首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activating immunoreceptor NKG2D promotes elimination of infected or malignant cells by cytotoxic lymphocytes through engagement of stress-induced MHC class I-related ligands. The human cytomegalovirus (HCMV)-encoded immunoevasin UL16 subverts NKG2D-mediated immune responses by retaining a select group of diverse NKG2D ligands inside the cell. We report here the crystal structure of UL16 in complex with the NKG2D ligand MICB at 1.8 Å resolution, revealing the molecular basis for the promiscuous, but highly selective, binding of UL16 to unrelated NKG2D ligands. The immunoglobulin-like UL16 protein utilizes a three-stranded β-sheet to engage the α-helical surface of the MHC class I-like MICB platform domain. Intriguingly, residues at the center of this β-sheet mimic a central binding motif employed by the structurally unrelated C-type lectin-like NKG2D to facilitate engagement of diverse NKG2D ligands. Using surface plasmon resonance, we find that UL16 binds MICB, ULBP1, and ULBP2 with similar affinities that lie in the nanomolar range (12–66 nM). The ability of UL16 to bind its ligands depends critically on the presence of a glutamine (MICB) or closely related glutamate (ULBP1 and ULBP2) at position 169. An arginine residue at this position however, as found for example in MICA or ULBP3, would cause steric clashes with UL16 residues. The inability of UL16 to bind MICA and ULBP3 can therefore be attributed to single substitutions at key NKG2D ligand locations. This indicates that selective pressure exerted by viral immunoevasins such as UL16 contributed to the diversification of NKG2D ligands.  相似文献   

2.
Human CMV infection results in MHC class I down-regulation and induction of NKG2D ligand expression favoring NK recognition of infected cells. However, human CMV-encoded UL16 counteracts surface expression of several NKG2D ligands by intracellular retention. Interestingly, UL16 interacts with MICB, but not with the closely related MICA, and with UL16-binding proteins (ULBP) ULBP1 and ULBP2, which are only distantly related to MICB, but not with ULPB3 or ULBP4, although all constitute ligands for NKG2D. Here, we dissected the molecular basis of MICA-MICB discrimination by UL16 to elucidate its puzzling binding behavior. We report that the UL16-MICB interaction is independent of glycosylation and demonstrate that selective MICB recognition by UL16 is governed by helical structures of the MICB alpha2 domain. Transplantation of the MICB alpha2 domain confers UL16 binding capacity to MICA, and thus, diversification of the MICA alpha2 domain may have been driven by the selective pressure exerted by UL16.  相似文献   

3.
Human cytomegalovirus (HCMV) employs a variety of strategies to modify or evade the host immune response, and natural killer (NK) cells play a crucial role in controlling cytomegalovirus infections in mice and humans. Activation of NK cells through the receptor NKG2D/DAP10 leads to killing of NKG2D ligand-expressing cells. We have previously shown that HCMV is able to down-regulate the surface expression of some NKG2D ligands, ULBP1, ULBP2, and MICB via the viral glycoprotein UL16. Here, we show that the viral gene product UL142 is able to down-regulate another NKG2D ligand, MICA, leading to protection from NK cytotoxicity. UL142 is not able to affect surface expression of all MICA alleles, however, which may reflect selective pressure on the host to thwart viral immune evasion, further supporting an important role for the MICA-NKG2D interaction in immune surveillance.  相似文献   

4.
5.
Human CMV (HCMV) interferes with NK cell functions at various levels. The HCMV glycoprotein UL16 binds some of the ligands recognized by the NK-activating receptor NKG2D, namely UL16-binding proteins (ULBP) 1 and 2 and MHC class I-related chain B, possibly representing another mechanism of viral immune escape. This study addressed the expression and function of these proteins in infected cells. HCMV induced the expression of all three ULBPs, which were predominantly localized in the endoplasmic reticulum of infected fibroblasts together with UL16. However, while at a lower viral dose ULBP1 and 2 surface expression was completely inhibited compared to ULBP3, at a higher viral dose cell surface expression of ULBP1 and ULBP2 was delayed. The induction of ULBPs correlated with an increased dependency on NKG2D for recognition; however, the overall NK sensitivity did not change (suggesting that additional viral mechanisms interfere with NKG2D-independent pathways for recognition). Infection with a UL16 deletion mutant virus resulted in a different pattern compared to the wild type: all three ULBP molecules were induced with similar kinetics at the cell surface, accompanied by a pronounced, entirely NKG2D-dependent increase in NK sensitivity. Together our findings show that upon infection with HCMV, the host cell responds by expression of ULBPs and increased susceptibility to the NKG2D-mediated component of NK cell recognition, but UL16 limits these effects by interfering with the surface expression of ULBP1 and ULBP2.  相似文献   

6.
NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family.  相似文献   

7.
Natural killer (NK) cells are innate immune lymphocytes capable of killing target cells without prior sensitization. One pivotal activating NK receptor is NKG2D, which binds a family of eight ligands, including the major histocompatibility complex (MHC) class I-related chain A (MICA). Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus causing morbidity and mortality in immunosuppressed patients and congenitally infected infants. HCMV encodes multiple antagonists of NK cell activation, including many mechanisms targeting MICA. However, only one of these mechanisms, the HCMV protein US9, counters the most prevalent MICA allele, MICA*008. Here, we discover that a hitherto uncharacterized HCMV protein, UL147A, specifically downregulates MICA*008. UL147A primarily induces MICA*008 maturation arrest, and additionally targets it to proteasomal degradation, acting additively with US9 during HCMV infection. Thus, UL147A hinders NKG2D-mediated elimination of HCMV-infected cells by NK cells. Mechanistic analyses disclose that the non-canonical GPI anchoring pathway of immature MICA*008 constitutes the determinant of UL147A specificity for this MICA allele. These findings advance our understanding of the complex and rapidly evolving HCMV immune evasion mechanisms, which may facilitate the development of antiviral drugs and vaccines.  相似文献   

8.
The human cytomegalovirus (HCMV) UL16 gene encodes a glycoprotein that interferes with the immune response to the virus-infected cell. In vitro, UL16 interacts with MICB and ULBPs that are ligands for the stimulatory receptor NKG2D, expressed on NK cells and CD8(+)T cells. UL16 expression has been shown to promote intracellular accumulation of MICB, ULBP1 and 2 and thus, interfere with the immune response to HCMV-infected cells. The mechanism that has been suggested for UL16-mediated MICB downmodulation is retention in the ER. Here, we studied the intracellular localization and maturation of UL16 and MICB in HCMV-infected cells and transfectant systems. UL16 trafficked through the ER, TGN and progressed to the plasma membrane, after which the protein was internalized. Strikingly, UL16 was also observed in the inner nuclear membrane. MICB was also localized in the TGN in HCMV-infected cells. These data suggest that MICB trafficking might be affected after its transit through the ER.  相似文献   

9.
Overexpression of the receptor tyrosine kinases HER2 and HER3 is associated with a poor prognosis in several types of cancer. Presently, HER2- as well as HER3-targeted therapies are in clinical practice or evaluated within clinical trials, including treatment with mAbs mediating growth inhibition and/or activation of Ab-induced innate or adaptive cellular immunity. A better understanding of how HER2/HER3 signaling in tumors influences cellular immune mechanisms is therefore warranted. In this study, we demonstrate that HER2/HER3 signaling regulates the expression of MHC class I-related chain A and B (MICA and MICB) in breast cancer cell lines. The MICA and MICB (MICA/B) molecules act as key ligands for the activating receptor NK group 2, member D (NKG2D) and promote NK cell-mediated recognition and cytolysis. Genetic silencing of HER3 but not HER2 downregulated the expression of MICA/B, and HER3 overexpression significantly enhanced MICA expression. Among the major pathways activated by HER2/HER3 signaling, the PI3K/AKT pathway was shown to predominantly regulate MICA/B expression. Treatment with the HER3-specific ligand neuregulin 1β promoted the expression in a process that was antagonized by pharmacological and genetic interference with HER3 but not by the ataxia-telangiectasia-mutated (ATM) and ATM and Rad3-related protein kinases inhibitor caffeine. These observations further emphasize that HER2/HER3 signaling directly, and not via genotoxic stress, regulates MICA/B expression. As anticipated, stimulating HER2/HER3 enhanced the NKG2D-MICA/B-dependent NK cell-mediated cytotoxicity. Taken together, we conclude that signaling via the HER2/HER3 pathway in breast carcinoma cell lines may lead to enhanced NKG2D-MICA/B recognition by NK cells and T cells.  相似文献   

10.
Unique long 16 (UL16) is a viral glycoprotein produced in a host cell infected with human cytomegalovirus (HCMV). It down regulates surface expression of MICB, one of the NKG2D ligands, by forming stable intracellular complexes and retained in the endoplasmic reticulum. Down expression of MICB renders cells less susceptible to NK cell lysis via the NKG2D receptor. Diverse UL16 sequences were identified from different strains of HCMV. MICB is known to be polymorphic. It is not known whether these polymorphisms affect the interactions between these molecules leading to alteration of the immune surveillance of HCMV. The soluble Fc fusion variant UL16 proteins from four laboratory and clinical isolates (AD169, Toledo, PH, and TR) were produced. Four allelic MICB alleles (008, 003, 004, and 00502) were cloned and stable cell lines expressing these MICB alleles were produced. The binding activities of variant UL16 to allelic MICB proteins were determined by flow cytometry. The variants of UL16 proteins did not affect the binding activities to allelic MICB proteins. However, diverse MICB alleles differentially bound UL16. We found that MICB*008 which contains methionine and asparagine at the amino acid positions 98 and 113, respectively, in the alpha 2 domain showed decreased binding activities to UL16 when compared to MICB*003, 004, and MICB*00502 containing isoleucine and aspartic acid, respectively. This finding may imply that MICB*008 is a protective allele and involved in the immune surveillance of HCMV infected patients.  相似文献   

11.
RNA interference (RNAi) acts constitutively to silence the innate immune response, and innate immunity genes are misregulated in Dicer-deficient Caenorhabditis elegans. Here, we show that inhibition of Dicer expression by RNAi in human cells up-regulates major histocompatibility complex class I-related molecules A and B (MICA and MICB). MICA and MICB are innate immune system ligands for the NKG2D receptor expressed by natural killer cells and activated CD8(+)T cells. We reveal that knockdown of Dicer elicits DNA damage. Up-regulation of MICA and MICB by Dicer knockdown is prevented by pharmacologic or genetic inhibition of DNA damage pathway components, including ataxia telangiectasia mutated (ATM) kinase, ATM- and Rad3-related kinase, or checkpoint kinase 1. Therefore we conclude that up-regulation of MICA and MICB is the result of DNA damage response activation caused by Dicer knockdown. Our results suggest that RNAi is indirectly linked to the human innate immune system via the DNA damage pathway.  相似文献   

12.
Recently, it has become apparent that surface proteins commonly transfer between immune cells in contact. Inhibitory receptors and ligands exchange between cells during NK cell surveillance and we report here that NK cells also acquire activating ligands from target cells. Specifically, the stress-inducible activating ligand for NKG2D, MHC class I-related chain A (MICA), transferred to NK cells upon conjugation with MICA-expressing target cells. Acquisition of MICA from target cells was dependent on cell contact and occurred after accumulation of MICA at the immunological synapse. Moreover, transfer of MICA was facilitated by specific molecular recognition via NKG2D and augmented by Src kinase signaling. Importantly, MICA associated with its new host NK cell membrane in an orientation that allowed engagement with NKG2D in trans and indeed could down-regulate NKG2D in subsequent homotypic interactions with other NK cells. MICA captured from target cells could subsequently transfer between NK cells and, more importantly, NK cell degranulation was triggered in such NK cell-NK cell interactions. Thus, NK cells can influence other NK cells with proteins acquired from target cells and our data specifically suggest that NK cells could lyse other NK cells upon recognition of activating ligands acquired from target cells. This mechanism could constitute an important function for immunoregulation of NK cell activity.  相似文献   

13.
Reciprocal interactions between NK cells and dendritic cells have been shown to influence activation of NK cells, maturation, or lysis of dendritic cells and subsequent adaptive immune responses. However, little is known about the crosstalk between monocytes and NK cells and the receptors involved in this interaction. We report in this study that human monocytes, upon TLR triggering, up-regulate MHC class I-Related Chain (MIC) A, but not other ligands for the activating immunoreceptor NKG2D like MICB or UL-16 binding proteins 1-3. MICA expression was associated with CD80, MHC class I and MHC class II up-regulation, secretion of proinflammatory cytokines, and apoptosis inhibition, but was not accompanied by release of MIC molecules in soluble form. TLR-induced MICA on the monocyte cell surface was detected by autologous NK cells as revealed by NKG2D down-regulation. Although MICA expression did not render monocytes susceptible for NK cell cytotoxicity, LPS-treated monocytes stimulated IFN-gamma production of activated NK cells which was substantially dependent on MICA-NKG2D interaction. No enhanced NK cell proliferation or cytotoxicity against third-party target cells was observed after stimulation of NK cells with LPS-activated monocytes. Our data indicate that MICA-NKG2D interaction constitutes a mechanism by which monocytes and NK cells as an early source of IFN-gamma may communicate directly during an innate immune response to infections in humans.  相似文献   

14.
15.
NKG2D is an activating receptor that is expressed on most natural killer (NK) cells, CD8 alphabeta T cells, and gammadelta T cells. Among its ligands is the distant major histocompatibility complex class I homolog MICA, which has no function in antigen presentation but is induced by cellular stress. To extend previous functional evidence, the NKG2D-MICA interaction was studied in isolation. NKG2D homodimers formed stable complexes with monomeric MICA in solution, demonstrating that no other components were required to facilitate this interaction. MICA glycosylation was not essential but enhanced complex formation. Soluble NKG2D also bound to cell surface MICB, which has structural and functional properties similar to those of MICA. Moreover, NKG2D stably interacted with surface molecules encoded by three newly identified cDNA sequences (N2DL-1, -2, and -3), which are identical to the human ULBP proteins and may represent homologs of the mouse retinoic acid-early inducible family of NKG2D ligands. Because of the substantial sequence divergence among these molecules, these results indicated promiscuous modes of receptor binding. Comparison of allelic variants of MICA revealed large differences in NKG2D binding that were associated with a single amino acid substitution at position 129 in the alpha2 domain. Varying affinities of MICA alleles for NKG2D may affect thresholds of NK-cell triggering and T-cell modulation.  相似文献   

16.
Expression of ligands of the immunoreceptor NKG2D such as MICA and MICB has been proposed to play an important role in the immunosurveillance of tumors. Proteolytic shedding of NKG2D ligands from cancer cells therefore constitutes an immune escape mechanism impairing anti-tumor reactivity by NKG2D-bearing cytotoxic lymphocytes. Serum levels of sMICA have been shown to be of diagnostic significance in malignant diseases of various origins. Here, we investigated the potential of soluble MICB, the sister molecule of MICA, as a marker in cancer and its correlation with soluble MICA. Analysis of MICB in sera of 512 individuals revealed slightly higher MICB levels in patients with various malignancies (N = 296; 95th percentile 216 pg/ml; P = 0.069) than in healthy individuals (N = 62; 95th percentile 51 pg/ml). Patients with benign diseases (N = 154; 95th percentile 198 pg/ml) exhibited intermediate MICB levels. In cancer patients, elevated MICB levels correlated significantly with cancer stage and metastasis (P = 0.007 and 0.007, respectively). Between MICB and MICA levels, only a weak correlation was found (r = 0.24). Combination of both markers resulted only in a slightly higher diagnostic power in the high specificity range. The reduction of MICA and MICB surface expression on cells by shedding and the effects of sMICA and sMICB in serum on host lymphocyte NKG2D expression might play a role in late stages of tumor progression by overcoming the confining effect of NK cells and CD8 T cells. While MICB levels are not suited for the diagnosis of cancer in early stages, they may provide additional information for the staging of cancer disease.Alexander Steinle and Helmut R. Salih contributed equally to this work.  相似文献   

17.
Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo   总被引:12,自引:0,他引:12  
The immunoreceptor NKG2D stimulates activation of cytotoxic lymphocytes upon engagement with MHC class I-related NKG2D ligands of which at least some are expressed inducibly upon exposure to carcinogens, cell stress, or viruses. In this study, we investigated consequences of a persistent NKG2D ligand expression in vivo by using transgenic mice expressing MHC class I chain-related protein A (MICA) under control of the H2-K(b) promoter. Although MICA functions as a potent activating ligand of mouse NKG2D, H2-K(b)-MICA mice appear healthy without aberrations in lymphocyte subsets. However, NKG2D-mediated cytotoxicity of H2-K(b)-MICA NK cells is severely impaired in vitro and in vivo. This deficiency concurs with a pronounced down-regulation of surface NKG2D that is also seen on activated CD8 T cells. As a consequence, H2-K(b)-MICA mice fail to reject MICA-expressing tumors and to mount normal CD8 T cell responses upon Listeria infection emphasizing the importance of NKG2D in immunity against tumors and intracellular infectious agents.  相似文献   

18.
The nonclassical MHC class I molecule MHC class I-related chain A (MICA) interacts with the NKG2D receptor expressed at the surface of most peripheral CD8 T cells, gammadelta T cells, and NK cells. We investigated the role of MICA-NKG2D interactions in the selection or maturation of the T cell repertoire within the thymus using MICA tetramers and anti-MICA mAbs. MICA tetramers identified a small population of late stage CD8 single-positive, CD45RA(+) CD62L(+) CCR7(+) CD69(-) thymocytes, a phenotype compatible with that of fully mature CD8(+) cells ready to emigrate to the periphery as naive cells. MICA molecules were expressed in the outer layer of Hassal's corpuscles within the medulla of normal thymus. In thymomas, an overexpression of MICA in cortical and medullar epithelial cells was observed. This was associated with a decreased percentage of NKG2D-positive thymocytes, which expressed a less mature phenotype than in normal thymus. These results indicate that CD8(+) thymocytes up-regulate NKG2D as they complete their developmental program before leaving the thymic medulla to seed the periphery, and identify NKG2D as a potential regulator of the developmental processes in T cells that are essential for immune homeostasis.  相似文献   

19.
The UL16-binding proteins (ULBPs) are a novel family of MHC class I-related molecules that were identified as targets of the human CMV glycoprotein, UL16. We have previously shown that ULBP expression renders a relatively resistant target cell sensitive to NK cytotoxicity, presumably by engaging NKG2D, an activating receptor expressed by NK and other immune effector cells. In this study we show that NKG2D is the ULBP counterstructure on primary NK cells and that its expression is up-regulated by IL-15 stimulation. Soluble forms of ULBPs induce marked protein tyrosine phosphorylation, and activation of the Janus kinase 2, STAT5, extracellular signal-regulated kinase, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signal transduction pathways. ULBP-induced activation of Akt and extracellular signal-regulated kinase and ULBP-induced IFN-gamma production are blocked by inhibitors of PI 3-kinase, consistent with the known binding of PI 3-kinase to DAP10, the membrane-bound signal-transducing subunit of the NKG2D receptor. While all three ULBPs activate the same signaling pathways, ULBP3 was found to bind weakly and to induce the weakest signal. In summary, we have shown that NKG2D is the ULBP counterstructure on primary NK cells and for the first time have identified signaling pathways that are activated by NKG2D ligands. These results increase our understanding of the mechanisms by which NKG2D activates immune effector cells and may have implications for immune surveillance against pathogens and tumors.  相似文献   

20.

Background

Natural killer (NK) cells are an important resource of the innate immune system directly involved in the spontaneous recognition and lysis of virus-infected and tumor cells. An exquisite balance of inhibitory and activating receptors tightly controls the NK cell activity. At present, one of the best-characterized activating receptors is NKG2D, which promotes the NK-mediated lysis of target cells by binding to a family of cell surface ligands encoded by the MHC class I chain-related (MIC) genes, among others. The goal of this study was to describe the expression pattern of MICA and MICB at the molecular and cellular levels in human cervical cancer cell lines infected or not with human papillomavirus, as well as in a non-tumorigenic keratinocyte cell line.

Results

Here we show that MICA and MICB exhibit differential expression patterns among HPV-infected (SiHa and HeLa) and non-infected cell lines (C33-A, a tumor cell line, and HaCaT, an immortalized keratinocyte cell line). Cell surface expression of MICA was higher than cell surface expression of MICB in the HPV-positive cell lines; in contrast, HPV-negative cells expressed lower levels of MICA. Interestingly, the MICA levels observed in C33-A cells were overcome by significantly higher MICB expression. Also, all cell lines released higher amounts of soluble MICB than of soluble MICA into the cell culture supernatant, although this was most pronounced in C33-A cells. Additionally, Real-Time PCR analysis demonstrated that MICA was strongly upregulated after genotoxic stress.

Conclusions

This study provides evidence that even when MICA and MICB share a high degree of homology at both genomic and protein levels, differential regulation of their expression and cell surface appearance might be occurring in cervical cancer-derived cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号