共查询到20条相似文献,搜索用时 21 毫秒
1.
Transcriptional control of chondrocyte fate and differentiation 总被引:10,自引:0,他引:10
2.
3.
4.
5.
6.
7.
8.
MAP kinases in chondrocyte differentiation 总被引:9,自引:0,他引:9
The majority of the vertebrate skeleton develops through the process of endochondral ossification and involves successive steps of chondrogenesis, chondrocyte proliferation, and hypertrophic chondrocyte differentiation. Interruption of this program through gene mutations and hormonal or environmental factors contributes to numerous diseases, including growth disorders and chondrodysplasias. While a large number of growth factors and hormones have been implicated in the regulation of chondrocyte biology, relatively little is known about the intracellular signaling pathways involved. Recent data provide novel insights into the mechanisms governing acquisition of new phenotypes within the chondrogenic program and suggest multiple pivotal roles for members of the mitogen-activated protein kinase family and their downstream targets in cartilage development. These data are summarized and discussed here. 相似文献
9.
10.
F Beier T A Leask S Haque C Chow A C Taylor R J Lee R G Pestell R T Ballock P LuValle 《Matrix biology》1999,18(2):109-120
Coordinated proliferation and differentiation of growth plate chondrocytes controls longitudinal growth of endochondral bones. While many extracellular factors regulating these processes have been identified, much less is known about the intracellular mechanisms transducing and integrating these extracellular signals. Recent evidence suggests that cell cycle proteins play an important role in the coordination of chondrocyte proliferation and differentiation. Our current knowledge of the function and regulation of cell cycle proteins in endochondral ossification is summarized. 相似文献
11.
Two signalling molecules – Indian hedgehog and parathyroid hormone-related peptide – have been found to function in a negative feedback loop that is crucial for the coordinated regulation of the rate and extent of endochondral bone growth. 相似文献
12.
Schmal H Zwingmann J Fehrenbach M Finkenzeller G Stark GB Südkamp NP Hartl D Mehlhorn AT 《Cytotherapy》2007,9(2):184-193
BACKGROUND: The possible functional role of basic fibroblast growth factor (bFGF) in regulating the mitotic and metabolic activity of primary human articular chondrocytes was investigated. METHODS: [EF1]Chondrocytes were enzymatically isolated from femoral head cartilage, and were cultured in vitro in monolayer. bFGF-dependent cell proliferation, production of collagen type II and aggrecan were monitored 10 days after isolation. Furthermore, effect of bFGF on cell cycle, cell morphology, and mRNA expression of integrins and chondrogenic markers determined by real time PCR were analyzed. RESULTS: bFGF concentrations in supernatants of primary human articular chondrocytes peaked immediately after isolation and then declined. In a dose-dependent manner, bFGF enhanced cell amplification and viability. BFGF induced a decrease in the apoptotic cell population, while the number of proliferating cells remained unchanged. Supplementation of cell culture with bFGF reduced collagen type II mRNA by 49%, but increased expression of the integrin alpha(2) by 70%. bFGF did not significantly regulate the integrins alpha(1), alpha(5), alpha(10), alpha(v) and type I collagen. bFGF reduced the amount of collagen type II by 53%, which was correlated with diminished mRNA production. Monolayer cultured chondrocytes secreted significant amounts of aggrecan that decreased over time. Secretion of this cartilage-specific marker was further reduced by the addition of bFGF. DISCUSSION: These findings highlight the potential role of bFGF as an endogenous chondrocyte mediator that can enhance cell amplification and regulate cell differentiation. 相似文献
13.
Role of Runx genes in chondrocyte differentiation 总被引:12,自引:0,他引:12
Runx2/Cbfa1 plays a central role in skeletal development as demonstrated by the absence of osteoblasts/bone in mice with inactivated Runx2/Cbfa1 alleles. To further investigate the role of Runx2 in cartilage differentiation and to assess the potential of Runx2 to induce bone formation, we cloned chicken Runx2 and overexpressed it in chick embryos using a retroviral system. Infected chick wings showed multiple phenotypes consisting of (1) joint fusions, (2) expansion of carpal elements, and (3) shortening of skeletal elements. In contrast, bone formation was not affected. To investigate the function of Runx2/Cbfa1 during cartilage development, we have generated transgenic mice that express a dominant negative form of Runx2 in cartilage. The selective inactivation of Runx2 in chondrocytes results in a severe shortening of the limbs due to a disturbance in chondrocyte differentiation, vascular invasion, osteoclast differentiation, and periosteal bone formation. Analysis of the growth plates in transgenic mice and in chick limbs shows that Runx2 is a positive regulator of chondrocyte differentiation and vascular invasion. The results further indicate that Runx2 promotes chondrogenesis either by maintaining or by initiating early chondrocyte differentiation. Furthermore, Runx2 is essential but not sufficient to induce osteoblast differentiation. To analyze the role of runx genes in skeletal development, we performed in situ hybridization with Runx2- and Runx3-specific probes. Both genes were coexpressed in cartilaginous condensations, indicating a cooperative role in the regulation of early chondrocyte differentiation and thus explaining the expansion/maintenance of cartilage in the carpus and joints of infected chick limbs. 相似文献
14.
Regulation of chondrocyte differentiation by Cbfa1 总被引:18,自引:0,他引:18
15.
16.
Transcriptional mechanisms regulating myeloid-specific genes 总被引:4,自引:0,他引:4
Skalnik DG 《Gene》2002,284(1-2):1-21
17.
18.
Transcriptional mechanisms underlying lymphocyte tolerance 总被引:21,自引:0,他引:21
19.
The importance of actin organization in controlling the chondrocyte phenotype is well established, but little is known about the cytoskeletal components regulating chondrocyte differentiation. Previously, we have observed up-regulation of an actin-binding gelsolin-like protein in hypertrophic chondrocytes. We have now identified it as adseverin (scinderin). Adseverin is drastically up-regulated during chondrocyte maturation, as shown by Northern blot analysis, in situ hybridization, and real-time RT-PCR. Its expression is positively regulated by PKC and MEK signaling as shown by inhibitory analyses. Over-expression of adseverin in non-hypertrophic chondrocytes causes rearrangement of the actin cytoskeleton, a change in cell morphology, a dramatic (3.5-fold) increase in cell volume, and up-regulation of Indian hedgehog (Ihh) and of collagen type X--all indicative of chondrocyte differentiation. These changes are mediated by ERK1/2 and p38 kinase pathways. Thus, adseverin-induced rearrangements of the actin cytoskeleton may mediate the PKC-dependent activation of p38 and Erk1/2 signaling pathways necessary for chondrocyte hypertrophy, as evidenced by changes in cell morphology, increase in cell size and expression of the chondrocyte maturation markers. These results demonstrate that interdependence of cytoskeletal organization and chondrogenic gene expression is regulated, at least in part, by actin-binding proteins such as adseverin. 相似文献
20.