首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A J Hsueh  N C Ling 《Life sciences》1979,25(14):1223-1229
We have recently demonstrated that gonadotropin releasing hormone (GnRH) acts directly on ovarian granulosa cells to inhibit the follicle stimulating hormone (FSH)-induced increase in granulosa cell steroidogenesis invitro. A GnRH antagonist, [D-pGlu1, D-Phe2, D-Trp3,6] GnRH (A), which is known to antagonize GnRH-stimulated gonadotropin release by cultured pituitary cells, was tested in the granulosa cell system. GnRH (10?8M) inhibited estrogen and progesterone production by FSH-treated granulosa cells invitro, whereas the antagonist A (10?6M) did not affect FSH stimulation of steroidogenesis. Antagonist A, when added together with GnRH and FSH, blocked the GnRH inhibition of FSH-induced steroidogenesis. Estrogen and progesterone production by granulosa cells was increased by 50% at a molar ratio (IDR50) of 201and121 ([antagonist]/[GnRH]), respectively. At 10?6M, antagonist A completely prevented the GnRH (10?8M) inhibition. A similar effect of antagonist A was seen in FSH-induced increase of luteinizing hormone (LH) receptor content. FSH treatment for 2 days invitro induced an 8-fold increase in LH receptor content in cultured granulosa cells; concomitant treatment with 10?8M GnRH completely inhibited the FSH effect. Antagonist A (10?6M), by itself, had no effect on the FSH action. However, when added together with FSH and GnRH, antagonist A completely abolished the inhibitory effect of GnRH. These results demonstrate that the direct inhibitory effect of GnRH on granulosa cell function can be prevented by a GnRH antagonist and that the GnRH action at the ovarian level may require stringent stereospecific interactions of these peptides with putative GnRH recognition sites.  相似文献   

2.
Numerous biochemical pathways influence the synthesis and release of anterior pituitary hormones. Releasing factors extracted from the hypothalamus and prostaglandins (PGs) appear to alter a common biochemical activity, adenyl cyclase, in pituitary cells. Luteinizing hormone releasing hormone (LRH), prostaglandin (PGE1), 7 oxa-13-prostynoic acid and cycloheximide were tested for individual and interacting effects on the in vitro release of FSH, LH and prolactin from hemipituitaries of 15 day old female rats. LRH (10 ng/ml) consistently released both LH and FSH in all in vitro experiments and inhibited prolactin release in 1 of 2 experiments. Lower concentrations (5 and 1 ng/ml) also stimulated LH and FSH release but did not influence prolactin release. Concurrent depletion of stored LH and FSH in the gland was observed. PGE1 in a 6.5 hour incubation increased the storage of LH within the gland in the absence of LRH. In a 1.5 hour incubation in the presence of LRH, storage of LH was also increased. PGE1 had no effect on LH and FSH release; however, in 1 of 2 experiments it stimulated prolactin release in the absence of LRH. Prostynoic acid stimulated LH and FSH release but did not synergize with LRH action in the same tissue. Cycloheximide did not affect LH release during the first 30 minutes of incubation; however, the release during the subsequent 1 hour was significantly inhibited. Similar tissue also exposed to cycloheximide was still responsive to LRH during the latter 1 hour incubation period. Cycloheximide had no effect on prolactin storage and release from the same tissue.  相似文献   

3.
Immature rat ovaries increase their secretion of estradiol (E2) when stimulated by gonadotropins but only after a lag period of several hours. Once established, estrogen secretion can be maintained, or increased, by the continued presence of gonadotropin. A combination of ovine FSH+LH given at 2 hr intervals stimulated the estrogen synthesizing system (ESS) of the ovary and serum E2 showed a pronounced rise between 16 and 20 hrs after the initial injection. When given every 2 hrs for 5 doses (0–8 hrs) serum E2 was undetectable. However, it was increased if 20 IU PMS was injected at the time of the last dose of FSH+ LH. Endogenous FSH&LH, increased by hourly injections of LH-releasing hormone for a period of 8 hrs, stimulated the ESS; serum E2 increased at the expected time when this treatment was followed by an injection of PMS.Anti-PMS antiserum given 12 hrs after PMS, prevented the expected rise in serum E2 at 24 hrs. However, FSH, LH or a combination of the two given every 2 hrs beginning at the time of the anti-PMS produced an increase in E2 secretion; the combination was more effective than either hormone alone.These results are consistent with the interpretation that a combined FSH-LH action is responsible for induction of the ESS in the immature rat ovary. The combination of hormones is also very effective in maintaining estrogen secretion but some function appears possible with FSH or LH alone.  相似文献   

4.
[125I] labelled [D-Leu6, des-Gly-NH10(2)] LH-RH ethylamide (LH-RHa), when injected into immature female rats, bound specifically not only to the pituitary but also to the ovaries. LH-RHa inhibited hCG-stimulated progesterone production and ovarian weight augmentation in hypophysectomized immature female rats in vivo. FSH-induced ovarian hCG receptors and ovarian weight gain in diethylstilbestrol (DES)-treated hypophysectomized immature female rats were also suppressed by LH-RHa. Progesterone production by rat luteal cells in vitro was inhibited by LH-RHa. LH-RHa did not change the affinity or population of LH/hCG receptor in porcine granulosa cells in short term incubation. However, LH-RHa inhibited induction of LH/hCG receptor stimulated by FSH and insulin in long term culture of porcine granulosa cells. LH-RHa delayed hCG-stimulated cyclic AMP accumulation in porcine granulosa cells. These findings suggest that LH-RHa inhibits hCG-stimulated cyclic AMP accumulation and subsequent progesterone production as well as FSH-stimulated LH/hCG receptor induction by acting directly on ovarian cells.  相似文献   

5.
The effect of in vivo exposure to gonadotropin on prostaglandin synthetase activity in rat granulosa cells was examined in two experimental settings. The first setting was immature rats treated with pregnant mare's serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG). The second was mature rats on the day of proestrus. In the experiments using immature rats, the administration of hCG (20 I.U.) at noon of the second day after the PMSG (20 I.U.) injection led to large (more than 5 fold) increases in granulosa cell prostaglandin synthetase activity 5 and 10 h later. Follicular fluid PGE levels were also markedly increased at 5 and 10 h after hCG. Similar results were also found in experiments performed with mature proestrus rats. Granulosa cell prostaglandin synthetase activity was elevated at approximately 4 and 8 h after the endogenous LH surge (about 4 p.m. on proestrus), in comparison with the activity at midnight of diestrus, or noon and 4 p.m. on proestrus. In these experiments the changes in prostaglandin synthetase activity (10 fold) also paralleled the increases in follicular fluid PGE concentrations. Thus the exposure to gonadotropin in vivo produced essentially the same effect as we had reported earlier for isolated granulosa cells incubated with LH in vitro. The stimulation of prostaglandin synthetase activity must therefore be ascribed an important role in the physiological regulation of granulosa cell prostaglandin synthesis by LH.  相似文献   

6.
The mechanism by which estrogens enhance gonadotropin-stimulated ovarian progestin production was investigated by studying the modulation of pregnenolone biosynthesis as well as the activities of 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) and 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD) in cultured rat granulosa cells. Cells from immature hypophysectomized, estrogen-treated rats were cultured for 3 days with follicle-stimulating hormone (FSH) and/or estrogens. Pregnenolone production was measured in the presence of cyanoketone which inhibits 3 beta-HSD activity. Activities of 3 beta-HSD and 20 alpha-HSD were determined in cell homogenates by direct enzyme assays. Some cells were also primed with FSH to induce luteinizing hormone (LH) receptors for studies on the effects of estrogens on LH-modulated parameters. Pregnenolone production by cultured granulosa cells was stimulated by FSH, while treatment with diethylstilbestrol (DES) or estradiol further enhanced the gonadotropin action. Treatment with FSH increased 3 beta-HSD activity. Similarly, concomitant treatment with DES further enhanced 3 beta-HSD activity in a dose-dependent manner with an apparent ED50 of 10(-8) M. Also, treatment with estrogens alone increased 3 beta-HSD activity. The increases in enzyme activity induced by estrogen alone or in combination with FSH were not associated with changes in the apparent Km values. FSH also stimulated 20 alpha-HSD activity by 2-fold in these cells, while concomitant treatment with DES did not affect the FSH action. In FSH-primed cells, LH stimulated pregnenolone production while the LH action was enhanced by concomitant treatment with the estrogens. Likewise, LH stimulated the activity of 3 beta-HSD, while concomitant DES treatment further augmented LH action. LH did not stimulate 20 alpha-HSD activity when added alone or in combination with DES. Thus, the estrogen enhancement of the gonadotropin-stimulated progesterone production in cultured rat granulosa cells is associated with increases in pregnenolone biosynthesis and the activity of the 3 beta-HSD enzyme, without affecting the 20 alpha-HSD activity.  相似文献   

7.
Effects of estrogen, pituitary gonadotropins and prolactin on immunohistochemical localization of alpha- and beta A-subunits in the ovaries of hypophysectomized female rats were investigated. Hypophysectomy resulted in disappearance of immunoreactive inhibin subunits in the ovary. Administration of DES, FSH and LH to hypophysectomized rats provoked growth of follicles, and resulted in positive immunostaining for inhibin subunits in the granulosa cells. In contrast to follicle-stimulating hormone (FSH) and luteinizing hormone (LH), prolactin administration failed to demonstrate positive staining for inhibin subunits in the ovary. The present in vivo results suggest that several hormones which are known to stimulate granulosa cell growth and maturation, such as estrogen, FSH and LH, enhance inhibin subunit production by the ovary. The morphologic aspect of inhibin subunit production by the ovary in response to several hormones has been demonstrated in the present study.  相似文献   

8.
Male rats treated chronically with high doses of Valium (50mg/ Kg/day; 10 days) failed to exhibit changes in their reproductive system. Testicular and prostate weights, serum testosterone (T) and LH were unaffected. Testes and pituitary tissue stimulated invitro with LH and GnRH, respectively, released normal amounts of T, LH and FSH. Brain benzodiazepine receptors were slightly but significantly elevated by Valium treatment as well as by castration. We conclude that the male reproductive system is resistant to chronic Valium treatment even though the brain levels of benzodiazepine receptors are not.  相似文献   

9.
P B Jones  P M Conn  J Marian  A J Hsueh 《Life sciences》1980,27(22):2125-2132
We have previously shown that gonadotropin releasing hormone (GnRH) and its agonists inhibit ovarian functions by a direct action on ovarian granulosa cells in vitro. A labeled GnRH agonist, [des-Gly10, D-Ser (TBu)6, Pro9-NHEt]GnRH, was used here to examine the possibility that these inhibitory actions of GnRH were mediated through specific receptors which recognize GnRH. Ovarian membrane fractions obtained from immature, hypophysectomized diethylstilbesterol-treated rats were incubated with the 125I-GnRH agonist and specific binding was determined by a filtration assay. Stereospecific, high affinity binding was detected in the ovarian membranes; the dissociation constant for the labeled GnRH agonist was determined to be 0.84 ± 0.33 × 10?10 M and the binding capacity was calculated to be 12.9 fmol/mg protein, or 0.142 fmol/μg DNA. The binding affinity for the GnRH decapeptide was 3.3 times lower than that of the GnRH agonist whereas two GnRH partial peptides did not compete for the 125I-agonist binding. After sequential treatment with FSH, LH and prolactin to the hypophysectomized female rats, the ovarian GnRH binding capacity increased per ovary, but decreased per mg ovarian protein.Furthermore, ovarian granulosa cells were isolated and their binding capacity was determined to be 25.2 fmol/mg protein, or 0.133 fmol/μg DNA, suggesting that the granulosa cells contain GnRH binding sites. Thus, this report demonstrates the presence of stereospecific, high affinity GnRH binding sites in the rat ovarian granulosa cells.  相似文献   

10.
To determine when undifferentiated rabbit granulosa cells first develop the capacity to secrete progesterone, pieces of intact ovaries from neonatal rabbits (newborn—30 days old) and pure granulosa cells from 150–1200 μm follicles at 60–600 days old were cultured in vitro for 6–10 days with human chorionic gonadotropin (HCG), Pergonal (LH/FSH), dibutyryl cyslic AMP (Bu2CAMP), prostaglandin E2, estradiol-17β, and as controls. The culture medium was collected every 2 days, and progesterone, estrone, and estradiol-17β were measured by radioimmunoassay.None of the neonatal ovaries or granulosa cell cultures secreted estrone or estradiol-17β spontaneously or in response to stimulation by gonadotropins, Bu2CAMP, or prostaglandin E2.Control cultures of newborn and 7-day-old ovaries did not secrete progesterone, but ovaries from 17- and 30-day-old rabbits did. Gonadotropins and Bu2CAMP induced progesterone secretion in 7-day-old ovaries and stimulated its production 5-10-fold in ovaries at 17 and 30 days old, but prostaglandin E2 and estradiol-17β were without effect.Granulosa cells from all antral follicles (200–1200 μm) secreted progesterone spontaneously, and its production was stimulated 100–1000-fold with gonadotropins and Bu2CAMP, but not with estradiol-17β or prostaglandin E2. In contrast, granulosa cells from 100–150 μm preantral follicles from 200-day-old animals did not secrete progesterone under these culture conditions.These results demonstrate that rabbit granulosa cells differentiate the capacity to secrete progesterone at the time the primary follicle develops an antrum, and suggest the differentiation process involves the acquisition of the capacity to respond to gonadotropins perhaps by the synthesis or unmasking of gonadotropin receptors.  相似文献   

11.
Immature female rats received either one injection of 2 mg diethylstilboestrol (DES)/rat subcutaneously and were killed 12 h later or received two injections of DES at 0 and 24 h and were killed at 24, 36 and 48 h after the initial injection. The ovarian follicles were released by enzymic digestion with collagenase and separated into those of small, medium and large diameter (less than 200 microns, 200-400 microns and greater than 400 microns) by filtration through graded Teflon sieves and granulosa cells were extracted from these follicles. The ovaries of immature rats treated with pregnant mares' serum gonadotrophin (PMSG) were used for comparative purposes. Incorporation of [3H]thymidine into granulosa cell DNA was augmented by DES and by PMSG. Small follicles were more strongly stimulated by DES at 12 h than those of other sizes, but rates increased significantly in medium and large follicles at 48 h. Aromatase activity in the DES-treated group was low at all times and in all follicles. Rates of oestrogen and progesterone production in response to 36 h of exposure to follicle-stimulating hormone (FSH) in vitro were significantly lower than in the PMSG-treated group. FSH-stimulated steroid production in the DES group at 36-48 h was lower, particularly in the medium follicles. A significant rise in serum FSH, luteinizing hormone (LH) and progesterone concentrations was noted only at 36 h after DES treatment, while serum and follicular fluid oestrogen values remained unchanged. When these changes were compared with those in PMSG-treated rats, there were obvious differences. The pattern of thymidine incorporation and aromatase activity differed with time and follicle size. Serum FSH and LH values were not affected by PMSG treatment, but serum and follicular fluid oestradiol values increased with time. The PMSG-treated animals ovulated in response to human chorionic gonadotrophin, but the DES-treated rats did not ovulate in spite of the presence of some large antral follicles in the ovaries. These findings show that initial exposure of follicles to high concentrations of oestrogen results in follicles which fail to respond to subsequent gonadotrophin surges and are thereby restricted in their ability to differentiate fully.  相似文献   

12.
Addition of 1mM ascorbate to isolated chloroplasts with methyl viologen (MV) as electron acceptor trebled the rate of oxygen uptake and decreased the ADPO ratio to a third of that with no ascorbate present. These effects of ascorbate were reversed by superoxide dismutase (SOD), which in the absence of ascorbate had little effect on O2 uptake or ADPO ratio. A chloroplast-associated SOD activity equivalent to 500 units/mg chlorophyll was detected. The effects of ascorbate and SOD on O2 uptake were similar in both coupled and uncoupled chloroplasts. The results are consistent with the hypothesis that ascorbate stimulates O2 uptake by reduction of superoxide, which is formed by autoxidation of the added electron acceptor (MV), and which dismutates in the absence of ascorbate. Ascorbate does not seem to stimulate O2 uptake by replacing water as the photosystem II donor.  相似文献   

13.
We have demonstrated previously an ability of estrogen to inhibit ovarian androgen production. We report here further evidence in support of this intraovarian short-loop feedback mechanism. Thecal cells from ovarian follicles of estradiol-17β (E)-treated rats demonstrated an enhanced capability of producing progesterone in response to LH in vitro. In contrast, testosterone production by the same thecal preparations was markedly inhibited by pretreatment with E, suggesting a selective inhibitory action of E at the level of the androgen-producing cells in the ovarian follicle. In a somewhat contrasting experiment in hypophysectomized rats, while simultaneous administration of purified follicle-stimulating hormone (FSH) antagonized an inhibitory action of E on ovarian progesterone production, treatment of the hypophysectomized rats with either E alone or concomitantly with E plus FSH still attenuated ovarian testosterone production by these animals in response to acute LH stimulation. These results are consistent with a direct inhibitory action of estrogen at the level of the ovarian C17α-hydroxylase /C17,20-lyase enzyme system.  相似文献   

14.
The induction of luteinizing hormone (LH) receptors was studied in granulosa cells prepared from the ovaries of hypophysectomized diethylstilbestrol-treated immature rats. Incubation of granulosa cells for 48 h with increasing concentrations of follicle-stimulating hormone (FSH) or choleragen caused parallel rises in cAMP levels and LH receptors. These observations, with the finding that 8-Bromo-cAMP also induced LH receptor formation, indicate that hormonal stimulation of LH binding sites is mediated by cAMP. Peptide hormones that inhibited FSH-stimulated cAMP production, such as epidermal growth factor (EGF) and a gonadotropin-releasing hormone agonist (GnRHa), also prevented LH receptor formation. GnRHa and EGF had negligible effects on FSH-stimulated cAMP production from 0 to 24 h of culture, but reduced cAMP accumulation by 80% and 90%, respectively, from 24 to 48 h when the majority of LH receptors appeared. FSH-sensitive adenylate cyclase activity, as measured by the conversion of (3H)-ATP to (3H)-cAMP, was inhibited by GnRHa and EGF at 48 h of culture. EGF and GnRHa also reversed the inhibition of ectophosphodiesterase activity caused by FSH in granulosa cells between 48 and 72 h of culture. Both EGF and GnRHa inhibited induction of LH receptors by 8-Bromo-cAMP, suggesting that their effects are also on cAMP action. Addition of GnRHa, but not EGF, between 36 and 48 h of culture completely prevented further increases in LH receptors induced by 8-Bromo-cAMP, indicating that the inhibitory action of GnRHa can be initiated at later times during granulosa cell differentiation, whereas full expression of EGF action requires a longer period. These results demonstrate that EGF and GnRH inhibit FSH-induced LH receptor formation in the granulosa cell by reducing hormone-dependent cAMP production and also by impairing the ability of cAMP to stimulate LH receptor formation.  相似文献   

15.
Ten male ponies were studied from 17 December 1978 through 9 August 1979. Six of the colts were born the previous spring (1978) and four were born during the previous summer. Three of the spring-born colts had been castrated at 4 months of age. Based on the presence of spermatozoa in the epididymis, all spring-born colts (33), but only one summer-born colt (14) had reached puberty by the end of the project (August). Spermatogenesis was significantly more advanced in the spring-born colts than in the summer-born colts.Concentrations of FSH and LH in the intact males remained constant from December through August, and levels were significantly lower than for the long-term castrated males throughout this period. In the long-term castrates, concentrations of FSH and LH increased from late winter and early spring to the highest levels during late spring and summer.On 9 August, the three spring-born colts (approximately 16 months of age) were castrated. The four summer-born colts (approximately 12–13 months old) were randomly assigned to either castrate (n=2) or hemicastrate (n=2) groups, and surgery was done on all colts on the same day. Both gonadotropins increased following castration in spring-born males. Concentrations of FSH and LH did not change following hemicastration.  相似文献   

16.
A method is described which makes use of 4M MgCl2 to dissociate the testicular luteinizing hormone-receptor complex without altering either the binding capacity or binding affinity of the receptor. Using this method, it was demonstrated that in vitro incubation at 4° of decapsulated rat testes with various concentrations of luteinizing hormone or with human chorionic gonadotropin resulted in a reduction in binding capacity. This reduction of binding capacity could not be completely accounted for by occupation of receptors by homologous hormone, suggesting that receptors were lost. Thus negative regulation of LH receptors by LH and hCG was observed. The reduction in LH binding capacity was specific for LH and hCG, dose dependent and time related. FSH, prolactin and growth hormone did not exert the same effect.  相似文献   

17.
Heat-inactivated serum is cytotoxic to granulosa cells from preantral follicles but not to cells from preovulatory follicles. A dominant feature of the granulosa cells of preovulatory follicles is the presence of luteinizing hormone (LH) receptors on the surface of the cells. In the present study, we have examined the relationship between the process of LH receptor induction and the acquisition of serum tolerance in granulosa cells in vitro. Granulosa cells from the ovaries of immature rats primed with diethylstilbestrol (DES) were cultured in a 1:1 mixture of Ham's F-12 and Dulbecco's modified Eagle's medium containing 30 ng of ovine follicle-stimulating hormone (oFSH; NIH-15). At either 0, 24, or 48 h of culture, heat-inactivated fetal bovine serum (FBS) was added (10% by volume) to separate groups of culture tubes. All cells were cultured for a total of 72 h, at which time the cultures were assessed for LH receptor (specific 125I-human chorionic gonadotropin [hCG] binding) and DNA content. LH receptors were induced in all FSH-containing serum-free cultures by 48 h. Receptors were not induced, however, when serum was added after either 0 or 24 h of culture. Furthermore, serum addition at these times resulted in a cell loss (assessed by DNA) of 40-60%. Serum addition at 48 h to FSH-containing cultures resulted in an inability to detect LH receptors at 72 h and with no significant effect on the culture DNA content. Addition of a protein extract of FBS at the initiation of cell culture prevented FSH-stimulated LH receptor induction and was cytotoxic. A lipid extract of FSH did not interfere with receptor induction and was not cytotoxic.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Sertoli cells from 10 day old rats convert androstenedione to testosterone and 5α-androstane-3α,17β-diol, testosterone to 17β-hydroxy-5α-androstan-3-one and 5α-androstane-3α,17β-diol, and 17β-hydroxy-5α-androstan-3-one to 5α-andro-stane-3α,17β-diol after 72 hours in vitro. Conversions of androstenedione to testosterone and 5α-androstane-3α,17β-diol, and testosterone to 5α-androstane-3α,17β-diol were 2 to 3 times greater in FSH treated cultures. Steroid conversion was not stimulated significantly by LH or TSH. The results are interpreted as evidence that in young rats Sertoli steroid metabolism is stimulated by FSH, that Sertoli cells are an androgen target and that FSH may induce or facilitate Sertoli androgen responsiveness.  相似文献   

19.
The effect of a gonadotropin-releasing hormone (GnRH) agonist on luteinizing hormone (LH) receptor mRNA expression was examined histologically in the ovaries of immature hypophysectomized (HPX) rats by in situ hybridization. In the ovaries of HPX rats treated with diethylstilbestrol (DES) and pregnant mare serum gonadotropin (PMSG), LH receptor mRNA was expressed in the granulosa cells of mature follicles as well as the theca-interstitial cells. In DES-primed ovaries of rats treated with both GnRH agonist plus PMSG, many follicles were luteinized without ovulation, and the signal of LH receptor mRNA disappeared completely in the theca-interstitial cells as well as the luteinized cells, but remained in the granulosa cells of unaffected mature follicles. The complete suppression of the theca-interstitial LH receptor expression by GnRH agonist was also observed in HPX rats that received no other treatment. On the other hand, the coadministration of a GnRH antagonist with PMSG resulted in the hyperstimulation of follicular growth, accompanied by very strong expression of LH receptor mRNA in the granulosa cells as well as the thecainterstitial cells. In addition, morphological changes in the ovarian interstitial cells were also induced by the administration of GnRH agonist in HPX rats: loose connective tissue decreased and the interstitial cell mass markedly increased. The increase of the interstitial cells became more prominent when rats were treated with GnRH agonist and testosterone simultaneously. These results suggest that GnRH may be an important factor for modulating the interstitial cell function and differentiation in the rat ovary.  相似文献   

20.
The ability of equine luteinizing hormone (eLH) to promote follicular growth and maturation in hypophysectomized rats has been assessed. A single injection of equine LH has been shown to promote the growth of a large number of antral and preovulatory follicles. In addition, equine LH markedly increased serum estrogen levels and uterine weight. Furthermore, equine LH, like equine chorionic gonadotropin (eCG; PMSG) was able to significantly enhance the incorporation of [3H]thymidine into ovarian DNA, an activity shown to be specific to hormones having follicle-stimulating hormone (FSH) activity. Equine LH treated with an FSH antibody immunoaffinity column to remove any possible contamination still exhibited the above activity, demonstrating that the FSH activity is intrinsic to the eLH molecule. Equine LH has also been shown to be capable of inducing LH receptors in granulosa cells of ovaries of hypophysectomized rats, an activity specific to FSH-like hormones. From the doses required of eLH and the degree of response observed, it is concluded, however, that eLH in the hypophysectomized rat is less active than eCG as an FSH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号