首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
郭洁芸  王雅歆  李建龙 《生态学报》2022,42(12):4823-4833
近年来,中国大气氮沉降水平不断增加,过量的活性氮输入深刻影响了我国陆地生态系统碳循环。虽然已有大量的研究报道了模拟氮添加实验对我国陆地生态系统碳动态的影响,但是由于复杂的地理条件和不同的施氮措施,关于植物和土壤碳库对氮添加的一般响应特征和机制仍存在广泛争议。因此,采用整合分析方法,收集整理了172篇已发表的中国野外氮添加试验结果,在全国尺度上探究氮添加对我国陆地生态系统植物和土壤碳动态的影响及其潜在机制。结果表明,氮添加显著促进了植物的碳储存,地上和地下生物量均显著增加,且地上生物量比地下生物量增加得多。同时,氮添加显著增加了凋落物质量,但对细根生物量没有显著影响。氮添加显著降低了植物叶片、凋落物和细根的碳氮比。总体上,氮添加显著增加了土壤有机碳含量并降低了土壤pH值,但对可溶性有机碳、微生物生物量碳和土壤呼吸的影响并不显著。在不同的地理条件下,土壤有机碳含量对氮添加的响应呈现增加、减少或不变的不同趋势。回归分析表明,地上生物量与土壤有机碳含量之间,以及微生物生物量碳与土壤有机碳含量之间呈负相关关系。虽然氮添加通过增加凋落物质量显著促进了植物碳输入,但同时也会通过刺激微生物降解来增加土...  相似文献   

2.
近年来, 在人类活动和气候变化的影响下, 物种多样性丧失趋势不断加剧, 对生态系统功能带来严重后果。目前, 关于生态系统功能的研究, 忽略了土壤和微生物碳氮养分循环过程对地上生态系统功能(AEF)的重要驱动作用, 而土壤碳氮要素和微生物的任何变化都有可能改变地下群落对生态系统功能的维持作用。该研究旨在探究高寒草地AEF的主要控制因子, 以及其关键要素对AEF的作用机理。2015年7-8月, 对青藏高原地区115个样点进行了草地群落和土壤属性等要素样带调查; 综合植物地上生物量, 叶片碳、氮和磷含量等参数计算AEF值, 分析地下土壤有机碳含量、全氮含量、生物量等关键要素对AEF值的影响。结合取样点年降水量和年平均气温, 深入探讨影响AEF的主要控制因子和作用机理。结果表明降水对AEF有较大影响, 而气温影响相对较低。年降水量、土壤微生物生物量碳含量和干旱指数对AEF值的相对重要性贡献较高(重要值分别为21.1%、10.9%和10.1%), 控制青藏高原高寒草地AEF值的关键是土壤因子。在气候因子对土壤养分和微生物的作用下, 土壤微生物生物量氮含量在调控高寒草地AEF值方面发挥重要作用。  相似文献   

3.
In recent decades, alpine grasslands have been seriously degraded on the Tibetan Plateau and grazing exclusion by fencing has been widely adopted to restore degraded grasslands since 2004. To elucidate how alpine grasslands carbon (C), nitrogen (N), and phosphorus (P) storage responds to this management strategy, three types of alpine grassland in nine counties in Tibet were selected to investigate C, N, and P storage in the environment by comparing free grazing (FG) and grazing exclusion (GE) treatments, which had run for 6–8 years. The results revealed that there were no significant differences in total ecosystem C, N, and P storage, as well as the C, N, and P stored in both total biomass and soil (0–30 cm) fractions between FG and GE grasslands. However, precipitation played a key role in controlling C, N, and P storage and distribution. With grazing exclusion, C and N stored in aboveground biomass significantly increased by 5.7 g m−2 and 0.1 g m−2, respectively, whereas the C and P stored in the soil surface layer (0–15 cm) significantly decreased by 862.9 g m−2 and 13.6 g m−2, respectively. Furthermore, the storage of the aboveground biomass C, N, and P was positively correlated with vegetation cover and negatively correlated with the biodiversity index, including Pielou evenness index, Shannon–Wiener diversity index, and Simpson dominance index. The storage of soil surface layer C, N, and P was positively correlated with soil silt content and negatively correlated with soil sand content. Our results demonstrated that grazing exclusion had no impact on total C, N, and P storage, as well as C, N, and P in both total biomass and soil (0–30 cm) fractions in the alpine grassland ecosystem. However, grazing exclusion could result in increased aboveground biomass C and N pools and decreased soil surface layer (0–15 cm) C and P pools.  相似文献   

4.
The cover and abundance of Juniperus virginiana L. in the U.S. Central Plains are rapidly increasing, largely as a result of changing land-use practices that alter fire regimes in native grassland communities. Little is known about how conversion of native grasslands to Juniperus-dominated forests alters soil nutrient availability and ecosystem storage of carbon (C) and nitrogen (N), although such land-cover changes have important implications for local ecosystem dynamics, as well as regional C and N budgets. Four replicate native grasslands and adjacent areas of recent J. virginiana encroachment were selected to assess potential changes in soil N availability, leaf-level photosynthesis, and major ecosystem C and N pools. Net N mineralization rates were assessed in situ over two years, and changes in labile soil organic pools (potential C and N mineralization rates and microbial biomass C and N) were determined. Photosynthetic nitrogen use efficiencies (PNUE) were used to examine differences in instantaneous leaf-level N use in C uptake. Comparisons of ecosystem C and N stocks revealed significant C and N accrual in both plant biomass and soils in these newly established forests, without changes in labile soil N pools. There were few differences in monthly in situ net N mineralization rates, although cumulative annual net N mineralization was greater in forest soils compared to grasslands. Conversely, potential C mineralization was significantly reduced in forest soils. Encroachment by J. virginiana into grasslands results in rapid accretion of ecosystem C and N in plant and soil pools with little apparent change in N availability. Widespread increases in the cover of woody plants, like J. virginiana, in areas formerly dominated by graminoid species suggest an increasing role of expanding woodlands and forests as regional C sinks in the central U.S.  相似文献   

5.
Recent studies indicate that species richness can enhance the ability of plant assemblages to support multiple ecosystem functions. To understand how and when ecosystem services depend on biodiversity, it is valuable to expand beyond experimental grasslands. We examined whether plant diversity improves the capacity of agroecosystems to sustain multiple ecosystem services—production of wood and forage, and two elements of soil formation—in two types of smallholder fallows in western Kenya. In 18 grazed and 21 improved fallows, we estimated biomass and quantified soil organic carbon, soil base cations, sand content, and soil infiltration capacity. For four ecosystem functions (wood biomass, forage biomass, soil base cations, steady infiltration rates) linked to the focal ecosystem services, we quantified ecosystem service multi-functionality as (1) the proportion of functions above half-maximum, and (2) mean percentage excess above mean function values, and assessed whether plant diversity or environmental favorability better predicted multi-functionality. In grazed fallows, positive effects of plant diversity best explained the proportion above half-maximum and mean percentage excess, the former also declining with grazing intensity. In improved fallows, the proportion above half-maximum was not associated with soil carbon or plant diversity, while soil carbon predicted mean percentage excess better than diversity. Grazed fallows yielded stronger evidence for diversity effects on multi-functionality, while environmental conditions appeared more influential in improved fallows. The contrast in diversity-multi-functionality relationships among fallow types appears related to differences in management and associated factors including disturbance and species composition. Complementary effects of species with contrasting functional traits on different functions and multi-functional species may have contributed to diversity effects in grazed fallows. Biodiversity and environmental favorability may enhance the capacity of smallholder fallows to simultaneously provide multiple ecosystem services, yet their effects are likely to vary with fallow management.  相似文献   

6.
To combat global warming and biodiversity loss, we require effective forest restoration that encourages recovery of species diversity and ecosystem function to deliver essential ecosystem services, such as biomass accumulation. Further, understanding how and where to undertake restoration to achieve carbon sequestration and biodiversity conservation would provide an opportunity to finance ecosystem restoration under carbon markets. We surveyed 30 native mixed‐species plantings in subtropical forests and woodlands in Australia and used structural equation modeling to determine vegetation, soil, and climate variables most likely driving aboveground biomass accrual and bird richness and investigate the relationships between plant diversity, aboveground biomass accrual, and bird diversity. We focussed on woodland and forest‐dependent birds, and functional groups at risk of decline (insectivorous, understorey‐nesting, and small‐bodied birds). We found that mean moisture availability strongly limits aboveground biomass accrual and bird richness in restoration plantings, indicating potential synergies in choosing sites for carbon and biodiversity purposes. Counter to theory, woody plant richness was a poor direct predictor of aboveground biomass accrual, but was indirectly related via significant, positive effects of stand density. We also found no direct relationship between aboveground biomass accrual and bird richness, likely because of the strong effects of moisture availability on both variables. Instead, moisture availability and patch size strongly and positively influenced the richness of woodland and forest‐dependent birds. For understorey‐nesting birds, however, shrub cover and patch size predicted richness. Stand age or area of native vegetation surrounding the patch did not influence bird richness. Our results suggest that in subtropical biomes, planting larger patches to higher densities, ideally using a diversity of trees and shrubs (characteristics of ecological plantings) in more mesic locations will enhance the provision of carbon and biodiversity cobenefits. Further, ecological plantings will aid the rapid recovery of woodland and forest bird richness, with comparable aboveground biomass accrual to less diverse forestry plantations.  相似文献   

7.
Soil microbial biomass is a key determinant of carbon dynamics in the soil. Several studies have shown that soil microbial biomass significantly increases with plant species diversity, but it remains unclear whether plant species diversity can also stabilize soil microbial biomass in a changing environment. This question is particularly relevant as many global environmental change (GEC) factors, such as drought and nutrient enrichment, have been shown to reduce soil microbial biomass. Experiments with orthogonal manipulations of plant diversity and GEC factors can provide insights whether plant diversity can attenuate such detrimental effects on soil microbial biomass. Here, we present the analysis of 12 different studies with 14 unique orthogonal plant diversity × GEC manipulations in grasslands, where plant diversity and at least one GEC factor (elevated CO2, nutrient enrichment, drought, earthworm presence, or warming) were manipulated. Our results show that higher plant diversity significantly enhances soil microbial biomass with the strongest effects in long‐term field experiments. In contrast, GEC factors had inconsistent effects with only drought having a significant negative effect. Importantly, we report consistent non‐significant effects for all 14 interactions between plant diversity and GEC factors, which indicates a limited potential of plant diversity to attenuate the effects of GEC factors on soil microbial biomass. We highlight that plant diversity is a major determinant of soil microbial biomass in experimental grasslands that can influence soil carbon dynamics irrespective of GEC.  相似文献   

8.
放牧对内蒙古锡林河流域草原土壤碳组分的影响   总被引:10,自引:1,他引:9       下载免费PDF全文
选择内蒙古锡林河流域三种草原,较系统地研究了放牧对微生物量碳(MB-C)和易分解碳(Lab-C)两种碳素组分的影响。结果表明,自由放牧22年后,羊草(Leymus chinensis)草原土壤0~10 cm和10~20 cm土层土壤微生物量碳分别下降了27.9%和12.8%;土壤易分解碳分别下降了22.0%和12.6%,自由放牧没有改变羊草草原土壤活性碳的季节变化形式。大针茅(Stipa grandis)草原0~5 cm表层和5~15 cm下层土壤微生物量碳分别下降了38.2%和12.2%。大针茅草原季节波动出现高峰的时间较羊草草原推后,基本在8月下旬,并且与地上生物量存在明显的正相关关系(p<0.001)。土壤活性碳在表征羊草草原和大针茅草原土壤的动态变化时,要敏感于土壤总有机碳。冷蒿-小禾草草原(Artemisia frigida-short bunchgrasses steppe)连续放牧11年恢复2年后,土壤各碳素组分都没有发生明显变化,但随着放牧率的增加,MB-C/Org-C比值和Lab-C/Org-C比值逐渐降低,表现为轻牧>中牧>重牧,这说明,在表征放牧对冷蒿-小禾草草原土壤的影响指示上,MB-C/Org-C和Lab-C/Org-C要比MB-C和Lab-C敏感。  相似文献   

9.
王娟  张登山  肖元明  王博  周国英 《生态学报》2023,43(6):2465-2475
围封对草地生物多样性和初级生产力的影响是草地生态学研究的热点问题之一。基于2013—2021年在青藏高原东北部紫花针茅(Stipa purpurea)高寒草原围栏内外植物群落长期调查数据,从物种多样性、功能性状的角度解析了高寒草原地上生物量对长期围封的生态响应过程。结果表明:(1)围封处理对高寒草原物种多样性的负效应具有强烈的时间依赖性。围封处理显著提高地上生物量,但也显著降低了生物量稳定性和异步性,意味着高寒草原稳定的、可持续的生态系统服务功能被长期围封处理削弱。(2)植物功能性状对长期围封处理表现出差异性响应模式;与叶绿素性状相比,叶形态性状对长期围封处理表现出更强的敏感性。(3)物种多样性和功能性状与地上生物量之间均存在显著相关关系,并且物种多样性的影响被功能性状调控进而对地上生物量发挥间接效应,群落加权性状和功能分异度共同对草地生物量发挥直接的主导效应。研究结果证明了植物功能性状通过介导物种多样性与其共同驱动高寒草原地上生物量对长期围封的响应。因此,在未来草地管理过程中,同步研究植物物种和功能属性对于全面揭示生态系统的响应机制至关重要。  相似文献   

10.
Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long‐term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming‐induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming‐induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0–30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both interactive and divergent impacts on various aspects of ecosystem functioning.  相似文献   

11.

Aim

Tropical forests account for a quarter of the global carbon storage and a third of the terrestrial productivity. Few studies have teased apart the relative importance of environmental factors and forest attributes for ecosystem functioning, especially for the tropics. This study aims to relate aboveground biomass (AGB) and biomass dynamics (i.e., net biomass productivity and its underlying demographic drivers: biomass recruitment, growth and mortality) to forest attributes (tree diversity, community‐mean traits and stand basal area) and environmental conditions (water availability, soil fertility and disturbance).

Location

Neotropics.

Methods

We used data from 26 sites, 201 1‐ha plots and >92,000 trees distributed across the Neotropics. We quantified for each site water availability and soil total exchangeable bases and for each plot three key community‐weighted mean functional traits that are important for biomass stocks and productivity. We used structural equation models to test the hypothesis that all drivers have independent, positive effects on biomass stocks and dynamics.

Results

Of the relationships analysed, vegetation attributes were more frequently associated significantly with biomass stocks and dynamics than environmental conditions (in 67 vs. 33% of the relationships). High climatic water availability increased biomass growth and stocks, light disturbance increased biomass growth, and soil bases had no effect. Rarefied tree species richness had consistent positive relationships with biomass stocks and dynamics, probably because of niche complementarity, but was not related to net biomass productivity. Community‐mean traits were good predictors of biomass stocks and dynamics.

Main conclusions

Water availability has a strong positive effect on biomass stocks and growth, and a future predicted increase in (atmospheric) drought might, therefore, potentially reduce carbon storage. Forest attributes, including species diversity and community‐weighted mean traits, have independent and important relationships with AGB stocks, dynamics and ecosystem functioning, not only in relatively simple temperate systems, but also in structurally complex hyper‐diverse tropical forests.  相似文献   

12.
When woody plant abundance increases in grasslands and savannas, a phenomenon widely observed worldwide, there is considerable uncertainty as to whether aboveground net primary productivity (ANPP) and ecosystem carbon (C) and nitrogen (N) pools increase, decrease, or remain the same. We estimated ANPP and C and N pools in aboveground vegetation and surface soils on shallow clay and clay loam soils undergoing encroachment by Prosopis glandulosa in the Southern Great Plains of the United States. Aboveground Prosopis C and N mass increased linearly, and ANPP increased logarithmically, with stand age on clay loam soils; on shallow clays, Prosopis C and N mass and ANPP all increased linearly with stand age. We found no evidence of an asymptote in trajectories of C and N accumulation or ANPP on either soil type even following 68 years of stand development. Production and accumulation rates were lower on shallow clay sites relative to clay loam sites, suggesting strong edaphic control of C and N accumulation associated with woody plant encroachment. Response of herbaceous C mass to Prosopis stand development also differed between soil types. Herbaceous C declined with increasing aboveground Prosopis C on clay loams, but increased with increasing Prosopis C on shallow clays. Total ANPP (Prosopis+herbaceous) of sites with the highest Prosopis basal area were 1.2 × and 4.0 × greater than those with the lowest Prosopis basal area on clay loam and shallow clay soils, respectively. Prosopis ANPP more than offset declines in herbaceous ANPP on clay loams and added to increased herbaceous ANPP on shallow clays. Although aboveground C and N pools increased substantially with Prosopis stand development, we found no corresponding change in surface soil C and N pools (0–10 cm). Overall, our findings indicate that Prosopis stand development significantly increases ecosystem C and N storage/cycling, and the magnitude of these impacts varied with stand age, soil type and functional plant traits  相似文献   

13.
Theory and experiment agree that climate warming will increase carbon fluxes between terrestrial ecosystems and the atmosphere. The effect of this increased exchange on terrestrial carbon storage is less predictable, with important implications for potential feedbacks to the climate system. We quantified how increased mean annual temperature (MAT) affects ecosystem carbon storage in above‐ and belowground live biomass and detritus across a well‐constrained 5.2 °C MAT gradient in tropical montane wet forests on the Island of Hawaii. This gradient does not systematically vary in biotic or abiotic factors other than MAT (i.e. dominant vegetation, substrate type and age, soil water balance, and disturbance history), allowing us to isolate the impact of MAT on ecosystem carbon storage. Live biomass carbon did not vary predictably as a function of MAT, while detrital carbon declined by ~14 Mg of carbon ha?1 for each 1 °C rise in temperature – a trend driven entirely by coarse woody debris and litter. The largest detrital pool, soil organic carbon, was the most stable with MAT and averaged 48% of total ecosystem carbon across the MAT gradient. Total ecosystem carbon did not vary significantly with MAT, and the distribution of ecosystem carbon between live biomass and detritus remained relatively constant across the MAT gradient at ~44% and ~56%, respectively. These findings suggest that in the absence of alterations to precipitation or disturbance regimes, the size and distribution of carbon pools in tropical montane wet forests will be less sensitive to rising MAT than predicted by ecosystem models. This article also provides needed detail on how individual carbon pools and ecosystem‐level carbon storage will respond to future warming.  相似文献   

14.
Tropical dry forest is the most widely distributed land-cover type in the tropics. As the rate of land-use/land-cover change from forest to pasture or agriculture accelerates worldwide, it is becoming increasingly important to quantify the ecosystem biomass and carbon (C) and nitrogen (N) pools of both intact forests and converted sites. In the central coastal region of México, we sampled total aboveground biomass (TAGB), and the N and C pools of two floodplain forests, three upland dry forests, and four pastures converted from dry forest. We also sampled belowground biomass and soil C and N pools in two sites of each land-cover type. The TAGB of floodplain forests was as high as 416 Mg ha–1, whereas the TAGB of the dry forest ranged from 94 to 126 Mg ha–1. The TAGB of pastures derived from dry forest ranged from 20 to 34 Mg ha–1. Dead wood (standing and downed combined) comprised 27%–29% of the TABG of dry forest but only about 10% in floodplain forest. Root biomass averaged 32.0 Mg ha–1 in floodplain forest, 17.1 Mg ha–1 in dry forest, and 5.8 Mg ha–1 in pasture. Although total root biomass was similar between sites within land-cover types, root distribution varied by depth and by size class. The highest proportion of root biomass occurred in the top 20 cm of soil in all sites. Total aboveground and root C pools, respectively, were 12 and 2.2 Mg ha–1 in pasture and reached 180 and 12.9 Mg ha–1 in floodplain forest. Total aboveground and root pools, respectively, were 149 and 47 kg ha–1 in pasture and reached 2623 and 264 kg ha–1 in floodplain forest. Soil organic C pools were greater in pastures than in dry forest, but soil N pools were similar when calculated for the same soil depths. Total ecosystem C pools were 306. The Mg ha–1 in floodplain forest, 141 Mg ha–1 in dry forest, and 124 Mg ha–1 in pasture. Soil C comprised 37%–90% of the total ecosystem C, whereas soil N comprised 85%–98% of the total. The N pools lack of a consistent decrease in soil pools caused by land-use change suggests that C and N losses result from the burning of aboveground biomass. We estimate that in México, dry forest landscapes store approximately 2.3 Pg C, which is about equal to the C stored by the evergreen forests of that country (approximately 2.4 Pg C). Potential C emissions to the atmosphere from the burning of biomass in the dry tropical landscapes of México may amount to 708 Tg C, as compared with 569 Tg C from evergreen forests.  相似文献   

15.
草原灌丛化是全球干旱半干旱地区面临的重要生态问题。灌丛化对草原生态系统结构与功能的影响较为复杂, 有待于在更广泛的区域开展研究。该研究在内蒙古锡林郭勒典型草原选择轻度、中度和重度灌丛化草地, 通过群落调查, 结合植物功能性状和土壤理化性质观测, 研究了小叶锦鸡儿(Caragana microphylla)灌丛化对草原群落结构(物种多样性、功能多样性和功能群组成)和生态系统功能(初级生产力、植被和土壤养分库)的影响。结果表明: 1)不同程度灌丛化草地的物种丰富度、功能性状多样性和群落加权性状平均值差异显著, 其中, 中度灌丛化草地的物种多样性和功能多样性较高, 表明一定程度的灌丛化有利于生物多样性维持。2)重度灌丛化草地的地上净初级生产力(ANPP)显著高于轻度和中度灌丛化草地, 其原因主要是随着灌丛化程度加剧, 群落内一/二年生草本植物显著增加, 而多年生禾草和多年生杂类草显著减少。三个灌丛化草地的植被叶片和土壤碳、氮库差异均不显著。3)灌丛化对草原生态系统功能包括ANPP、植被和土壤养分库均没有直接的影响, 而是通过影响功能群组成、土壤理化性质和功能多样性, 间接地影响生态系统功能; 灌丛化导致功能群发生替代和土壤旱碱化是最重要的生物和非生物因素。  相似文献   

16.
中国东部海岛森林和灌丛土壤碳氮磷养分库的纬度变化   总被引:1,自引:0,他引:1  
虽然海岛结构相对简单,但在生物多样性和生态功能维持方面起重要作用.以中国东部暖温带、北亚热带、中亚热带和南亚热带的14个海岛为对象,研究森林土壤碳和氮磷养分库的纬度变化特征,并分析其与气候因子和植物多样性的关系.结果表明:土壤碳和氮磷养分库在温度带间差异显著,土壤碳库与氮库在暖温带最低,分别为49.35和1.08 t·hm^-2,在北亚热带最高,为137.25和4.63 t·hm^-2;磷库在南亚热带海岛最低,为1.3 t·hm^-2,在北亚热带最高,为5.19 t·hm^-2.各植被类型土壤碳氮磷库在不同温度带间存在显著差异,落叶林土壤碳氮磷库在亚热带高于暖温带;常绿阔叶林土壤碳和氮库不受温度带影响,磷库在北亚热带和中亚热带显著高于南亚热带.年均温、年降水量、土壤含水量和植物物种多样性间的交互作用对土壤碳氮磷库有显著正向影响;植物物种多样性对土壤氮库变化有正向影响,但对磷库具有负向影响.海岛森林土壤碳库的纬度变化趋势与大陆相反,土壤氮磷养分库变化格局与大陆相似;其中,水热和植物物种多样性是驱动中国东部海岛森林土壤碳氮磷库变化的主要非生物和生物因素.  相似文献   

17.
Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change.  相似文献   

18.
Anthropogenic nutrient enrichment of mountain grasslands has boosted grasses and fast‐growing unpalatable plants at the expense of slow‐growing species, resulting in a significant loss in biodiversity. A potential tool to reduce nutrient availability and aboveground productivity without destroying the perennial vegetation is carbon (C) addition. However, little is known about its suitability under severe climatic conditions. Here, we report the results of a 3‐year field study assessing the effects of sawdust addition on soil nutrients, aboveground productivity, and vegetational composition of 10 grazed and ungrazed mountain grasslands. Of particular interest was the effect of C addition on grasses and on the tall unpalatable weed Veratrum album. After 3 years, soil pH, ammonium, and plant‐available phosphorus were not altered by sawdust application, and nitrate concentrations were marginally higher in treatment plots. However, the biomass of grasses and forbs (without V. album) was 20–25% lower in sawdust‐amended plots, whereas the biomass of V. album was marginally higher. Sawdust addition reduced the cover of grasses but did not affect evenness, vegetation diversity, or plant species richness, although species richness generally increased with decreasing biomass at our sites. Our results suggest that sawdust addition is a potent tool to reduce within a relatively short time the aboveground productivity and grass cover in both grazed and ungrazed mountain grasslands as long as they are not dominated by tall unpalatable weeds. The technique has the advantage that it preserves the topsoil and the perennial soil seed bank.  相似文献   

19.
To clarify responses of plant and soil carbon (C) and nitrogen (N) pools in grassland ecosystem to N addition, a field experiment was performed in a grassland in Keerqin Sandy Lands, Northeast China. We investigated vegetation composition and C and N pools of plant and soil (0–30 cm) after five consecutive years of N addition at a rate of 20 g N m?2 y?1. Vegetation composition and species diversity responded dramatically to N addition, as dominance by C4 perennials was replaced with C3 annuals. Carbon in aboveground pool increased significantly (over two-fold), mainly due to the increase of the C in aboveground living plants and surface litter, which increased by 98 and 134%, respectively. Although soil C did not change significantly, the root C pool decreased in response to 5 years of N addition. The total ecosystem C pool was not significantly impacted by N addition because the large soil pool did not respond to N addition, and the increase in aboveground C was offset by the decrease in root C pool. Moreover, N addition significantly increased the aboveground N pool, but had no significant effects on belowground and total ecosystem N pools. Our results suggest that in the mid-term N addition alters the C and N partitioning in above- and belowground pools, but has no significant effects on total ecosystem C and N pools in these N-limited grasslands.  相似文献   

20.
Although increasing efforts are being made to restore tropical forests, little information is available regarding the time scales required for carbon and plant biodiversity to recover to the values associated with undisturbed forests. To address this knowledge gap, we carried out a meta-analysis comparing data from more than 600 secondary tropical forest sites with nearby undisturbed reference forests. Above-ground biomass approached equivalence to reference values within 80 years since last disturbance, whereas below-ground biomass took longer to recover. Soil carbon content showed little relationship with time since disturbance. Tree species richness recovered after about 50 years. By contrast, epiphyte richness did not reach equivalence to undisturbed forests. The proportion of undisturbed forest trees and epiphyte species found in secondary forests was low and changed little over time. Our results indicate that carbon pools and biodiversity show different recovery rates under passive, secondary succession and that colonization by undisturbed forest plant species is slow. Initiatives such as the Convention on Biological Diversity and REDD+ should therefore encourage active management to help to achieve their aims of restoring both carbon and biodiversity in tropical forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号