首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical investigation of an acidic methanol extract of the whole plants of Datura metel resulted in the isolation of two new guainane sesquiterpenes, 1β,5α,7β-guaiane-4β,10α,11-triol (1) and 1α,5α,7α-11-guaiene-2α,3β,4α,10α,13-pentaol (2), along with eight known compounds: pterodontriol B (3), disciferitriol (4), scopolamine (5), kaempferol 3-O-β-d-glucosyl(1  2)-β-d-galactoside 7-O-β-d-glucoside (6), kaempferol 3-O-β-glucopyranosyl(1  2)-β-glucopyranoside-7-O-α-rhamnopyranoside (7), pinoresinol 4′′-O-β-d-glucopyranoside (8), (7R,8S,7′S,8′R)-4,9,4′,7′-tetrahydroxy-3,3′-dimethoxy-7,9′-epoxy-lignan-4-O-β-d-glucopyranoside (9), and (7S,8R,7′S,8′S)-4,9,4′,7′-tetrahydroxy-3,3′-dimethoxy-7,9′-epoxylignan-4-O-β-d-glucopyranoside (10). Their structures were elucidated by extensive spectroscopic methods, including 1D and 2D NMR and MS spectra. Compounds 2-4 and 6-10 were shown to have modest anti-inflammatory effects through inhibition of NO production in LPS-stimulated BV cells.  相似文献   

2.
Phytochemical investigation of the rhizomes of Smilax trinervula led to isolation and structure elucidation of eight lignan glycosides, including five new lignans, namely, (7S, 8R, 8′R)-4, 4′, 9-trihydroxy-3, 3′, 5, 5′-tetramethoxy-7, 9′-epoxylignan-7′-one 4′-O-β-d-glucopyranoside (1), (7S, 8R, 8′R)-4, 4′, 9-trihydroxy-3, 3′, 5, 5′-tetramethoxy-7, 9′-epoxylignan-7′-one 4-O-β-d- glucopyranoside (2) (7S, 8R)-4, 9, 9′-trihydroxy-3, 3′, 5-trimethoxy-4′, 7-epoxy-8, 5′-neolignan 9′-O-β-d-glucopyranoside (3), (7R, 8R)-4, 9, 9′-trihydroxy-3, 5-dimethoxy-7.O.4′, 8.O.3′- neolignan 9′-O-β-d-glucopyranoside (4), and (7S, 8R)-4, 9, 9′-trihydroxy-3, 3′, 5-trimethoxy-8, 4′-oxy-neolignan 4-O-β-d-glucopyranoside (5), along with three known compounds (6-8). Their structures were established mainly on the basis of 1D and 2D NMR spectral data, ESI–MS and comparison with the literature. Compounds 1-8 were tested in vitro for their cytotoxic activity against four human tumor cell lines (SH-SY5Y, SGC-7901, HCT-116, Lovo). Compounds 3 and 5 exhibited cytotoxic activity against Lovo cells, with IC50 value of 10.4 μM and 8.5 μM, respectively.  相似文献   

3.
Three new compounds including one C21-steroidal glycoside, one methylglycoside, and one neolignan, named as Deoxyamplexicogenin A-3-O-yl-4-O-(4-O-α-l-cymaropyranosoyl-β-d-digitoxopyranosoyl)-β-d-canaropyranoside (1), Methyl-O-α-l-cymaropyranosoyl-(1  4)-β-D-digitoxopyranoside (2), and (+)-(7S, 8R, 7E)-5-hydroxy-3, 5′-dimethoxy-4′, 7-epoxy-8, 3′-neolign-7′-ene-9, 9′-diol 9′-ethyl ether (3), respectively, were isolated from the roots of Cynanchum stauntonii. The structure elucidations were achieved by in-depth spectroscopic examination, mainly including the experiments and analyses of multiple 1D- and 2D-NMR and HRESIMS and CD analysis and qualitative chemical tests. Cytotoxicity activities of compounds 13 were evaluated against five tumor cell lines (HCT-8, Bel-7402, BGC-823, A549, and A2780) in cell based assays where they were found to be inactive.  相似文献   

4.
Muchimangins are benzophenone-xanthone hybrid polyketides produced by Securidaca longepedunculata. However, their biological activities have not been fully investigated, since they are minor constituents in this plant. To evaluate the possibility of muchimangins as antibacterial agent candidates, five muchimangin analogs were synthesized from 2,4,5-trimethoxydiphenyl methanol and the corresponding xanthones, by utilizing p-toluenesulfonic acid monohydrate for the Brønsted acid-catalysis. The antibacterial assays against Gram-positive bacteria, Staphylococcus aureus and Bacillus subtilis, and Gram-negative bacteria, Klebsiella pneumoniae and Escherichia coli, revealed that the muchimangin analogs (±)-1,3,6,8-tetrahydroxy-4-(phenyl-(2′,4′,5′-trimethoxyphenyl)methyl)-xanthone (1), (±)-1,3,6-trihydroxy-4-(phenyl-(2′,4′,5′-trimethoxyphenyl)methyl)-xanthone (2), and (±)-1,3-dihydroxy-4-(phenyl-(2′,4′,5′-trimethoxyphenyl)methyl)-xanthone (3) showed significant activities against S. aureus, with MIC values of 10.0, 10.0, and 25.0 μM, respectively. Analogs (±)-1 and (±)-2 also exhibited antibacterial activities against B. subtilis, with MIC values of 50.0 and 12.5 μM, respectively. Furthermore, (+)-3 enhanced the antibacterial activity against S. aureus, with a MIC value of 10 μM.  相似文献   

5.
Extraction of Millettia pachycarpa Benth. gave 5,7,4′-trihydroxy-6,8-diprenylisoflavone (1a), 5,7,4′-trihydroxy-6,3′-diprenylisoflavone (2a), 5,7,3′,4′-tetrahydroxy-6,8-diprenylisoflavone (3a) and (2R, 3R)-5,4′-dihydroxy-8-prenyl-6″,6″-dimethylpyrano[2″,3″: 7,6]-dihydroflavonol (4a) whose structures were established by chemical transformations and spectroscopic means. Pectolinarigenin and salvigenin were isolated from Buddleia macrostachya Benth.  相似文献   

6.
Phytochemical investigation on the whole plant of Clematis lasiandra Maxim led to the isolation of two new phenolic glycosides (1 and 2), one new lignanoid glycoside (3), together with three known lignanoid glycosides (46). The structures of the new compounds were elucidated as 4-O-β-d-galactopyranosyl-ethyl-E-caffeate (1), 4-O-β-d-galactopyranosyl-3-hydroxyl-phenylethene (2) and (8R)-3,3′-dimethoxy-4,4′,9,9′-tetrahydroxy-5′,8-lignan 3′-O-β-d-glucopyranoside (3), on the basis of extensive spectral analysis and chemical evidence. The characteristic of the polymerized C-5′–C-8 type lignanoid aglycone in glycoside 3 was found from genus Clematis for the first time. Compounds 16 were evaluated for their cytotoxicity against human tumor cell lines HL-60, Hep-G2 and SGC-7901, the new glycosides 1 and 2 showed significant cytotoxicity against those three tumor cell lines with IC50 in the range from 9.73 to 22.31 μM, while lignanoid glycosides 36 showed weak cytotoxicity to those test cell lines with IC50 value more than 52.71 μM.  相似文献   

7.
A new dihydropyranocoumarin, (+)-cis-(3′S,4′S)-diisobutyrylkhellactone (1), together with five known compounds, 3′-senecioyl-4′-acetylkhellactone (2), 3′-isovaleryl-4′-acetylkhellactone (3), 3′,4′-disenecioylkhellactone (4), 3′-isovaleryl-4′-senecioylkhellactone (5), and 3′,4′-diisovalerylkhellactone (6), was isolated from Glehnia littoralis. Their chemical structures were elucidated based on the spectroscopic data interpretation, particularly 1D and 2D NMR data including HMQC and HMBC. All the isolated compounds showed the potential to inhibit LPS-induced nitric oxide production in RAW 264.7 cells with IC50 values ranging from 7.4 to 44.3 μM.  相似文献   

8.
Six new compounds including two oleanane-type triterpenoid saponins (1, 2) and four C-glycosyl flavones (36), along with a known saponin (7), three di-C-glycosyl flavones (810) and a glycosyl auronol (11), were isolated from the stem bark of Erythrina abyssinica Lam. The structures of the new compounds, identified as 3-O-[α-l-rhamnopyranosyl-(1  2)-β-d-galactopyranosyl-(1  2)-β-d-glucuronopyranosyl]-22-O-β-d-glucopyranosyl sophoradiol (1), 3-O-[α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranosyl-(1  2)-β-d-glucuronopyranosyl]-22-O-β-d-glucopyranosyl sophoradiol (2), 6-C-β-glucopyranosyl-8-C-β-quinovopyranosyl apigenin (3), 6-C-β-quinovopyranosyl-8-C-β-glucopyranosyl apigenin (4), 8-C-[6″-O-α-l-rhamnopyranosyl-(1‴  6″)]-β-glucopyranosyl 7,4′-dihydroxyflavone (5) and 8-C-[6″-O-β-d-xylopyranosyl-(1‴  6″)]-β-glucopyranosyl 7,4′-dihydroxyflavone (6), were determined by comprehensive spectroscopic analysis, including 1D and 2D NMR techniques, mass spectrometry and acid hydrolysis. These new compounds together with the known saponins 7 were evaluated for their cytotoxic activity against MCF-7 (estrogen dependent) and MDA-MB-231 (estrogen independent) cell lines. The new saponin 2 exhibited the highest cytotoxic activity among tested compounds, exerting a selective inhibitory effect against the proliferation of MCF-7 cells, with lower IC50 value (12.90 μM) than that of the positive control, resveratrol (13.91 μM). Structure–activity relationship of these compounds is also discussed.  相似文献   

9.
Seven homoisoflavonoids and one stilbenoid, 3-(4′-methoxybenzyl)-6,7-dihydroxy-5-methoxychroman-4-one (1) which is new; 3-(4′-methoxybenzyl)-6-hydroxy-5,7-dimethoxychroman-4-one (2); 3-(4′-methoxybenzyl)-5,7-dimethoxychroman-4-one (3); 3-(3′-hydroxy-4′-methoxybenzyl)-5,7-dimethoxychroman-4-one (4); 3-(4′-methoxybenzylidene)-5,7-dihydroxy-6-methoxychroman-4-one (5); 3-(4′-hydroxybenzylidene)-5,7-dihydroxy-6-methoxychroman-4-one (6); 3-(4′-hydroxybenzylidene)-5,7-dihydroxychroman-4-one (7) and 4,3′,5′-trihydroxy-3-methoxystilbene (8), were isolated from the yellow inter-bulb deposits from Scilla nervosa. The structures of these compounds were elucidated by 1D- and 2D-NMR and mass spectrometry. A number of extracts, fractions and compounds tested displayed bacterostatic activity with MICs ranging between 0.156 and 1.250 mg/ml. Two extracts displayed significant α-glucosidase inhibitory activity and a number of extracts, fractions and compounds showed strong antioxidant activity with, compounds 1, 2 and 8 displaying lower MECs than the positive control ascorbic acid (0.0156 mg/ml).  相似文献   

10.
Three new flavonoids, 6,7-dimethoxy-4′-hydroxy-8-formylflavon (1), 8-formyl-4′,6,7-trimethoxyflavon (2), 4′,7-dihydroxy-8-formyl-6-methoxyflavon (3), together with fifteen known flavonoids (418) were isolated from the leaves of oriental tobacco (a variety of Nicotiana tabacum L). Their structures were determined by means of HRESIMS, extensive 1D and 2D NMR spectroscopic studies and chemical evidences. The cytotoxicity against five human tumor (NB4, A549, SHSY5Y, PC3, and MCF7) cell lines of compounds 13 were also evaluated. The results showed that compounds 1 and 3 showed high cytotoxicity against PC3 and A549 cell lines with IC50 values of 2.6 and 1.6 μM, respectively.  相似文献   

11.
12.
One new β-hydroxychalcone, 4-acetoxy-5,2′,4′,6′,β-pentahydroxy-3-methoxychalcone (1), one new flavanone, 7,3′-dihydroxy-5,4′-dimethoxyflavanone (2) and seven known compounds, 2R, 3R-trans-aromadendrin (3), naringenin-7-O-methylether (4), myricetin (5), quercetin-3-O-rutinoside (6), ursolic acid (7), gallic acid (8) and d-glucose (9) were isolated from the methanolic fruit extract of Cornus mas L. (=Cornus mascula L.), Cornaceae. The structures of the new compounds were elucidated on the basis of extensive spectroscopic methods, including 2D NMR experiments and of known compounds by comparison of physical and spectral data with literature.  相似文献   

13.
Bioassay-guided fractionation of the roots of Anneslea fragrans var. lanceolata led to the isolation of four dihydrochalcone glucosides, davidigenin-2′-O-(6″-O-4″′-hydroxybenzoyl)-β-glucoside (1), davidigenin-2′-O-(2″-O-4″′-hydroxybenzoyl)-β-glucoside (2), davidigenin-2′-O-(3″-O-4″′-hydroxybenzoyl)-β-glucoside (3), and davidigenin-2′-O-(6″-O-syringoyl)-β-glucoside (4), and 13 known compounds. The structures were identified by means of spectroscopic analysis. Davidigenin-2′-O-(6″-O-syringoyl)-β-glucoside (4), 1-O-3,4-dimethoxy-5-hydroxyphenyl-6-O-(3,5-di-O-methylgalloyl)-β-glucopyranoside (5), lyoniresinol (10), and syringic acid (13) showed ABTS [2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)] cation radical scavenging activity, with SC50 values of 52.6 ± 5.5, 26.0 ± 0.7, 6.0 ± 0.2, and 27.5 ± 0.6 μg/mL in 20 min, respectively. Lyoniresinol (10), isofraxidin (12), and syringic acid (13) also showed DPPH [1,1-diphenyl-2-picrylhydrazyl] radical scavenging activity, with SC50 values of 8.4 ± 1.8, 51.6 ± 2.2, and 4.3 ± 0.7 μg/mL in 30 min, respectively.  相似文献   

14.
Three new isoflavones, 4′,8-dihydroxy-6,7-dimethoxyisoflavone (1), 4′,6-dihydroxy-8-methoxycarbonyl-7-methoxyisoflavone (2), 4′,7-dimethoxy-8-hydroxymethyl-6-hydroxyisoflavone (3), together with three known flavones (46), were isolated from the leaves of Nicotiana tabacum. Their structures were elucidated by spectroscopic methods, including extensive 1D- and 2D NMR techniques. Compounds 13 were evaluated for their anti-tobacco mosaic virus (anti-TMV) activities. The results showed that compounds 13 (at the concentration of 20 μM) exhibited anti-TMV activities with inhibition rates of 25.2, 22.6, and 27.4%, respectively.  相似文献   

15.
Two new compounds, named as (Z)-7,4′-dimethoxy-6-hydroxy-aurone-4-O-β-glucopyranoside (1), and (1S,3R,4S)-1-(4′-hydroxyl-phenyl)-3,4-dihydro-3,4,5-trimethyl-1H-2-benzopyran-6,8-diol (2), were isolated from the endophytic fungus Penicillium citrinum of Bruguiera gymnorrhiza. Their structures were elucidated on the basis of spectroscopic analysis. Additionally, compound 1 exhibited potent neuroprotective activity in 1-methyl-4-phenylpyridinium-induced oxidative damage in PC12 cells.  相似文献   

16.
Bioassay-guided fractionation of an EtOAc-soluble extract of Acanthopanax senticosus (Rupr. & Maxim.) Harms yielded two new diphenyl ethers, 3-[3′-methoxy-4′-(4″-formyl-2″,6″-dimethoxy-phenoxy)-phenyl]-propenal (1) and 3-[3′,5′-dihydroxy-4′-(4″-hydroxymethyl-3″,5″-dimethoxy-phenoxy)-phenyl]-propenal (2), along with eight other known compounds (310). The structures of these new ethers were elucidated with spectroscopic and physico-chemical analyses. All of the isolates were evaluated for their in vitro inhibitory activity against PTP1B, VHR and PP1. The new compounds (1 and 2) inhibited PTP1B with IC50 values ranging from 9.2 ± 1.4 to 12.6 ± 1.2 μM.  相似文献   

17.
A new furan-2-carbonyl C-(6′-O-galloyl)-β-glucopyranoside (scleropentaside F, 1) and a new alkyl glucoside [butane-2,3-diol 2-(6′-O-galloyl)-O-β-glucopyranoside, 2] were isolated from the entire hemi-parasitic plant, Dendrophthoe pentandra growing on Tectona grandis together with ten known compounds including, benzyl-O-β-d-glucopyranoside (3), benzyl-O-α-l-rhamnopyranosyl-(1  6)-β-d-glucopyranoside (4), benzyl-O-β-d-apiofuranosyl-(1  6)-β-d-glucopyranoside (5), methyl gallate 3-O-β-d-glucopyranoside (6), methyl gallate 3-O-(6′-O-galloyl)-β-d-glucopyranoside (7), (+)-catechin (8), procyanidin B-1 (9) and procyanidin B-3 (10), bridelionoside A (11), and kiwiionoside (12). In addition, compounds 1, 39 were isolated from this species growing on the different host, Mangifera indica. The structure elucidations were based on physical data and spectroscopic evidence including 1D and 2D experiments.  相似文献   

18.
Purification of n-BuOH fraction from 80% ethanol extract of Hypericum thasium Griseb. resulted in the isolation of three new compounds 3′,4,5′-trihydroxy-6-methoxy-2-O-α-l-arabinosylbenzophenone (1), 3′,4,5′,6-tetrahydroxy-2-O-α-l-arabinosylbenzophenone (2), and 3′,4-dihydroxy-5′-methoxy-2-O-α-l-arabinosyl-6-O-β-d-xylosylbenzophenone (3) along with a known flavonoid glycoside quercetin-3-O-α-l-arabinofuranoside (4). The structures of the new compounds were elucidated by 1D and 2D NMR analysis as well as HRESIMS. The isolated compounds (14), as well as quercetin, and kaempferol previously isolated from EtOAc fraction were screened against MAO-A inhibitory activity. When tested against the MAO-A quercetin and kaempferol displayed IC50 values of 19.6, and 17.5 μM, respectively. The IC50 values for MAO-A inhibition by compounds (14) were 310.3, 111.2, 726.0, and 534.1 μM, respectively. Standard inhibitor (clorgyline) exhibited MAO-A inhibition with an IC50 value of 0.5 μM.  相似文献   

19.
From the CH2Cl2/CH3OH (1:1) extract of the root bark of Millettia micans, a new pterocarpan, (6aR,11aR)-3-hydroxy-7,8,9-trimethoxypterocarpan (1), named micanspterocarpan, was isolated. Similar investigation of the CH2Cl2/CH3OH (1:1) extract of the root bark of Millettia dura gave a further new pterocarpan, (6aR,11aR)-8,9-methylenedioxy-3-prenyloxypterocarpan (2), named 3-O-prenylmaackiain, along with six known isoflavones (3-8) and a chalcone (9). All purified compounds were identified by NMR and MS, whereas the absolute configurations of the new pterocarpans were established by chriptical data analyses including quantum chemical ECD calculation. Among the isolated constituents, calopogonium isoflavone B (3) and isoerythrin A-4′-(3-methylbut-2-enyl) ether (4) showed marginal activities against the 3D7 and the Dd2 strains of Plasmodium falciparum (70–90% inhibition at 40 μM). Maximaisoflavone B (5) and 7,2′-dimethoxy-4′,5′-methylenedioxyisoflavone (7) were weakly cytotoxic (IC50 153.5 and 174.1 μM, respectively) against the MDA-MB-231 human breast cancer cell line. None of the tested compounds showed in-vitro translation inhibitory activity or toxicity against the HEK-293 human embryonic kidney cell line at 40 μM.  相似文献   

20.
A series of 23 3′,4′,5′-trimethoxychalcone analogues was synthesized and their inhibitory effects on nitric oxide (NO) production in LPS/IFN-γ-treated macrophages, and tumor cell proliferation has been investigated. 4-Hydroxy-3,3′,4′,5′-tetramethoxychalcone (7), 3,4-dihydroxy-3′,4′,5′-trimethoxychalcone (11), 3-hydroxy-3′,4,4′,5′-tetramethoxychalcone (14), and 3,3′,4′,5′-tetramethoxychalcone (15) were the most potent growth inhibitory agents on NO production, with an IC50 value of 0.3, 1.5, 1.3 and 0.3 μM, respectively. The tumor cells proliferation assay results revealed that several compounds exhibited potent inhibition activity against different cancer cell lines. The chalcone 15 was the most potent anti-proliferative compound in the series with IC50 values of 1.8 and 2.2 μM toward liver cancer Hep G2 and colon cancer Colon 205 cell lines, respectively. 2,3,3′,4′,5′-Pentamethoxychalcone (1), 3,3′,4,4′,5,5′-hexamethoxychalcone (3), 2,3′,4,4′,5,5′-hexamethoxychalcone (5), 2-hydroxy-3,3′,4′,5′-tetramethoxychalcone (10), 11 and 14 showed significant anti-proliferation actions in Hep G2 and Colon 205 cells with an IC50 values ranging between 10 and 20 μM. Among the tested agents, compound 7 showed selective NO production inhibition (IC50 = 0.3 μM), while has no effect on tumor cell proliferation (IC50 >100 μM). 3,3′,4,4′,5′-Pentamethoxychalcone (2) showed selective anti-proliferation effect in Hep G2 cells, in addition to its potent NO inhibition, however has no such response in Colon 205 cells. In contrast, 3-formyl-3′,4′,5′-trimethoxychalcone (22) showed moderate growth inhibition in Colon 205 cells, while has no such effect on NO production and Hep G2 cells proliferation. These results provide insight into the correlation between some structural properties of 3′,4′,5′-trimethoxychalcones and their in vitro anti-inflammatory and anti-cancer differentiation activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号