首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Migration is an energy-demanding life-history period and also a significant population-limiting factor of long-distance migratory birds. It is important to understand how corticosterone, the main energy regulating hormone in birds, is associated with behavioural and physiological changes during migration. According to the migration modulation hypothesis (MMH), individual birds may express elevated levels of baseline corticosterone to facilitate fuelling, but down-regulate the adrenocortical response in order to protect skeletal muscles from the catabolic effects of the hormone. We measured the baseline and stress-induced levels of corticosterone in barn swallows (Hirundo rustica L.) during early stages of autumn migration. Here, we show that, while barn swallows clearly responded to the capture and handling stress by increasing the corticosterone level, the strength of this acute response was related to their energetic condition: birds with high body mass responded more rapidly and had lower peak values of corticosterone than lighter birds. Further, the baseline levels of corticosterone correlated negatively with the magnitude of the adrenocortical response. Barn swallows did not show elevated baseline levels of corticosterone in the course of autumn, which suggests that, instead of fuelling, the birds were actively migrating. Our results indicate that MMH also applies to aerial feeders, whose foraging habits differ from model birds of previous studies.  相似文献   

2.
Reproducing parents face the difficult challenge of trading-off investment in current reproduction against presumed future survival and reproduction. Glucocorticoids are supposed to mediate this trade-off because the adrenocortical response to stress disrupts normal reproductive behaviour in favour of self-maintenance and own survival. According to the brood-value hypothesis, individuals with a low survival probability until the next reproductive season have to invest in current reproduction, a process driven by a down-regulation of their adrenocortical response. If the adrenocortical response to stress effectively mediates the trade-off between current reproduction versus future survival and reproduction, we expect a negative relationship with reproductive success and a positive correlation of the adrenocortical stress response with survival. We studied the relationship between corticosterone secretion in parents and their current brood value, reproductive success and survival in a short-lived multi-brooded bird, the Eurasian hoopoe Upupa epops. The adrenocortical response to acute handling stress was correlated with the brood value within the individual (first and second broods of the year) and between individuals. Birds breeding late in the season mounted a lower total corticosterone response to acute stress than birds breeding earlier, while females showed lower levels than males. We observed a negative relationship between the adrenocortical stress response and rearing success or fledging success in females, as predicted by the brood-value hypothesis. However, we could not evidence a clear link between the adrenocortical stress response and survival. Future research testing the brood-value hypothesis and trade-offs between current reproduction and future survival should also measure free corticosterone and carefully differentiate between cross-sectional (i.e. between-individual) and individual-based experimental studies.  相似文献   

3.
Recent studies of long-distance migratory birds show that behavioural and physiological changes associated with predictable or unpredictable challenges during the annual cycle are distinctively regulated by hormones. Corticosterone is the primary energy regulating hormone in birds. Corticosterone levels are elevated during stresses but they are also modulated seasonally according to environmental conditions and life-history demands. We measured the baseline and stress-induced levels of corticosterone in the barn swallow (Hirundo rustica L.) just before spring and autumn migrations in South Africa and Finland, respectively. Barn swallows completing their pre-breeding moult had low body condition (residual body mass) and high baseline corticosterone levels in the wintering grounds. In contrast, baseline corticosterone levels in Finland were low and not related to residual mass. These data contradict the first prediction of the migration modulation hypothesis (MMH) by showing no association with baseline corticosterone levels and pre-migratory fuelling. Yet, the adrenocortical response to the capture and handling stress was notably blunted in South Africa compared to a strong response in Finland. Further, individuals that had started fuelling in Finland showed a reduced response to the handling stress. Taken together, elevated baseline corticosterone levels and high residual mass may blunt the adrenocortical response in long-distance migrants and aerial feeders such as the barn swallow. This observation lends support to the second prediction of the MMH.  相似文献   

4.
1. The seasonal dynamics of body condition (BC), circulating corticosterone levels (baseline, BL) and the adrenocortical response to acute stress (SR) were examined in long-lived Black-legged Kittiwakes, Rissa tridactyla , breeding at Duck (food-poor colony) and Gull (food-rich colony) Islands in lower Cook Inlet, Alaska. It was tested whether the dynamics of corticosterone levels reflect a seasonal change in bird physiological condition due to reproduction and/or variation in foraging conditions.
2. BC declined seasonally, and the decline was more pronounced in birds at the food-poor colony. BL and SR levels of corticosterone rose steadily through the reproductive season, and BL levels were significantly higher in birds on Duck Island compared with those on Gull Island. During the egg-laying and chick-rearing stages, birds had lower SR on Duck Island than on Gull Island.
3. The results suggest that, in addition to a seasonal change in bird physiology during reproduction, local ecological factors such as food availability affect circulating levels of corticosterone and adrenal response to acute stress.  相似文献   

5.
Little is known about baseline concentrations of adrenal hormones and hormonal responses to stress in sea ducks, although significant population declines documented in several species suggest that sea ducks are exposed to increased levels of environmental stress. Such declines have been observed in geographically distinct harlequin duck populations. We performed an adrenocorticotropic hormone (ACTH) challenge to evaluate adrenal function and characterize corticosterone concentrations in captive harlequin ducks and investigated the effects of capture, surgery, and short term confinement on corticosterone concentrations in wild harlequin ducks. Harlequin ducks responded to the ACTH challenge with an average three-fold increase in serum corticosterone concentration approximately 90 min post injection, and a four- to five-fold increase in fecal glucocorticoid concentration 2 to 4 h post injection. Serum corticosterone concentrations in wild harlequin ducks increased within min of capture and elevated levels were found for several hours post capture, indicating that surgery and confinement maintain elevated corticosterone concentrations in this species. Mean corticosterone concentrations in wild harlequin ducks held in temporary captivity were similar to the maximum response levels during the ACTH challenge in captive birds. However, large variation among individuals was observed in responses of wild birds, and we found additional evidence suggesting that corticosterone responses varied between hatch year and after hatch year birds.  相似文献   

6.
Little is known about baseline concentrations of adrenal hormones and hormonal responses to stress in sea ducks, although significant population declines documented in several species suggest that sea ducks are exposed to increased levels of environmental stress. Such declines have been observed in geographically distinct harlequin duck populations. We performed an adrenocorticotropic hormone (ACTH) challenge to evaluate adrenal function and characterize corticosterone concentrations in captive harlequin ducks and investigated the effects of capture, surgery, and short term confinement on corticosterone concentrations in wild harlequin ducks. Harlequin ducks responded to the ACTH challenge with an average three-fold increase in serum corticosterone concentration approximately 90 min post injection, and a four- to five-fold increase in fecal glucocorticoid concentration 2 to 4 h post injection. Serum corticosterone concentrations in wild harlequin ducks increased within min of capture and elevated levels were found for several hours post capture, indicating that surgery and confinement maintain elevated corticosterone concentrations in this species. Mean corticosterone concentrations in wild harlequin ducks held in temporary captivity were similar to the maximum response levels during the ACTH challenge in captive birds. However, large variation among individuals was observed in responses of wild birds, and we found additional evidence suggesting that corticosterone responses varied between hatch year and after hatch year birds.  相似文献   

7.
We report the results of the first field study examining seasonal changes in corticosterone responses of typically long-lived birds of the order Procellariiformes. In particular, we examined whether grey-faced petrels Pterodroma macroptera gouldi showed changes in circulating baseline corticosterone concentrations and corticosterone responses to a standardized handling protocol across the breeding season. Such changes have been associated with changes in body condition and variations in energy demands on adult birds through the breeding season. During early incubation, males were in significantly better condition than females that had just completed laying, whereas during late incubation, males were in significantly poorer condition than females. In spite of these differences, there was no significant difference in baseline corticosterone concentrations between sexes or among birds at different reproductive stages. However, we detected significant differences in corticosterone responses associated with a standardized handling protocol at different stages through the breeding season. Responses were significantly greater during incubation compared with the prelay period and late chick rearing. Body condition was weakly and negatively correlated with maximum and total integrated corticosterone level, indicating that some of the individual variability in stress corticosterone responses could be explained by variation in body condition. However, the largest stress response occurred during late incubation and was independent of sex, although males were in relatively poor condition and females in relatively good condition. This period coincided with the breeding stage in which energy constraints on individual adults were higher than at other periods of the reproductive cycle and birds may be physiologically primed for extended fasts.  相似文献   

8.
Birds respond to deterioration in environmental conditions by elevating their corticosterone levels, which can enhance their survival. It is less clear if animals constantly living in energetically challenging environment show similar increases in adrenocortical function. Previous work has demonstrated that under controlled conditions black-capped chickadees (Poecile atricapilla) from northern latitudes cache more food and perform better on spatial memory tasks than their southern conspecifics. As elevated levels of corticosterone have been shown previously to correlate with spatial memory performance in chickadees, this study aimed to investigate whether black-capped chickadees from northern latitudes have elevated baseline levels of corticosterone and/or a stronger adrenocortical stress response than their southern conspecifics, irrespective of their immediate environment. We found no differences between Alaskan and Colorado chickadees maintained under identical conditions for 3 months in either baseline levels of corticosterone or maximum levels of corticosterone achieved during the stress response. Baseline corticosterone levels were negatively correlated with relative body mass across both groups of birds. Our results suggest that the population differences in food catching behavior and spatial memory were not related to differences in corticosterone levels. We conclude that many reported population differences in baseline levels and in strength of adrenocortical stress response may often reflect differences in local environmental conditions rather than population-specific physiological traits.  相似文献   

9.
In birds, the timing of breeding is a key life-history trait with crucial fitness consequences. We predicted that parents may value a brood less if it hatched later than expected, thereby decreasing their parental effort. In addition, breeding effort would be further modulated by the age-specific decline of future breeding opportunities. We experimentally investigated whether snow petrels, Pagodroma nivea, were less committed to care for a chick that hatched later than expected. The timing of hatching was manipulated by swapping eggs between early and late known-age pairs (7-44 years old), and investigations on hormonal and behavioral adjustments were conducted. As a hormonal gauge of parental commitment to the brood, we measured the corticosterone stress response of guarding adults. Indeed, an acute stress response mediates energy allocation towards survival at the expense of current reproduction and is magnified when the current brood value is low, as it is expected to be in young and/or delayed parents. As predicted, egg desertion and the magnitude of the stress response was stronger in delayed pairs compared to control ones. However, the treatment did not decrease the length of the guarding period, chick condition and chick survival. In addition, old parents resisted stress better (lower stress-induced corticosterone levels) than young ones. Our study provides evidence that snow petrels, as prudent parents, may value a brood less if it hatched later than expected. Thus, in long-lived birds, the responsiveness to stressors appeared to be adjusted according to the individual prospect of future breeding opportunities (age) and to the current brood value (timing of breeding).  相似文献   

10.
We examined the effect of corticosterone on plasma levels of reproductive hormones (testosterone, dihydrotestosterone, and luteinizing hormone) and territorial defense behavior in male tree sparrows, Spizella arborea. Birds receiving Silastic implants filled with corticosterone (B) had significantly higher plasma levels of B than control birds, which received empty implants, and exhibited pectoral muscle wastage and a decrease in body mass. We evaluated the hormonal and agonistic responses of the two implanted groups of birds using a simulated territorial intrusion (STI) 2 to 4 days after they were implanted. Corticosterone-treated and control birds did not differ in their circulating levels of reproductive hormones or in their behavioral responses to STI (latency to respond to intrusion, number of songs, and closest approach to a decoy and tape recording). Unlike previous studies of north temperate passerines, high physiological levels of exogenous B had no effect either on circulating levels of reproductive hormones or on territorial behaviors associated with breeding. Nonetheless, untreated tree sparrows do mount a robust adrenocortical response, having a two- to fourfold increase in plasma B levels during a 1-h period of capture. Thus, adrenocortical responsiveness is maintained in these birds, but elevated levels of glucocorticoids do not suppress reproductive hormones or associated behaviors. We believe that this hormonal and behavioral refractoriness to glucocorticoids-or uncoupling of the stress response from the reproductive axis-may be advantageous for species having extreme temporal constraints on their breeding schedules.  相似文献   

11.
In a series of studies, we examined how larval corticosterone treatment for several species of amphibians can impact fitness parameters both during exposure and after metamorphosis. We completed confinement stress series on larvae of three species in natural/semi-natural conditions: wood frogs (Rana sylvatica), Jefferson salamanders (Ambystoma jeffersonianum), and Eastern spadefoot toads (Scaphiopus holbrooki). Two of the species had a typical vertebrate response of increasing corticosterone with confinement. However, Eastern spadefoot toads, which have a very short developmental period before metamorphosis, did not show any increase in corticosterone in response to confinement. In a second study, we treated the three species with a low and a high concentration of corticosterone (0.001 and 0.01?μM dissolved in tank water) in the laboratory and examined effects on growth. Although we were successful in raising baseline corticosterone levels with our high corticosterone concentrations, this did not translate into changes in mean larval growth for any of the three species. The larval treatments also did not appear to translate into differences in the juvenile response to confinement stress after metamorphosis. Although juvenile wood frogs did respond to confinement with increasing corticosterone, there was no variation based on larval treatment. As with the larval responses, the juvenile Eastern spadefoot toads did not have a hormonal response to confinement. In summary, while our larval corticosterone exposures did elevate baseline corticosterone levels, we did not see effects of exposure on growth or any latent effects of larval exposure on juvenile responses to confinement.  相似文献   

12.
We examined how the glucocortical stress response in free-living Magellanic penguin (Spheniscus magellanicus) chicks changes with age and whether adrenocortical function of chicks within a brood varies in relation to food provisioned by adults. Chicks showed little corticosterone response to capture stress shortly after hatching, an intermediate response around 45-d posthatch, and a robust stress response near fledging. However, in response to an adrenocorticotropic hormone (ACTH) challenge, hatchlings were capable of secreting corticosterone at adult-like levels. The larger sibling in broods of two showed a similar gradual stress-response development pattern. In contrast, by day 45, when differences in body condition were well established between siblings, the smaller, food-deprived chicks significantly increased baseline levels of corticosterone but showed normal stress-induced levels. Near fledging, baseline levels had returned to normal, but stress-induced levels were lower than expected. Similar to altricial species, normally developing semialtricial Magellanic penguin chicks do not express a robust corticosterone stress response until near fledging. Chronic stressors such as food deprivation cause corticosterone use to be up-regulated earlier than expected. However, in cases of extended chronic stress, down-regulation may ensue, thus avoiding the negative effects of chronically elevated levels of corticosterone.  相似文献   

13.
Many avian species of the North American Sonoran desert, e.g., the black-throated sparrow, Amphispiza bilineata, cactus wren, Campylorhynchus brunneicapillus, and curve-billed thrasher, Toxostoma curvirostre, can potentially breed from March/April to August. It is possible that, at least in summer, intense heat and aridity may have inhibitory effects on breeding by precipitating a stress response. Stress typically results in a rise in secretion of adrenocorticosteroid hormones that then inhibit reproduction by suppressing release of gonadal hormones. However, we found that plasma levels of corticosterone were not higher during summer, compared with winter, even in 1989 when summer temperatures were higher than normal. In June 1990, temperatures were also above normal and soared to the highest level recorded in Arizona (50 degrees C). Plasma levels of corticosterone during June were high in black-throated sparrows, but less so in two other species (Abert's towhee, Pipilo aberti, and Inca dove, Scardafella inca) found in more shady riparian and suburban habitat with constant access to water. The adrenocortical response to stress (as measured by the rate of corticosterone increase following capture) was reduced in the hottest summer months in black-throated sparrows, cactus wrens, and curve-billed thrashers, but less so in Abert's towhee an Inca dove. These data suggest that at least some birds breeding in the open desert with restricted access to water are able to suppress the classical adrenocortical response to stress. The response is then reactivated in winter after breeding has ceased. It is possible that this stress modulation may allow breeding to continue despite severe heat. Analysis of plasma from these species indicated that the apparent modulation of the adrenocortical response to stress was not an artifact of reduced affinity or capacity of corticosterone binding proteins.  相似文献   

14.
Arctic breeding birds arrive on their nesting grounds in spring when weather conditions may still be extreme (low temperature, snow). The brief Arctic summer requires that they begin breeding as early as possible to take advantage of the ephemeral abundance of food to feed young. Failure to adjust to the local phenology results in drastically reduced reproductive success. Hormone-behavior adaptations may have evolved that maximize survival and reproductive success in the Arctic. It has been shown that the interrelationship of testosterone and territorial aggression, as birds arrive on the Arctic breeding grounds, varies according to species and locality. In some, territoriality is extremely brief following which birds become apparently refractory to the effects of testosterone. Others are territorial throughout the breeding season, but the dependence of these behaviors upon activation by testosterone is lost. Extensive data also indicate that Arctic birds modulate the adrenocortical response to acute stress. Secretion of corticosterone in response to a standardized capture stress protocol, used to mimic acute stress as a function of local environmental conditions, varies with the stage in the breeding cycle. Arctic breeding birds modulate the sensitivity of the adrenocortical response to acute stress at both the population and individual levels. These modulations are thought to be adaptations to allow the onset of territorial behavior and breeding in the face of potentially stressful conditions. Behavioral and physiological responses to corticosterone treatment are also diminished. A combination of these two hormone-behavior interrelationships can form important components of the proximate mechanisms by which birds, and other vertebrates, breed successfully in a severe and often capricious environment.  相似文献   

15.
The Lapland longspur,Calcarius lapponicus,times its breeding season so that chicks hatch coincident with the brief period of food abundance in the high arctic. This synchronization requires that all reproductive activities occur in over a much shorter period than at lower latitudes. Because of the known influence of stress hormones on delaying breeding in temperate-zone birds and the detrimental effects of such delays in the arctic, we expected the performance of the hypothalamic–pituitary–adrenal (HPA) axis of arctic-breeding birds to show less sensitivity to environmental stress than their mid-latitude counterparts. We found that adrenocortical responsiveness to the standardized stress of capture and handling, measured by taking five serial blood samples for corticosterone during the course of a 1-hr period, was similar to many temperate passerines and was also similar both between male and female longspurs and between the migratory and reproductive phases. However, the profile of plasma corticosterone during capture stress was significantly damped in longspurs sampled as they began their postnuptial molt. In addition, we had the opportunity to examine endocrine responses to a natural environmental stress in 1989 during a 3-day snowstorm which concealed available food resources. During this storm longspurs formed progressively larger flocks each day, with females abandoning incubation duties by the third day. Birds captured during the storm showed highly significant increases in both the rate of plasma corticosterone increase during capture and the peak postcapture level compared with birds sampled before the storm. This increased adrenal potential suggests increased activity of the HPA axis in response to severe conditions and is reminiscent of the response to fasting. Although the storm occurred during incubation, and reproductive hormone levels had begun to decline, we measured significant reductions in luteinizing hormone in both males and a subset of females captured during the storm.  相似文献   

16.
In response to a variety of unpredictable conditions, birds secrete the steroid hormone corticosterone, which has numerous effects on physiology and behavior. A standardized protocol of handling and restraint has been demonstrated to elicit a robust corticosterone response in many species of birds. In contrast, comparatively little is known about the effects of capture technique on corticosterone secretion in wild birds. Setting up multiple live traps checked at regular intervals allows field researchers to capture many birds in a short period of time. However, one potential drawback of this technique is that birds may spend unknown lengths of time in traps prior to sampling. Many birds appear to remain calm and/or feed during this period, potentially leading researchers to assume that corticosterone secretion is unaffected by trapping. We assessed the impact of being left in traps for up to 30 minutes on baseline corticosterone and subsequent corticosterone responses to restraint in non‐breeding and breeding house sparrows Passer domesticus. Traps were baited with seed, and birds were either removed immediately after entry (controls), or left in the trap undisturbed for 15 or 30 min. Upon removal, birds were subjected to a standardized handling/restraint protocol in which blood samples were collected within 3 min, and again at regular intervals for 60 min. Analysis of blood samples revealed that both non‐breeding and breeding sparrows that were held in the traps had significantly higher baseline corticosterone than controls, and showed no further increase in corticosterone secretion in response to handling. However, corticosterone responses to trapping differed seasonally. Our study indicates that although birds did not exhibit prolonged escape behavior while trapped, entry into a walk‐in trap initiated a robust stress response. Taken together with data from a previous study, our data suggest that ornithologists should consider species‐specific and stage‐specific effects of trapping on physiology when designing field studies.  相似文献   

17.
Previous studies indicate most free-living avian species in both extreme and temperate environments seasonally modulate the adrenocortical responses to acute stress, and those breeding in harsh environments always express reduced adrenocortical responses, which may allow them to obtain maximal reproductive success. However, recent investigations showing a human commensal species, house sparrows (Passer domesticus), expressed similar corticosterone (CORT) responses in both benign and harsh environments. In this study, focusing on another human commensal species, Eurasian tree sparrows (P. montanus), we examined the adrenocortical response to acute stress in lowland populations, among the early and late breeding, the prebasic molt, and the wintering stages, and compared them with previously published data from populations on the Tibetan Plateau. Our results show: (1) similar to highland Eurasian tree sparrows, lowland populations show no differences in baseline CORT levels among life history stages, and the stress-induced CORT (maximal CORT, total and corrected integrated CORT) levels are lower during the early breeding and the prebasic molt stages than those in the late breeding and the wintering stages; (2) highland Eurasian tree sparrows show stronger adrenocortical responses during the prebasic molt stage than lowland populations, whereas there are no differences between the early and the breeding stages (except for maximal CORT). Our results suggest that Eurasian tree sparrows from both harsh and benign environments have similar patterns of adrenocortical responses in the breeding stage, whereas they are different in the prebasic molt stage. In highland birds, the increased maximal CORT levels during the late breeding and the small increases in adrenocortical responses during the prebasic molt are interesting but remain unexplained.  相似文献   

18.
To overcome unpredictable stressful transitory events, animals trigger an allostatic response involving the hypothalamic–pituitary–adrenal cortex. This hormonal response, which involves the release of glucocorticoids which in turn mediate between the main physiological mechanisms that regulate the energetic demands and resource allocation trade-off with behavioural responses to environmental perturbations and may ultimately lead to variation in fitness. We have used the Cory’s shearwater Calonectris borealis, a sexually dimorphic pelagic seabird with a partial migratory strategy, as a model bird species to analyse a number of traits related to the stress response. We investigated whether the activation of a stressful response, mediated by corticosterone, during the wintering period (1) correlated with the previous breeding success, (2) was affected by the migratory behaviour of male birds and (3) had consequences in the fitness of the birds. Corticosterone levels in feathers grown overwinter were analysed in 61 adult birds during three consecutive migratory periods (2009–2012) and in 14 immature birds in the wintering period 2010–2011. Moreover, the levels of corticosterone were analysed in experimental birds which were freed from their reproductive duties and compared with control birds which raised fledglings to the end of the breeding period. The results show that the levels of corticosterone were sex dependent, differed between years and were affected by the migratory strategy performed by the birds. The activation of the stressful response over the wintering period generated residual carry-over effects that positively affected the reproductive output in the subsequent breeding stage, a phenomenon previously undescribed in a long-lived pelagic seabird. Our study provides evidence that the analysis of corticosterone from feathers is a useful tool to evaluate carry-over effects in birds far away from breeding sites, opening new possibilities for future studies in this field.  相似文献   

19.
During long-term fasting at rest, protein utilization is maintained at low levels until it increases at a threshold adiposity. This study examines 1) whether such a shift in energy substrate use also occurs during endurance exercise while fasting, 2) the role of corticosterone, and 3) the adrenocortical response to an acute stressor. Ten species of migrating birds caught after an endurance flight over at least 500 km were examined. Plasma uric acid and corticosterone levels were low in birds with fat stores >5% of body mass and high in birds with smaller fat stores. Corticosterone levels were very high in birds with no visible fat stores and emaciated breast muscles. Corticosterone levels increased with handling time only in birds with large fat stores. These findings suggest that 1) migrating birds with appreciable fat stores are not stressed by endurance flight, 2) a metabolic shift (increased protein breakdown), regulated by an endocrine shift (medium corticosterone levels), occurs at a threshold adiposity, as observed in birds at rest, 3) adrenocortical response to an acute stressor is inhibited after this shift, and 4) an adrenocortical response typical for an emergency situation (high corticosterone levels) is only reached when muscle protein is dangerously low.  相似文献   

20.
In the polymorphic white-throated sparrow (Zonotrichia albicollis), tan-striped males provision nestlings at higher rates than do white-striped males. In a previous study, we found that tan-striped males had lower baseline corticosterone levels than white-striped males during the nestling stage. To determine if this variation in corticosterone influences morph-specific differences in nestling provisioning behavior, we used intraperitoneal osmotic pumps to increase baseline corticosterone levels in tan-striped males (TS CORT) and administer RU486, a glucocorticoid receptor antagonist, in white-striped males (WS RU486). These manipulations essentially reversed morph-specific nestling provisioning behavior in males. TS CORT males fed nestlings at lower rates than TS controls (vehicle-only implant), and at similar rates to WS controls (vehicle-only implant), while WS RU486 males fed nestlings at higher rates than WS controls, and at similar rates to TS controls. These results demonstrate that (1) increases in baseline corticosterone (i.e., below concentrations associated with the adrenocortical response to stress) can directly or indirectly inhibit nestling provisioning behavior, and (2) corticosterone influences morph-specific variation in parental behavior in male white-throated sparrows. This study contributes to the growing evidence that modulating baseline CORT mediates parental care and self-maintenance activities in birds, and thus may serve as a mechanism for balancing current reproductive success with survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号