首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M H Moghadasian 《Life sciences》1999,65(13):1329-1337
In this article, de novo cholesterol synthesis, its inhibition by HMG-CoA reductase inhibitors (statins) and clinical pharmacology aspects of the statins have been reviewed. Statins are available in both active and pro-drug forms. Their affinity to bind and subsequently to inhibit HMG-CoA reductase activity is approximately 3 orders of magnitude higher than that of natural substrate (HMG-CoA). All members of this group of lipid-lowering agents are, to a varying degree, absorbed from the gut. However, their bioavailability depends on their lipophobicity and their concomitant use with meals. The interaction between HMG-CoA reductase inhibitors and other lipid-lowering agents has been reviewed in more detail. One major side-effect of lipid-lowering combination therapy is myopathy with or without rhabdomyolysis. Combination of statins with gemfibrozil seems to increase risk of this adverse event, particularly in patients with renal impairment, more than combination with other lipid-lowering agents. Combination therapy with other agents including anticoagulants, antihypertensive, anti-inflammatory, oral hypoglycemic and antifungal agents as well as beta-blockers, H2 blockers, cyclosporine and digoxin has been also reviewed. The pleiotropic non-lipid lowering properties of statins and their effects on the quality of lipoprotein particles, the activities of cholesteryl ester transfer protein and lecithin:cholesterol acyltransferase as well as their possible synergistic effects with n-3 fatty acids, phytosterols, vitamin E and aspirin in reducing cardiovascular events warrant further investigation.  相似文献   

2.
The advanced atherosclerotic lesion is characterized by the formation of microscopic cholesterol crystals that contribute to mechanisms of inflammation and apoptotic cell death. These crystals develop from membrane cholesterol domains, a process that is accelerated under conditions of hyperlipidemia and oxidative stress. In this study, the comparative effects of hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors (statins) on oxidative stress-induced cholesterol domain formation were tested in model membranes containing physiologic levels of cholesterol using small angle x-ray diffraction approaches. In the absence of HMG-CoA reductase, only the atorvastatin active o-hydroxy metabolite (ATM) blocked membrane cholesterol domain formation as a function of oxidative stress. This effect of ATM is attributed to electron donation and proton stabilization mechanisms associated with its phenoxy group located in the membrane hydrocarbon core. ATM inhibited lipid peroxidation in human low density lipoprotein and phospholipid vesicles in a dose-dependent manner, unlike its parent and other statins (pravastatin, rosuvastatin, simvastatin). These findings indicate an atheroprotective effect of ATM on membrane lipid organization through a potent antioxidant mechanism.  相似文献   

3.
Retrospective clinical studies indicate that individuals chronically treated with cholesterol synthesis inhibitors, statins, are at lower risk of developing AD (Alzheimer's disease). Moreover, treatment of guinea pigs with high doses of simvastatin or drastic reduction of cholesterol in cultured cells decrease Abeta (beta-amyloid peptide) production. These data sustain the concept that high brain cholesterol is responsible for Abeta accumulation in AD, providing the scientific support for the proposed use of statins to prevent this disease. However, a number of unresolved issues raise doubts that high brain cholesterol is to blame. First, it has not been shown that higher neuronal cholesterol increases Abeta production. Secondly, it has not been demonstrated that neurons in AD have more cholesterol than control neurons. On the contrary, the brains of AD patients show a specific down-regulation of seladin-1, a protein involved in cholesterol synthesis, and low membrane cholesterol was observed in hippocampal membranes of ApoE4 (apolipoprotein E4) AD cases. This effect was also evidenced by altered cholesterol-rich membrane domains (rafts) and raft-mediated functions, such as diminished generation of the Abeta-degrading enzyme plasmin. Thirdly, numerous genetic defects that cause neurodegeneration are due to defective cholesterol metabolism. Fourthly, in female mice, the most brain-permeant statin induces neurodegeneration and high amyloid production. Altogether, this evidence makes it difficult to accept that statins are beneficial through acting as brain cholesterol-synthesis inhibitors. It appears more likely that their advantageous role arises from improved brain oxygenation.  相似文献   

4.
The role of dyslipidemia and statins in venous thromboembolism   总被引:1,自引:0,他引:1  
Recent studies have proposed an association between hyperlipidemia and venous thromboembolism (VTE). We review the epidemiological evidence linking dyslipidemia with VTE and examine several possible underlying mechanisms. We discuss the possible role of HMG CoA reductase inhibitors (statins) in the prevention and treatment of VTE and suggest future directions for research.  相似文献   

5.
Squalene monooxygenase - a target for hypercholesterolemic therapy   总被引:1,自引:0,他引:1  
Squalene monooxygenase catalyzes the epoxidation of C-C double bond of squalene to yield 2,3-oxidosqualene, the key step of sterol biosynthesis pathways in eukaryotes. Sterols are essential compounds of these organisms and squalene epoxidation is an important regulatory point in their synthesis. Squalene monooxygenase downregulation in vertebrates and fungi decreases synthesis of cholesterol and ergosterol, respectively, which makes squalene monooxygenase a potent and attractive target of hypercholesterolemia and antifungal therapies. Currently some fungal squalene monooxygenase inhibitors (terbinafine, naftifine, butenafine) are in clinical use, whereas mammalian enzymes' inhibitors are still under investigation. Research on new squalene monooxygenase inhibitors is important due to the prevalence of hypercholesterolemia and the lack of both sufficient and safe remedies. In this paper we (i) review data on activity and the structure of squalene monooxygenase, (ii) present its inhibitors, (iii) compare current strategies of lowering cholesterol level in blood with some of the most promising strategies, (iv) underline advantages of squalene monooxygenase as a target for hypercholesterolemia therapy, and (v) discuss safety concerns about hypercholesterolemia therapy based on inhibition of cellular cholesterol biosynthesis and potential usage of squalene monooxygenase inhibitors in clinical practice. After many years of use of statins there is some clinical evidence for their adverse effects and only partial effectiveness. Currently they are drugs of choice but are used with many restrictions, especially in case of children, elderly patients and women of childbearing potential. Certainly, for the next few years, statins will continue to be a suitable tool for cost-effective cardiovascular prevention; however research on new hypolipidemic drugs is highly desirable. We suggest that squalene monooxygenase inhibitors could become the hypocholesterolemic agents of the future.  相似文献   

6.
The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, or statins, are administered as first line therapy for hypercholesterolemia, both in primary and secondary prevention. There is a growing body of evidence showing that beyond their lipid-lowering effect, statins have a number of additional beneficial properties. Pitavastatin is a unique lipophilic statin with a strong effect on lowering plasma total cholesterol and triacylglycerol. It has been reported to have pleiotropic effects such as decreasing inflammation and oxidative stress, regulating angiogenesis and osteogenesis, improving endothelial function and arterial stiffness, and reducing tumor progression. Based on the available studies considering the risk of statin-associated muscle symptoms it seems to be also the safest statin. The unique lipid and non-lipid effects of pitavastatin make this molecule a particularly interesting option for the management of different human diseases. In this review, we first summarized the lipid effects of pitavastatin and then strive to unravel the diverse pleiotropic effects of this molecule.  相似文献   

7.
Experimental data show that cholesterol can modulate central processes in the pathogenesis of Alzheimer's disease (AD). The epidemiological link between elevated plasma cholesterol at midlife and increased risk for AD and the possibility that 3-hydroxy-3-methylglutaryl-coenzym A reductase inhibitors (statins) may be protective against AD support a role of cholesterol metabolism in AD and have rendered it a potential therapeutic target in the treatment and prevention of the disease. The strong association of AD and AD endophenotypes with the APOE gene provides a genetic link between AD and cholesterol metabolism, because the apolipoprotein E (ApoE) is the most prevalent cholesterol transport protein in the central nervous system. Against this background several other genes with a role in cholesterol metabolism have been investigated for association with AD. In this review a compilation of genes related to cholesterol based on the information of the AmiGo gene ontology database is matched with the AlzGene database of AD candidate genes. 56 out of 149 (37.6%) genes with a relation to cholesterol metabolism have been investigated for association with AD. Given that only 660 out of about 23,000 (2.9%) genes have been assessed in hypothesis-driven candidate gene studies on AD, the cholesterol metabolic pathway is strongly represented among these genes. Among 34 cholesterol-related genes for which association with AD has been described APOE, CH25H, CLU, LDLR, SORL1 outstand with positive meta-analyses. However, it is unclear, if their association with AD is mediated by cholesterol-related mechanisms or by more specific direct effects of the respective proteins on Aβ metabolism.  相似文献   

8.
Despite encouraging progresses achieved in the management of viral diseases, efficient strategies to counteract infections are still required. The current global challenge highlighted the need to develop a rapid and cost-effective strategy to counteract the SARS-CoV-2 pandemic.Lipid metabolism plays a crucial role in viral infections. Viruses can use the host lipid machinery to support their life cycle and to impair the host immune response. The altered expression of mevalonate pathway-related genes, induced by several viruses, assures survival and spread in host tissue. In some infections, statins, HMG-CoA-reductase inhibitors, reduce cholesterol in the plasma membrane of permissive cells resulting in lower viral titers and failure to internalize the virus. Statins can also counteract viral infections through their immunomodulatory, anti-inflammatory and anti-thrombotic effects. Beyond statins, interfering with the mevalonate pathway could have an adjuvant effect in therapies aimed at mitigating endothelial dysfunction and deregulated inflammation in viral infection.In this review we depicted the historical and current evidence highlighting how lipid homeostasis and mevalonate pathway targeting represents a valid approach to rapidly neutralize viruses, focusing our attention to their potential use as effective targets to hinder SARS-CoV-2 morbidity and mortality.Pros and cons of statins and Mevalonate-pathway inhibitors have been also dissected.  相似文献   

9.
Phytosterols and omega-3 fatty acids are natural compounds with potential cardiovascular benefits. Phytosterols inhibit cholesterol absorption, thereby reducing total- and LDL cholesterol. A number of clinical trials have established that the consumption of 1.5–2.0 g/day of phytosterols can result in a 10–15% reduction in LDL cholesterol in as short as a 3-week period in hyperlipidemic populations. Added benefits of phytosterol consumption have been demonstrated in people who are already on lipid-lowering medications (statin drugs). On the other hand, omega-3 fatty acid supplementation has been associated with significant hypotriglyceridemic effects with concurrent modifications of other risk factors associated with cardiovascular disease, including platelet function and pro-inflammatory mediators. Recent studies have provided evidence that the combination of phytosterols and omega-3 fatty acids may reduce cardiovascular risk in a complementary and synergistic way. This article reviews the health benefits of phytosterols and omega-3 fatty acids, alone or in combination with statins, for the treatment/management of hyperlipidemia, with particular emphasis on the mechanisms involved.  相似文献   

10.
Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, are a well-known class of drug with beneficial therapeutic effects in cardiovascular disease and lipid disorders and have potential use against cancer. However, the bioavailability of statins is hampered due to low aqueous solubility and rapid metabolism. To improve pharmacokinetic profiles of statins, development of drug delivery systems is promising. Hence, the use of liposomes for selective delivery of statins to a selected site or for bioavailability enhancement is an effective strategy to increase statin therapeutic effects. Moreover, liposomal delivery can reduce the required dose of statins especially in terms of antitumor effects. Liposomes, because of their unique properties and biphasic and amphiphilic nature, have attracted much interest and can be considered as a suitable choice for delivery of both hydrophilic and lipophilic statins. In this review article, we focus on liposomes and evaluate the effects of different liposomal delivery systems, based on differences in size, phospholipid composition, circulation half-life, and cholesterol content, on statin function.  相似文献   

11.
The use of statins, 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors that block the synthesis of mevalonate (and downstream products such as cholesterol and nonsterol isoprenoids), as a therapy for Alzheimer disease is currently the subject of intense debate. It has been reported that statins reduce the risk of developing the disorder, and a link between cholesterol and Alzheimer disease pathophysiology has been proposed. Moreover, experimental studies focusing on the cholesterol-dependent effects of statins have demonstrated a close association between cellular cholesterol levels and amyloid production. However, evidence suggests that statins are pleiotropic, and the potential cholesterol-independent effects of statins on amyloid precursor protein (APP) metabolism and amyloid beta-peptide (A beta) genesis are unknown. In this study, we developed a novel in vitro system that enabled the discrete analysis of cholesterol-dependent and -independent (i.e. isoprenoid-dependent) statin effects on APP cleavage and A beta formation. Given the recent interest in the role that intracellular A beta may play in Alzheimer disease, we analyzed statin effects on both secreted and cell-associated A beta. As reported previously, low cellular cholesterol levels favored the alpha-secretase pathway and decreased A beta secretion presumably within the endocytic pathway. In contrast, low isoprenoid levels resulted in the accumulation of APP, amyloidogenic fragments, and A beta likely within biosynthetic compartments. Importantly, low cholesterol and low isoprenoid levels appeared to have completely independent effects on APP metabolism and A beta formation. Although the implications of these effects for Alzheimer disease pathophysiology have yet to be investigated, to our knowledge, these results provide the first evidence that isoprenylation is involved in determining levels of intracellular A beta.  相似文献   

12.
Statins, 3‐hydroxyl‐3‐methylglutaryl coenzyme A reductase inhibitors, are the first‐line medications prescribed for the prevention and treatment of coronary artery diseases. The efficacy of statins has been attributed not only to their systemic cholesterol‐lowering actions but also to their pleiotropic effects that are unrelated to cholesterol reduction. These pleiotropic effects have been increasingly recognized as essential in statins therapy. This study was designed to investigate the pleiotropic actions of simvastatin, one of the most commonly prescribed statins, on macrophage cholesterol homeostasis with a focus on lysosomal free cholesterol egression. With simultaneous nile red and filipin staining, analysis of confocal/multi‐photon imaging demonstrated that simvastatin markedly attenuated unesterified (free) cholesterol buildup in macrophages loaded with oxidized low‐density lipoprotein but had little effect in reducing the sizes of cholesteryl ester‐containing lipid droplets; the reduction in free cholesterol was mainly attributed to decreases in lysosome‐compartmentalized cholesterol. Functionally, the egression of free cholesterol from lysosomes attenuated pro‐inflammatory cytokine secretion. It was determined that the reduction of lysosomal free cholesterol buildup by simvastatin was due to the up‐regulation of Niemann‐Pick C1 (NPC1), a lysosomal residing cholesterol transporter. Moreover, the enhanced enzymatic production of 7‐hydroxycholesterol by cytochrome P450 7A1 and the subsequent activation of liver X receptor α underscored the up‐regulation of NPC1. These findings reveal a novel pleiotropic effect of simvastatin in affecting lysosomal cholesterol efflux in macrophages and the associated significance in the treatment of atherosclerosis.  相似文献   

13.
Prostate cancer (PCa) is the most common cancer in men in developed countries. Epidemiological studies have associated high blood-cholesterol levels with an increased risk of PCa, whilst cholesterol-lowering drugs (statins) reduce the risk of advanced PCa. Furthermore, normal prostate epithelial cells have an abnormally high cholesterol content, with cholesterol levels increasing further during progression to PCa. In this review, we explore why and how this occurs.  相似文献   

14.
Alzheimer's Disease (AD) is the most common neurodegenerative disorder in western societies affecting up to 15 million individuals worldwide.It leads to death after a progressive memory deficit and cognitive impairment accompanied by the appearance of two pathological hallmarks in specific brain areas: neurofibrillary tangles and amyloid plaques. Cholesterol homeostasis may play a key role in AD pathogenesis and this is supported by the demonstration that cholesterol-rich membrane domain, so-called Rafts,are disorganized in affected brains. Retrospective clinical studies indicate that individuals chronically treated with cholesterol synthesis inhibitors,statins, are at lower risk of developing AD but current literature is conflicting with regard to the neuroprotective effects of statins on cognitive impairment.Before recommending statins for prevention and/or treatment of AD it is important to investigate more the role of cholesterol levels in neurodegenerative disorders.  相似文献   

15.
The use of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) to reduce serum cholesterol is well described. However, the recent finding that statins have direct effects on bone was unexpected. A number of epidemiological studies have recently been published that explore the effects of statins on bone mineral density and risk of fracture in humans. Statins may act by directly stimulating the expression of bone morphogenetic protein-2 and increasing osteoblast differentiation or, like nitrogen-containing bisphosphonates, may have effects on the mevalonate pathway that leads to inhibition of osteoclast activity and osteoblast apoptosis. In addition, the demonstration that statins can inhibit inflammation and encourage angiogenesis offers other possibilities for action.  相似文献   

16.
The use of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) to reduce serum cholesterol is well described. However, the recent finding that statins have direct effects on bone was unexpected. A number of epidemiological studies have recently been published that explore the effects of statins on bone mineral density and risk of fracture in humans. Statins may act by directly stimulating the expression of bone morphogenetic protein-2 and increasing osteoblast differentiation or, like nitrogen-containing bisphosphonates, may have effects on the mevalonate pathway that leads to inhibition of osteoclast activity and osteoblast apoptosis. In addition, the demonstration that statins can inhibit inflammation and encourage angiogenesis offers other possibilities for action.  相似文献   

17.
Epidemiologic evidence shows that elevated serum cholesterol, specifically low-density lipoprotein cholesterol (LDL-C), increases the risk of coronary heart disease (CHD). Moreover, large-scale intervention trials demonstrate that treatment with HMG-CoA reductase inhibitors (statins), the most effective drug class for lowering LDL-C, significantly reduces the risk of CHD events. Unfortunately, only a moderate percentage of hypercholesterolemic patients are achieving LDL-C targets specified by the National Cholesterol Education Program (NCEP), in part because clinicians are not effectively titrating medications as needed to achieve LDL-C goals. Recent evidence suggests that more aggressive LDL-C lowering may provide greater clinical benefit, even in individuals with moderately elevated serum cholesterol levels. Furthermore, recent studies suggest that statins have cardioprotective effects in many high-risk individuals, including those with baseline LDL-C <100 mg/dl. High-density lipoprotein cholesterol (HDL-C) was recognized by the NCEP-Adult Treatment Panel II (ATP II) as a negative risk factor for CHD. The NCEP-ATP III guidelines have also reaffirmed the importance of HDL-C by increasing the low HDL-C designation from <35 to <40 mg/dl as a major risk factor for CHD. Similarly, triglyceride control will play a larger role in dyslipidemia management. As more clinicians effectively treat adverse lipid and lipoprotein cardiovascular risk factors, patients will likely benefit from reductions in cardiovascular events.  相似文献   

18.
Role of CETP inhibitors in the treatment of dyslipidemia   总被引:4,自引:0,他引:4  
PURPOSE OF REVIEW: This review summarizes novel human data on cholesteryl ester-transfer protein (CETP) and atherosclerosis and the possible use of CETP inhibitors in the treatment of dyslipidemia. In addition, it will underline that therapeutic targeting of the high-density lipoprotein (HDL) metabolism entails more than simply observing changes in cholesterol levels of this lipoprotein. RECENT FINDINGS: Two pharmacological small-molecule inhibitors of CETP, JTT-705 and torcetrapib, have recently been shown to effectively raise HDL cholesterol in humans without serious side effects when either used as a monotherapy or combined with statins that lower low-density lipoprotein cholesterol. Importantly, prospective data from the Epic-Norfolk study furthermore indicate that elevated CETP concentration in conjunction with elevated triglyceride levels are associated with increased odds for cardiovascular events. Data from the Diabetic Atherosclerosis Intervention Study furthermore show that elevated CETP concentration is associated with increased progression of coronary atherosclerosis in patients with type 2 diabetes who use fenofibrate. SUMMARY: Long-term studies will have to show whether CETP inhibition decreases the risk of atherosclerotic disease in dyslipidemic patients. Increased CETP activity might be detrimental under hypertriglyceridemic conditions which is of importance when considering that a large proportion of patients at increased risk from coronary artery disease exhibit elevated triglyceride levels. Studies into the effects of CETP inhibition in hypertriglyceridemic patients therefore seem warranted. Awaiting the first data on the effect of CETP inhibition on surrogate endpoints for atherosclerosis, this review furthermore outlines that the complexity of HDL metabolism will necessitate a wide variety of studies on many aspects of this intriguing lipoprotein.  相似文献   

19.
Statin-induced apoptosis and skeletal myopathy   总被引:2,自引:0,他引:2  
  相似文献   

20.
Accumulation of a 40-42-amino acid peptide, termed amyloid-beta peptide (A beta), is associated with Alzheimer's disease (AD), and identifying medicines that inhibit A beta could help patients with AD. Recent evidence suggests that a class of medicines that lower cholesterol by blocking the enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase), termed statins, can inhibit A beta production. Increasing evidence suggests that the enzymes that generate A beta function best in a high-cholesterol environment, which might explain why reducing cholesterol would inhibit A beta production. Studies using both neurons and peripheral cells show that reducing cellular cholesterol levels, by stripping off the cholesterol with methyl-beta-cyclodextrin or by treating the cells with HMG-CoA reductase inhibitors, decreases A beta production. Studies performed on animal models and on humans concur with these results. In humans, lovastatin, an HMG-CoA reductase inhibitor, has been shown to reduce A beta levels in blood of patients by up to 40%. The putative role of A beta in AD raises the possibility that treating patients with statins might lower A beta, and thereby either delay the occurrence of AD or retard the progression of AD. Two large retrospective studies support this hypothesis. Both studies suggest that patients taking statins had an approx. 70% lower risk of developing AD. Since statins are widely used by doctors, their ability to reduce A beta offers a putative therapeutic strategy for treating AD by using medicines that have already been proved safe to use in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号