首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study aimed to analyze long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles in septic mice heart and to identify potential lncRNAs and mRNAs that be responsible for cardiac mitochondrial dysfunction during sepsis. Mice were treated with 10 mg/kg of lipopolysaccharides to induce sepsis. LncRNAs and mRNAs expression were evaluated by using lncRNA and mRNA microarray or real‐time polymerase chain reaction technique. LncRNA‐mRNA coexpression network assay, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. The results showed that 1275 lncRNAs were differentially expressed in septic myocardium compared with those in the control group. A total of 2769 mRNAs were dysregulated in septic mice heart, most of which are mainly related to the process of inflammation, mitochondrial metabolism, oxidative stress, and apoptosis. Coexpression network analysis showed that 14 lncRNAs were highly correlated with 11 mitochondria‐related differentially expressed mRNA. Among all lncRNAs and their cis‐acting mRNAs, 41 lncRNAs‐mRNA pairs (such as NONMMUG004378 and Apaf1 gene) were enriched in GO terms and KEGG pathways. In summary, we gained some specific lncRNAs and their potential target mRNAs that might be involved in mitochondrial dysfunction in septic myocardium. These findings provide a panoramic view of lncRNA and might allow developing new treatment strategies for sepsis.  相似文献   

2.
3.
Osteosarcoma (OS) is the most common highly malignant bone tumor in teens. Vasculogenic mimicry (VM) is defined as de novo extracellular matrix-rich vascular-like networks formed by highly aggressive tumor cells. We previously reported the presence of VM and it is an unfavorable prognostic factor in OS patients. Long noncoding RNAs (lncRNAs) are aberrantly expressed in OS and involved in cancer cell VM. However, lncRNAs in VM formation of OS have not been investigated. We, therefore, profiled the expression of lncRNAs in highly aggressive OS cell line 143B compared with its parental poorly aggressive cell line HOS. The differentially expressed (DE) lncRNAs and messenger RNA (mRNAs) were subjected to constructed lncRNA-mRNA coexpressed network. The top-ranked hub gene lncRNA n340532 knockdown 143B cells were used for in vitro and in vivo VM assays. The annotation of DE lncRNAs was performed according to the coexpressed mRNAs by Gene Ontology and pathway analysis. A total of 1360 DE lncRNAs and 1353 DE mRNAs were screened out. lncRNA MALAT1 and FTX, which have known functions related to VM formation and tumorigenesis were identified in our data. The coexpression network composed of 226 lncRNAs and 118 mRNAs in which lncRNA n340532 had the highest degree number. lncRNA n340532 knockdown reduced VM formation in vitro. The suppression of n340532 also exhibited potent anti-VM and antimetastasis effect in vivo, suggesting its potential role in OS VM and metastasis. Furthermore, n340532 coexpressed with 10 upregulation mRNAs and 3 downregulation mRNAs. The enriched transforming growth factor-β signaling pathway, angiogenesis and so forth were targeted by those coexpressed mRNAs, implying n340532 may facilitate VM formation in OS through these pathways and gene functions. Our findings provide evidence for the potential role of lncRNAs in VM formation of OS that could be used in the clinic for anti-VM therapy in OS.  相似文献   

4.
5.
6.
This study aims to reveal the regulatory mechanism of lncRNAs–miRNAs–mRNAs network during the proliferative phase of liver regeneration (LR). High-throughput sequencing technology was performed, and a total of 1,738 differentially expressed lncRNAs (DE lncRNAs), 167 known differentially expressed miRNAs (DE miRNAs), and 2,727 differentially expressed mRNAs were identified. Then, the target DE lncRNAs and DE mRNAs regulated by the same miRNAs were screened and a ceRNA regulatory network containing 32 miRNAs, 107 lncRNAs, and 270 mRNAs was constructed. Insulin signaling pathway, pyrimidine metabolism, axon guidance, carbohydrate digestion and absorption, and pyruvate metabolism were significantly enriched in the network. Through literature review and the regulatory relationship between lncRNAs and miRNAs, nine core lncRNAs were identified, which might play important roles during the proliferative phase of rat LR. This study analyzed lncRNA–miRNA–mRNA regulatory network for the first time during the proliferative phase of rat LR, providing clues for exploring the mechanism of LR and the treatment of liver diseases.  相似文献   

7.
《Genomics》2020,112(2):1879-1888
Porcine reproductive and respiratory syndrome (PRRS), which is caused by PRRS virus (PRRSV), is one of the most globally devastating swine diseases. It is essential to develop new strategy to control PRRS via an understanding of mechanisms that PRRSV utilizes to interfere with the host's innate immunity. In this study, we deeply sequenced and analyzed long noncoding RNA (lncRNA) and mRNA expression profiles of the porcine alveolar macrophages (PAMs) after PRRSV infection. 126 lncRNAs and 753 mRNAs were differentially expressed between PRRSV-infected and control PAMs. The co-expressed genes of down-regulated lncRNAs were significantly enriched within NF-kappa B and toll-like receptor signaling pathways. Co-expression network analysis indicated that part of the dysregulated lncRNAs associated with the interferon-induced genes. These dysregulated lncRNAs may play an important role in the host's innate immune responses to PRRSV infection. However, further research is required to characterize the function of these lncRNAs.  相似文献   

8.
Sepsis is a common cause of deaths of patients in intensive care unit. The study aims to figure out the role of long non-coding RNA (lncRNA) GAS5 in the myocardial depression in mice with sepsis. Cecal ligation and puncture (CLP) was applied to induce sepsis in mice, and then the heart function, myocardium structure, and the inflammatory response were evaluated. Differentially expressed lncRNAs in mice with sepsis were identified. Then gain- and loss-of-functions of GAS5 were performed in mice to evaluate its role in mouse myocardial depression. The lncRNA-associated microRNA (miRNA)–mRNA network was figured out via an integrative prediction and detection. Myocardial injury was observed by overexpression of high-mobility group box 1 (HMGB1) in septic mice with knockdown of GAS5 expression. Activity of NF-κB signaling was evaluated, and NF-κB inhibition was induced in mice with sepsis and overexpression of GAS5. Collectively, CLP resulted in myocardial depression and injury, and increased inflammation in mice. GAS5 was highly expressed in septic mice. GAS5 inhibition reduced myocardial depression, myocardial injury and inflammation responses in septic mice. GAS5 was identified to bind with miR-449b and to elevate HMGB1 expression, thus activating the NF-κB signaling. HMGB1 overexpression or NF-κB inactivation reduced the GAS5-induced myocardial depression and inflammation in septic mice. Our study suggested that GAS5 might promote sepsis-induced myocardial depression via the miR-449b/HMGB1 axis and the following NF-κB activation.  相似文献   

9.
10.
《Genomics》2023,115(2):110573
Considerable studies have given convincing evidence of a forefront position for vascular aging in preventing cardiovascular disease. Various functions of Long non-coding RNAs (lncRNAs) are becoming increasingly distinct in aging-related diseases. This study aims at a better insight into the expression profile and mechanisms of lncRNAs in vascular senescence. High-throughput sequencing was used to detect the differential expression (DE) of lncRNAs and mRNAs in the aorta of 96 W and 8 W-old mice, while 1423 lncRNAs and 80 mRNAs were differentially expressed. By performing GO and KEGG enrichment analysis, we found that DE lncRNAs were mainly involved in purine metabolism and cGMP-PKG signaling pathways. In addition, a co-expression functional network of DE lncRNAs and DE mRNAs was constructed, and ENSMUST00000218874 could interact with 41 DE mRNAs, suggesting that it may play an essential role in vascular senescence. This study reveals DE lncRNAs in naturally aging vascular, which may provide new ideas and targets for aging-related cardiovascular diseases.  相似文献   

11.
12.
The present study aimed to investigate the long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) involved in the progression of gallbladder cancer and explore the potential physiopathologic mechanisms of gallbladder cancer in terms of competing endogenous RNAs (ceRNAs). The original lncRNA and mRNA expression profile data (nine gallbladder cancer tissues samples and nine normal gallbladder samples) in GSE76633 was downloaded from the Gene Expression Omnibus database. Differentially expressed mRNAs and lncRNAs between gallbladder cancer tissue and normal control were selected and the pathways in which they are involved were analyzed using bioinformatics analyses. MicroRNAs (miRNAs) were also predicted based on the differentially expressed mRNAs. Finally, the co-expression relation between lncRNA and mRNA was analyzed and the ceRNA network was constructed by combining the lncRNA-miRNA, miRNA-mRNA, and lncRNA-mRNA pairs. Overall, 373 significantly differentially expressed mRNAs and 47 lncRNAs were identified between cancer and normal tissue samples. The upregulated genes were significantly enriched in the extracellular matrix (ECM)-receptor interaction pathway, while the downregulated genes were involved in the complement and coagulation cascades. Altogether, 128 co-expression relations between lncRNA and mRNA were obtained. In addition, 196 miRNA-mRNA regulatory relations and 145 miRNA-lncRNA relation pairs were predicted. Finally, the lncRNA-miRNA-gene ceRNA network was constructed by combining the three types of relation pairs, such as XLOC_011309-miR-548c-3p-SPOCK1 and XLOC_012588-miR-765-CEACAM6. mRNAs and lncRNAs may be involved in gallbladder cancer progression via ECM-receptor interaction pathways and the complement and coagulation cascades. Moreover, ceRNAs such as XLOC_011309-miR-548c-3p-SPOCK1 and XLOC_012588-miR-765-CEACAM6 can also be implicated in the pathogenesis of gallbladder cancer.  相似文献   

13.
14.
Long non-coding RNAs (lncRNAs) contribute to disease pathogenesis and drug treatment effects. Both emodin and dexamethasone (DEX) have been used for treating severe acute pancreatitis-associated acute lung injury (SAP-ALI). However, lncRNA regulation networks related to SAP-ALI pathogenesis and drug treatment are unreported. In this study, lncRNAs and mRNAs in the lung tissue of SAP-ALI and control rats, with or without drug treatment (emodin or DEX), were assessed by RNA sequencing. Results showed both emodin and DEX were therapeutic for SAP-ALI and that mRNA and lncRNA levels differed between untreated and treated SAP-ALI rats. Gene expression profile relationships for emodin-treated and control rats were higher than DEX-treated and -untreated animals. By comparison of control and SAP-ALI animals, more up-regulated than down-regulated mRNAs and lncRNAs were observed with emodin treatment. For DEX treatment, more down-regulated than up-regulated mRNAs and lncRNAs were observed. Functional analysis demonstrated both up-regulated mRNA and co-expressed genes with up-regulated lncRNAs were enriched in inflammatory and immune response pathways. Further, emodin-associated lncRNAs and mRNAs co-expressed modules were different from those associated with DEX. Quantitative polymerase chain reaction demonstrates selected lncRNA and mRNA co-expressed modules were different in the lung tissue of emodin- and DEX-treated rats. Also, emodin had different effects compared with DEX on co-expression network of lncRNAs Rn60_7_1164.1 and AABR07062477.2 for the blue lncRNA module and Nrp1 for the green mRNA module. In conclusion, this study provides evidence that emodin may be a suitable alternative or complementary medicine for treating SAP-ALI.  相似文献   

15.
Chronic intermittent hypoxia (CIH) is the primary feature of obstructive sleep apnoea (OSA), a crucial risk factor for cardiovascular diseases. Long non-coding RNAs (lncRNAs) in myocardial infarction (MI) pathogenesis have drawn considerable attention. However, whether CIH participates in the modulation of lncRNA profiles during MI is yet unclear. To investigate the influence of CIH on MI, cardiac damage was assessed by histology and echocardiography, and lncRNA and mRNA integrated microarrays were screened. MI mouse model showed myocardial hypertrophy, aggravated inflammation and fibrosis, and compromised left ventricle function under CIH. Compared with normoxia, 644 lncRNAs and 1084 differentially expressed mRNAs were identified following CIH for 4 weeks, whereas 1482 lncRNAs and 990 mRNAs were altered at 8 weeks. Strikingly, reoxygenation after CIH markedly affected 1759 lncRNAs and 778 mRNAs. Of these, 11 lncRNAs modulated by CIH were restored after reoxygenation and were validated by qPCR. The GO terms and KEGG pathways of genes varied significantly by CIH. lncRNA-mRNA correlation further showed that lncRNAs, NONMMUT032513 and NONMMUT074571 were positively correlated with ZEB1 and negatively correlated with Cmbl. The current results demonstrated a causal correlation between CIH and lncRNA alternations during MI, suggesting that lncRNAs might be responsible for MI aggravation under CIH.  相似文献   

16.
The incidence of hypoxic pulmonary hypertension (HPH) is increasing. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) play an important role in HPH, but the functions and mechanism have yet to be fully elucidated. In the present study, we established a HPH rat model with 8 h of hypoxia exposure (10% O2) per day for 21 days. High-throughput sequencing identified 60 differentially expressed (DE) lncRNAs, 20 DE miRNAs and 695 DE mRNAs in rat lung tissue. qRT-PCR verified the accuracy of the results. The DE mRNAs were significantly enriched in immune response, inflammatory response, leukocyte migration, cell cycle, cellular response to interleukin-1, IL-17 signalling pathway, cytokine–cytokine receptor interaction and Toll-like receptor signalling pathway. According to the theory of competing endogenous RNA (ceRNA) networks, lncRNA–miRNA–mRNA network was constructed by Cytoscape software, 16 miRNAs and 144 mRNAs. The results suggested that seven DE lncRNAs (Ly6l, AABR07038849.2, AABR07069008.2, AABR07064873.1, AABR07001382.1, AABR07068161.1 and AABR07060341.2) may serve as molecular sponges of the corresponding miRNAs and play a major role in HPH.  相似文献   

17.
18.
BackgroundLong noncoding RNAs (lncRNAs) have gain increasing attention in lung adenocarcinoma. In this study, we aimed at constructing and analyzing the lncRNAs and the related proteins based competitive endogenous RNA (ceRNA) network.MethodsRNA expression data of lung adenocarcinoma were extracted from the TCGA database. Differentially expressed (DE) lncRNAs, messenger RNAs (mRNAs) and microRNAs (miRNAs) were identified and then a DElncRNA-DEmiRNA-DEmRNA ceRNA network was constructed for lung adenocarcinoma. We also analyzed the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of the DEgenes. Kaplan-Meier survival curves were also been further utilized for exploring the prognostic factors.ResultsAfter compared and calculated lncRNA, mRNA and miRNA expression profiles between lung adenocarcinoma and normal samples, 1709 differential expressed lncRNAs, 2554 differential expressed mRNAs and 116 differential expressed miRNAs were finally identified. Afterwards, a lncRNA mediated ceRNA network was constructed, according to the interactions among 544 pairs of DElncRNA-DEmiRNA relationships and 47 pairs of DEmiRNA-DEmRNA relationships. As for the survival analyses, we found 10 DElncRNAs, 25 DEmRNAs and 7 miRNAs have statistically prognostic significance for overall survival, respectively.ConclusionsThis study provides meaningful information for deeper understanding the underlying molecular mechanism of lung adenocarcinoma and for evaluating prognosis, which could monitor recurrence, guide clinical treatment drugs and subsequent related researches.  相似文献   

19.
Gastric cancer (GC) is a lethal disease, and among its variety of etiological factors, Helicobacter pylori (H. pylori) infection is the strongest risk factor. However, the genetic and molecular mechanisms underlying H. pylori-related GC need further elucidation. We investigated the competing endogenous RNA (ceRNA) network differences between H. pylori (+) and H. pylori (−) GC. The long noncoding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) expression data from 32 adjacent noncancerous samples and 18 H. pylori (+) and 141 H. pylori (−) stomach adenocarcinoma samples were downloaded from the TCGA database. After construction of lncRNA–miRNA–mRNA ceRNA networks of H. pylori (+) and H. pylori (−) GC, Panther and Kobas databases were used to analyze the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Finally, survival analysis was used to discover the key genes. In H. pylori (+) GC, we identified a total of 1,419 lncRNAs, 82 miRNAs, and 2,501 mRNAs with differentially expressed profiles. In H. pylori (−) GC, 2,225 lncRNAs, 130 miRNAs, and 3,146 mRNAs were differentially expressed. Furthermore, three unique pathways (cytokine–cytokine receptor interaction, HIF-1 signaling pathway, and Wnt signaling pathway) were enriched in H. pylori (+) GC. According to the overall survival analysis, three lncRNAs (AP002478.1, LINC00111, and LINC00313) and two mRNAs (MYB and COL1A1) functioned as prognostic biomarkers for patients with H. pylori (+) GC. In conclusion, our study has identified the differences in ceRNA regulatory networks between H. pylori (+) and H. pylori (−) GC and provides a rich candidate reservoir for future studies.  相似文献   

20.
Increasing evidence has found that long noncoding RNAs (lncRNAs) and message RNAs (mRNAs) play an important role in the progress of autoimmune thyroid diseases (AITD). So, in this study, the different expressed of lncRNA and mRNA was screened by microarray analysis and quantitative real-time polymerase chain reaction (PCR). To further investigate the relationship among the differentially expressed genes, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene ontology (GO) were used for biofunctions and signaling pathways analysis, respectively. Finally, the interaction relationship between lncRNA and mRNAs was analysis with lncRNA-mRNA coexpression network. The result found that the abnormal expression of lncRNAs and mRNAs were 1615 and 1913, respectively. The altered genes included CD40LG, IFNG, CTLA4, FAS, STAT1, STAT3, and STAT4. These were enriched in presentation and antigen processing, Th1 and Th2 cell differentiation, natural killer cell-mediated cytotoxicity, B cell receptor signaling pathway, Th17 cell differentiation, and cell adhesion molecules (CAMs), all of which had been suggested to be associated with immunopathogenic mechanisms and AITD-induced pathophysiologic changes. A coexpression network profile was contained with 126 network nodes and 477 connections which were based on seven mRNAs and 119 interacted lncRNAs. The outcomes of differentially expressed lncRNAs and their coreralated mRNAs in our study revealed that lncRNAs involved in immunopathogenic mechanisms may play a crital role in the pathogenesis of AITD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号