ruscogenin-3-O-α-l-rhamnopyranosyl-(1  4)-β-d-glucopyranoside 3, together with three known steroidal saponins (25S)-ruscogenin-3-O-β-d-glucopyranoside 4, (25S)-ruscogenin-1-O-α-l-rhamnopyranosyl-(1  2)-[β-d-xylopyranosyl-(1  3)]-α-l-arabinopyranoside 5 and (25R)-26-O-β-d-glucopyranosyl-furost-5-ene-1β,3β,22α,26-tetrol-1-O-α-L-rhamnopyranosyl-(1  2)-[β-d-xylopyranosyl-(1  3)]-α-l-arabinopyranoside 6 were isolated from the aerial parts of Sansevieria cylindrica. The structures of the new compounds were established by UV, IR, EI-MS, HR-ESI–MS as well as 1D (1H,13C and DEPT-135) and 2D (HSQC, HMBC and TOCSY) NMR spectral analysis. The isolated compounds 1-6 were assayed for in vitro cytotoxicities against the three human tumor cell lines HT116, MCF7 and HepG2. Compound 1 showed a moderate cytotoxicity against MCF7. Compounds 2, 3 and 6 exhibited moderate cytotoxicities against the three used cell lines and compound 5 showed marked cytotoxicities against all used cell lines.  相似文献   

6.
Six new cycloartane-type triterpene glycosides named 3-O-[β-d-glucopyranosyl(1  2)-β-d-xylopyranosyl]-3β,16β,23(R),24(R),25-pentahydroxycycloartane (1), 3-O-[β-d-glucopyranosyl(1  2)-β-d-xylopyranosyl]-3β,16β,23(R),24(R)-tetrahydroxy-25-dehydrocycloartane (2), 3-O-[β-d-xylopyranosyl]-6α-acetoxy-23α-methoxy-16β,23(R)-epoxy-24,25,26,27-tetranorcycloartane (3), 3-O-[β-d-xylopyranosyl]-6α-acetoxy-23α-butoxy-16β,23(R)-epoxy-24,25,26,27-tetranorcycloartane (4), 3-O-[β-d-glucopyranosyl(1  2)]-β-d-xylopyranosyl]-6α-acetoxy-23α-methoxy-16β,23(R)-epoxy-24,25,26,27-tetranorcycloartane (5), 3-O-[β-d-glucopyranosyl(1  2)]-β-d-xylopyranosyl]-23α-methoxy-16β,23(R)-epoxy-4,25,26,27-tetranorcycloartane (6), in addition to three known secondary metabolites consisting of another cycloartane triterpene glycoside and two flavonol glycosides, were isolated from the aerial parts of Astragalus gombo Coss. & Dur. (Fabaceae). The structures of the isolated compounds were established by spectroscopic methods, including 1D and 2D-NMR, mass spectrometry and comparison with literature data.  相似文献   

7.
A new semiterpenoid glycoside, 3-methylbutan-1, 3-diol-1-O-β-d-glucopyranoside (1) and a new benzofuran derivative glycoside, 6-carboxylethyl-benzofuran-5-O-β-d-xylopyranosyl-(1  2)-β-d-glucopyranoside (2), together with seven known compounds (3-9) were isolated from the roots of Heracleum dissectum Ledeb. Their structures were elucidated on the basis of physicochemical properties and the detailed interpretation of various spectroscopic data. All the isolated compounds were screened for anti-inflammatory activity in vitro. And the result showed that compound 2 exhibited significantly inhibitory activity on nitric oxide production in RAW264.7 cells, which IC50 value was equivalent to that of the positive control indomethacin.  相似文献   

8.
In the search of natural compounds inhibiting methane production in ruminants three novel steroidal saponins have been isolated from the aerial parts of Helleborus viridis L. Their structures have been established based on spectral analyses as: (25R)-26-O-β-d-glucopyranosyl-5β-furostan-3β,22α,26-triol 3-O-β-d-glucopyranosyl-(1  6)-O-β-d-glucopyranoside, (25R)-26-O-β-d-glucopyranosyl-5α-furostan-3β,22α,26-triol 3-O-β-d-glucopyranosyl-(1  6)-O-β-d-glucopyranoside and (25R)-26-O-β-d-glucopyranosyl-furost-5-ene-1β,3β,22α,26-tetraol 1-O-{α-l-rhamnopyranosyl-(1  2)-O-[β-d-glucopyranosyl-(1  3)]-6-O-acetoxy-β-d-glucopyranoside}.  相似文献   

9.
Chemical investigation of an acidic methanol extract of the whole plants of Datura metel resulted in the isolation of two new guainane sesquiterpenes, 1β,5α,7β-guaiane-4β,10α,11-triol (1) and 1α,5α,7α-11-guaiene-2α,3β,4α,10α,13-pentaol (2), along with eight known compounds: pterodontriol B (3), disciferitriol (4), scopolamine (5), kaempferol 3-O-β-d-glucosyl(1  2)-β-d-galactoside 7-O-β-d-glucoside (6), kaempferol 3-O-β-glucopyranosyl(1  2)-β-glucopyranoside-7-O-α-rhamnopyranoside (7), pinoresinol 4′′-O-β-d-glucopyranoside (8), (7R,8S,7′S,8′R)-4,9,4′,7′-tetrahydroxy-3,3′-dimethoxy-7,9′-epoxy-lignan-4-O-β-d-glucopyranoside (9), and (7S,8R,7′S,8′S)-4,9,4′,7′-tetrahydroxy-3,3′-dimethoxy-7,9′-epoxylignan-4-O-β-d-glucopyranoside (10). Their structures were elucidated by extensive spectroscopic methods, including 1D and 2D NMR and MS spectra. Compounds 2-4 and 6-10 were shown to have modest anti-inflammatory effects through inhibition of NO production in LPS-stimulated BV cells.  相似文献   

10.
A facile and efficient way for the synthesis of cholestane and furostan saponin analogues was established and adopted for the first time. Following this strategy, starting from diosgenin, three novel cholestane saponin analogues: (22S,25R)-3β,22,26-trihydroxy-cholest-5-ene-16-one 22-O-[O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside] 11, (25R)-3β,16β,26-trihydroxy-cholest-5-ene-22-one 16-O-[O-α-l-rhamnopyranosyl-(1  2)-α-d-glucopyranoside] 14 and (25R)-3β,16β,26-trihydroxy-cholest-5-ene-22-one 16-O-[O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside] 17, three novel furostan saponin analogues: (22S,25R)-furost-5-ene-3β,22,26-triol 22-O-(α-d-glucopyranoside) 23, (22R,25R)-furost-5-ene-3β,22,26-triol 22-O-(α-d-glucopyranoside) 24 and (22S,25R)-furost-5-ene-3β,22,26-triol 22-O-[O-α-l-rhamnopyranosyl-(1  2)-α-d-glucopyranoside] 26, were synthesized ultimately. The structures of all the synthesized analogues were confirmed by spectroscopic methods. The S-chirality at C-22 of cholestane was confirmed by Mosher's method. The absolute configuration at C-22 of furostan saponin analogues was distinguished by conformational analysis combined with the NMR spectroscopy. The cytotoxicities of the synthetic analogues toward four types of tumor cells were shown also.  相似文献   

11.
Megastigmane glycosides (15) together with seven (612) related known compounds were isolated from the whole plants of Gynostemma pentaphyllum. The structures were elucidated by means of spectroscopic methods, including 2D NMR, HR-ESIMS, and circular dichroism (CD), as well as chemical transformations to be (3R, 4R, 5S, 6S, 7E)-3,4,6-trihydroxymegastigmane-7-en-9-one-3-O-β-d-glucopyranoside (gynostemoside A, 1), (3S, 4S, 5R, 6R, 7E, 9R)-3,4,6,9-tetrahydroxymegastigmane-7-en-3-O-β-d-glucopyranoside (gynostemoside B, 2), (3S, 4S, 5S, 6S, 7E, 9R)-3,4,9-trihydroxymegastigmane-7-en-9-O-β-d-glucopyranoside (gynostemoside C, 3), (3S, 4S, 5S, 6S, 7E, 9R)-3,4,9-trihydroxymegastigmane-7-en-3-O-β-d-glucopyranoside (gynostemoside D, 4), and (3S, 4S, 5S, 6S, 7E, 9R)-3,4,9-trihydroxymegastigmane-7-en-4-O-β-d-glucopyranoside (gynostemoside E, 5), respectively.  相似文献   

12.
Two new penterpenoid saponins, hemsloside-Ma4 (1) hemsloside-Ma5 (2), and a new diterpenoid glycoside, hemsloside-Ma6 (3), were isolated from the rhizomes of Hemsleya chinensis. By detailed analysis of the NMR spectra and chemical methods, the structures of new compounds were determined to be 3-O-β-l-arabinopyranosyl-(1  3)-O-(6′-methyl ester)-β-d-glucuropyranosyl-oleanolic acid-28-O-β-d-glucopyranosyl-(1  6)-O-β-d-glucopyranoside (1), 3-O-β-l-arabinopyranosyl-(1  3)-O-(6′-methyl ester)-β-d-glucuropyranosyl-oleanolic acid-28-O-β-d-xylopyranosyl-(1  6)-O-β-d-glucopy-ranoside (2), and 13ϵ-hydroxylabda-8(17), 14-dien-18-oic acid-18-O-α-l-rhamnopyranosyl-(1  2)-O-β-d-glucopyranosyl-(1  4)-O-α-l-rhamnopyranoside (3). Diterpenoid-type compound (3) was isolated from Hemsleya genus for the first time.  相似文献   

13.
A flavonoid glycoside, kaempferol 3-O-β-d-glucopyranosyl (1  2)-O-β-d-glucopyranosyl (1  2)-O-[α-l-rhamnopyranosyl-(1  6)]-β-d-glucopyranoside (1), along with two known C- and O-flavonoid glycosides (2 and 3, respectively), were isolated from carnation (Dianthus caryophyllus). The structures of the isolated compounds have been elucidated unambiguously by UV, MS, and a series of 1D and 2D NMR analyses. The isolated compounds and other flavonoid glycoside analogues exhibited antifungal activity against different Fusarium oxysporum f.sp. dianthi pathotypes.  相似文献   

14.
A new furan-2-carbonyl C-(6′-O-galloyl)-β-glucopyranoside (scleropentaside F, 1) and a new alkyl glucoside [butane-2,3-diol 2-(6′-O-galloyl)-O-β-glucopyranoside, 2] were isolated from the entire hemi-parasitic plant, Dendrophthoe pentandra growing on Tectona grandis together with ten known compounds including, benzyl-O-β-d-glucopyranoside (3), benzyl-O-α-l-rhamnopyranosyl-(1  6)-β-d-glucopyranoside (4), benzyl-O-β-d-apiofuranosyl-(1  6)-β-d-glucopyranoside (5), methyl gallate 3-O-β-d-glucopyranoside (6), methyl gallate 3-O-(6′-O-galloyl)-β-d-glucopyranoside (7), (+)-catechin (8), procyanidin B-1 (9) and procyanidin B-3 (10), bridelionoside A (11), and kiwiionoside (12). In addition, compounds 1, 39 were isolated from this species growing on the different host, Mangifera indica. The structure elucidations were based on physical data and spectroscopic evidence including 1D and 2D experiments.  相似文献   

15.
A new phenolic glycoside (E)-4-hydroxycinnamyl alcohol 4-O-(2′-O-β-d-apiofuranosyl)(1″  2′)-β-d-glucopyranoside (1) was isolated and identified from Cucumis melo seeds together with benzyl O-β-d-glucopyranoside (2), 3,29-O-dibenzoylmultiflor-8-en-3α,7β,29-triol (3) and 3-O-p-amino-benzoyl-29-O-benzoylmultiflor-8-en-3α,7β,29-triol (4). Their structures were elucidated by extensive NMR experiments including 1H–1H (COSY, TOCSY, ROESY) and 1H–13C (HSQC and HMBC) spectroscopy and chemical evidence. The multiflorane triterpene esters were identified as new melon constituents.  相似文献   

16.
Phytochemical investigation of the rhizomes of Smilax trinervula led to isolation and structure elucidation of eight lignan glycosides, including five new lignans, namely, (7S, 8R, 8′R)-4, 4′, 9-trihydroxy-3, 3′, 5, 5′-tetramethoxy-7, 9′-epoxylignan-7′-one 4′-O-β-d-glucopyranoside (1), (7S, 8R, 8′R)-4, 4′, 9-trihydroxy-3, 3′, 5, 5′-tetramethoxy-7, 9′-epoxylignan-7′-one 4-O-β-d- glucopyranoside (2) (7S, 8R)-4, 9, 9′-trihydroxy-3, 3′, 5-trimethoxy-4′, 7-epoxy-8, 5′-neolignan 9′-O-β-d-glucopyranoside (3), (7R, 8R)-4, 9, 9′-trihydroxy-3, 5-dimethoxy-7.O.4′, 8.O.3′- neolignan 9′-O-β-d-glucopyranoside (4), and (7S, 8R)-4, 9, 9′-trihydroxy-3, 3′, 5-trimethoxy-8, 4′-oxy-neolignan 4-O-β-d-glucopyranoside (5), along with three known compounds (6-8). Their structures were established mainly on the basis of 1D and 2D NMR spectral data, ESI–MS and comparison with the literature. Compounds 1-8 were tested in vitro for their cytotoxic activity against four human tumor cell lines (SH-SY5Y, SGC-7901, HCT-116, Lovo). Compounds 3 and 5 exhibited cytotoxic activity against Lovo cells, with IC50 value of 10.4 μM and 8.5 μM, respectively.  相似文献   

17.
Two new sesquiterpene glycosides (R)-dehydroxyabscisic alcohol β-d-apiofuranosyl-(1″  6′)-β-d-glucopyranoside (1) and (−)-(1S,2R,6R,7R)-1,2,6-trimethyl-8-hydroxy methyltricyclic[5.3.1.02,6]-undec-8-en-10-one β-d-apiofuranosyl-(1″  6′)-β-d-glucopyranoside (2), were isolated from the flower buds of Lonicera japonica. Their structures were determined by spectroscopic and chemical methods. Compound 2 could significantly decrease monosodium urate-mediated cytokine production from activated macrophage through lowering IL-1β and TNFα.  相似文献   

18.
Ten flavone compounds, including three new flavonoid glycosides, were isolated from defatted rapeseed, and their protective antioxidant effect on H2O2-induced oxidative damage in human umbilical vein endothelial cells (ECV-304) was investigated. Three new flavonoid glycosides were identified as kaempferol-3-O-[(6-O-sinapoyl)-β-d-glucopyranosyl-(1  2)-β-d-glucopyranoside]-7-O-β-d-glucopyranoside (8), kaempferol-3,7-di-O-β-d-glucopyranoside-4'-O-(6-O-sinapoyl)-β-d-glucopyranoside (9), and kaempferol-3-O-[(3-O-sinapoyl)-β-d-glucopyranosyl-(1  2)-β-d-glucopyranoside]-7-O-β-d-glucopyranoside (10). The protective effects of all of the isolated compounds on H2O2-induced oxidative damage were assessed, and the activities of superoxide dismutase (SOD) and lactate dehydrogenase (LDH) were measured. All of compounds had a protective effect on H2O2-induced oxidative damage in ECV-304 cells and the presence of a substituted sinapoyl group and its position in the structures were used to elucidate the activity differences.  相似文献   

19.
For further structure–activity relationship (SAR) research of OSW saponins, a cholestane glycoside, namely 3β, 16β, 26-trihydroxycholest-5-en-22-one 16-O-(2-O-4-methoxybenzoyl-β-d-xylopyranosyl)-(1→3)-2-O-acetyl-α-l-arabinopyranoside (1) together with two 1→4-linked disaccharide analogues (2 and 3) were synthesized. Their cytotoxic activities were evaluated by the standard MTT assay. Compound 1 showed potent cytotoxicity against five types of human tumor cells, with IC50 ranging between 1.3 and 73 nM.  相似文献   

20.
Two new steroidal saponins, 25(R)-3β [(O-β-d-glucopyranosyl-(1  3)-β-d-glucopyranosyl-(1  2)-O-[β-d-xylopyranosyl-(1  3)-O-β-d-glucopyranosyl-(1  4)-β-d-galactopyranosyl)oxy]-5α, 15β, 22R, 25R-spirostan-3,15-diol (1, named parquispiroside) and 25R-26-[(β-d-glucopyranosyl)Oxy]-(3β [(O-β-d-glucopyranosyl-(1  3)-β-d-glucopyranosyl-(1  2)-O-[β-d-xylopyranosyl-(1  3)-O-β-d-glucopyranosyl-(1  4)-β-d-galactopyranosyl)oxy], 5α, 15β, 22R, 25R)-furostane-3,15,22-triol (2, named parquifuroside), along with the known saponins, capsicoside D (3) and 22-OMe-capsicoside D (4) and the known glycoside, benzyl primeveroside (5), were isolated from the leaves of Cestrum parqui. The structures of these compounds were elucidated by careful analysis of 1D and 2D NMR spectra and ESIMS data. Parquispiroside (1) exhibited moderate inhibition of Hela, HepG2, U87, and MCF7 cell lines with IC50 values in the range of 3.3–14.1 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号