首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Aminopeptidase N (APN/CD13) is one of the essential proteins for tumour invasion, angiogenesis and metastasis as it is over-expressed on the surface of different tumour cells. Based on our previous work that L-isoserine dipeptide derivatives were potent APN inhibitors, we designed and synthesized L-isoserine tripeptide derivatives as APN inhibitors. Among these compounds, one compound 16l (IC50?=?2.51?±?0.2 µM) showed similar inhibitory effect compared with control compound Bestatin (IC50?=?6.25?±?0.4 µM) and it could be used as novel lead compound for the APN inhibitors development as anticancer agents in the future.  相似文献   

2.
The over-expression of aminopeptidase N on diverse malignant cells is associated with the tumor angiogenesis and metastasis. In this report, one new series of leucine ureido derivatives containing the triazole moiety was designed, synthesized and evaluated as APN inhibitors. Among them, compound 13v showed the best APN inhibition with an IC50 value of 0.089?±?0.007?μM, which was two orders of magnitude lower than that of bestatin (IC50?=?9.4?±?0.5?μM). Compound 13v also showed dose-dependent anti-angiogenesis activities. Even at the lower concentration (10?μM), compound 13v presented similar anti-angiogenesis activity compared with bestatin at 100?μM in both the human umbilical vein endothelial cells (HUVECs) capillary tube formation assay and the rat thoracic aorta rings test. Moreover, compared with bestatin, 13v exhibited comparable, if not better in vivo anti-metastasis activity in a mouse H22 pulmonary metastasis model.  相似文献   

3.
A series of novel L-isoserine derivatives were synthesised and evaluated for their ability to inhibit aminopeptidase N (APN)/CD13. In our preliminary biological results, some of these compounds possessed a potent inhibitory activity against the APN. Within this series, compound 14b not only showed similar enzyme inhibition (IC50 of 12.2?μM) compared with the positive control bestatin (half maximal inhibitory concentration (IC50) of 7.3?μM), but also had a potent antiproliferative activity against human cancer cell lines cells.  相似文献   

4.
Abstract

A series of naphthalene-chalcone derivatives (3a–3t) were prepared and evaluated as tubulin polymerisation inhibitor for the treatment of breast cancer. All compounds were evaluated for their antiproliferative activity against MCF-7 cell line. The most of compounds displayed potent antiproliferative activity. Among them, compound 3a displayed the most potent antiproliferative activity with an IC50 value of 1.42?±?0.15?µM, as compared to cisplatin (IC50?=?15.24?±?1.27?µM). Additionally, the promising compound 3a demonstrated relatively lower cytotoxicity on normal cell line (HEK293) compared to tumour cell line. Furthermore, compound 3a was found to induce significant cell cycle arrest at the G2/M phase and cell apoptosis. Compound 3a displayed potent tubulin polymerisation inhibitory activity with an IC50 value of 8.4?µM, which was slightly more active than the reference compound colchicine (IC50?=?10.6?µM). Molecular docking analysis suggested that 3a interact and bind at the colchicine binding site of the tubulin.  相似文献   

5.
In this study, we have synthesised (3,4-dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and a series of its derivatives (5, 13–16) and tested the ability of these compounds to inhibit two metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, hCA I and hCA II. The synthesised compounds showed inhibitory effect on hCA I and hCA II isozymes. The results showed that synthesised compounds (5, 13–16) demonstrated the best inhibition activity against hCA I (IC50: 3.22–54.28 μM) and hCA II (IC50: 18.52–142.01 μM). The compound 14 showed the highest inhibiton effect against hCA I (IC50: 3.22 μM; Ki: 1.19?±?1.4 μM). On the other hand, the compound 13 showed the highest inhibiton effect against hCA II (IC50: 18.52 μM; Ki: 3.25?±?1.13 μM).  相似文献   

6.
A series of 4-phthalimidobenzenesulfonamide derivatives were designed, synthesized and evaluated for the inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Structures of the title compounds were confirmed by spectral and elemental analyses. The cholinesterase (ChE) inhibitory activity studies were carried out using Ellman’s colorimetric method. The biological activity results revealed that all of the title compounds (except for compound 8) displayed high selectivity against AChE. Among the tested compounds, compound 7 was found to be the most potent against AChE (IC50=?1.35?±?0.08?μM), while compound 3 exhibited the highest inhibition against BuChE (IC50=?13.41?±?0.62?μM). Molecular docking studies of the most active compound 7 in AChE showed that this compound can interact with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE.  相似文献   

7.
The M2 isoform of pyruvate kinase (PKM2) is a potential antitumor therapeutic target. In this study, we designed and synthesised a series of 2, 3-didithiocarbamate substituted naphthoquinones as PKM2 inhibitors based on the lead compound 3k that we previously reported. Among them, compound 3f (IC50?=?1.05?±?0.17 µM) and 3h (IC50?=?0.96?±?0.18 µM) exhibited potent inhibition of PKM2, and their inhibitory activities are superior to compound 3k (IC50?=?2.95?±?0.53 µM) and the known PKM2 inhibitor shikonin (IC50?=?8.82?±?2.62 µM). In addition, we evaluated in vitro antiproliferative effects of target compounds using MTS assay. Most target compounds exhibited dose-dependent cytotoxicity with IC50 values in nanomolar concentrations against HCT116, MCF7, Hela, H1299 and B16 cells. These small molecule PKM2 inhibitors not only provide candidate compounds for cancer therapy, but also offer a tool to probe the biological effects of PKM2 inhibition on cancer cells.  相似文献   

8.
Some new structural type inhibitors of urease, i.e. 2,5-disubstituted-1,3,4-oxadiazoles (4a–e) and 4,5-disubstituted-1,2,4-triazole-3-thiones (5a–e) were synthesized in two steps from mandelic acid hydrazides (2a–e) and aryl isothiocyantes. The hydrazides in turn were synthesized from mandelic acid via esterification. Compounds 4a–e and 5a–e were evaluated against jack bean urease. Compounds 4d, 5b, and 5d were found to be more potent, with IC50 values of 16.1?±?0.12?µM, 18.9?±?0.188?µM, and 16.7?±?0.178?µM, respectively, when compared to the standard (thiourea; IC50?=?21.0?±?0.011?µM). These compounds may be subjected to further investigations for the development of antiulcer drugs.  相似文献   

9.
The bioassay-guided fractionation of H. oblongifolium has led to the isolation of potent urease inhibitors 1–3. The structures were elucidated by NMR and mass spectroscopic techniques. Compound 2 showed a potent enzyme inhibition activity (IC50 20.96?±?0.93), which is comparatively higher than that for the standard thiourea (IC50 21.01?±?0.51 μM). Compounds 1 and 3 also showed a significant activity, with IC50 37.95?±?1.93 and 138.43?±?1.23 μM, respectively. The sub crude fractions (F1, F2, F3, and F4) were tested in vitro for their urease inhibition activity. Fractions F2 and F4 showed significant activity with IC50 140.37?±?1.93 and 167.43?±?3.03 μM, respectively.  相似文献   

10.
A novel series of pyrazolo[1,5-a]pyrimidines were synthesized and proved by their spectral and elemental analysis, some elected of the newly synthesized compounds were examined for their cytotoxic activity employing MTT assay on two cancer cell lines (Breast and Hela cancers). Compounds 5, 7e and 7i showed the higher cytotoxicity against two cancer cell lines with (IC50 = 13.91 ± 1.4 and 22.37 ± 1.8 μM/L), (IC50 = 6.56 ± 0.5 and 8.72 ± 0.9 μM/L) and (IC50 = 4.17 ± 0.2 and 5.57 ± 0.4 μM/L) for two cancer cell lines breast and hela respectively, using doxorubicin as a reference drug. The most potent cytotoxic active compounds 5, 7e and 7i presented inhibitory activity against KDM (histone lysine demethylases) with IC50 = 4.05, 1.91 and 2.31 μM, respectively. The most potent KDM inhibitor 7e (IC50 = 1.91 μM) showed to cause cell cycle arrest at G2/M phase by 4 folds than control and induce total apoptotic effect by 10 folds more than control. In silico studies performed on the more potent cytotoxic active compounds 5, 7e and 7i included lipinisk's rule of five. Moreover, molecular docking study was utilized to explore the binding mode of the most active compounds to the target enzyme (PDB-ID: 5IVE). Also, some bioinformatics studies were carried out for compounds 7e and 7i using Swiss ADME (Swiss Institute of bioinformatics 2018).  相似文献   

11.
Tyramine derivatives 3–27 were synthesized by using conventional and environmental friendly ultrasonic techniques. These derivatives were then evaluated for the first time for their α-glucosidase (Sources: Saccharomyces cerevisiae and mammalian rat-intestinal acetone powder) inhibitory activity by using in vitro mechanism-based biochemical assays. Compounds 7, 14, 20, 21 and 26 were found to be more active (IC50?=?49.7?±?0.4, 318.8?±?3.7, 23.5?±?0.9, 302.0?±?7.3 and 230.7?±?4.0?μM, respectively) than the standard drug, acarbose (IC50?=?840.0?±?1.73?μM (observed) and 780?±?0.028?μM (reported)) against α-glucosidase obtained from Saccharomyces cerevisiae. Kinetic studies were carried out on the most active members of the series in order to determine their mode of inhibition and dissociation constants. Compounds 7, 20 and 26 were found to be the competitive inhibitors of α-glucosidase. These compounds were also screened for their protein antiglycation, and dipeptidyl peptidase-IV (DPP-IV) inhibitory activities. Only compounds 20, 22 and 27 showed weak antiglycation activity with IC50 values 505.27?±?5.95, 581.87?±?5.50 and 440.58?±?2.74?μM, respectively. All the compounds were found to be inactive against DDP-IV enzyme. Inhibition of α-glucosidase, DPP-IV enzymes and glycation of proteins are valid targets for the discovery of antidiabetic drugs. Cytotoxicity of compounds 327 was also evaluated by using mouse fibroblast 3T3 cell lines. All the compounds were found to be noncytotoxic. The current study describes the synthesis α-glucosidase inhibitory activity of derivatives, based on a natural product tyramine template. The compounds reported here may serve as the starting point for the design and development of novel α-glucosidase inhibitors as antidiabetic agents.  相似文献   

12.
Four series of N-methylpicolinamide moiety and thienopyrimidine moiety bearing pyridazinone were designed and synthesized and evaluated for the IC50 values against three cancer cell lines (A549, HepG2 and MCF-7) and some selected compounds were further evaluated for the activity against c-Met, Flt-3, VEGFR-2, c-Kit and EGFR kinases. Three compounds (35, 39 and 43) showed more active than positive control Foretinib against A549, HepG2 and MCF-7 cell lines. The most promising compound 43 showed superior activity against A549, HepG2 and MCF-7, with the IC50 values of 0.58?±?0.15?µM, 0.47?±?0.06?µM and 0.74?±?0.12?µM, which were 3.73–5.39-fold more activity than Foretinib, respectively. The experiments of enzyme-based showed that 43 restrain the c-Met selectively, with the IC50 values of 16?nM, which showed equal activity to Foretinib (14?nM) and better than the compound 5 (90?nM). Moreover, AO and Annexin V/PI staining and docking studies were carried out.  相似文献   

13.
Previously we have reported that 25-OCH3-PPD could suppress the reproduction of cancer cells and cause apoptosis without obvious toxicity. Herein, we aimed to enhance its bioactivity by introducing aromatic groups to its dammarane-type skeleton. These synthesized derivatives were tested for their inhibitory activities against five cancer cell lines. Of them, compounds 3a, 14a and 18a had the strongest antiproliferative activities against tumor cells (IC50?<?15?µM, 5-fold to 10-fold increases than 25-OCH3-PPD). Especially compound 14a displayed the most potent activity against DU145, MCF-7 and HepG2 cells (IC50?=?6.7?±?0.8, 4.3?±?0.8 and 5.8?±?0.6?µM, respectively). Structure-activity relationships demonstrated that having aromatic ester at the C3 position could improve the bioactivity. The data provided new insights into exploring novel antiproliferative lead compounds.  相似文献   

14.
Phytochemical investigations were performed on the EtOAc-soluble fraction of the whole plant of the sky flower (Duranta repens) which led to the isolation of the iridoid glycosides 16. Their structures were elucidated by both 1D and 2D NMR spectroscopic analysis. All the compounds showed potent antioxidative scavenging activity in four different tests, with half maximal inhibitory concentration (IC50) values in the range 0.481–0.719?mM against DPPH radicals, 4.07–17.21 µM for the hydroxyl radical (?OH) inhibitory activity test, 43.3–97.37 µM in the total reactive oxygen species (ROS) inhibitory activity test, and 3.39–18.94 µM in the peroxynitrite (ONOO?) scavenging activity test. Duranterectoside A (1) displayed the strongest scavenging potential with IC50 values of (0.481?±?0.06?mM, 4.07?±?0.03, 43.30?±?0.05, 3.39?±?0.02?µM) for the DPPH radicals, ?OH inhibitory activity test, total ROS inhibitory activity test and the ONOO? scavenging activity test, respectively.  相似文献   

15.
Elevated blood glucose and increased activities of secreted phospholipase A2 (sPLA2) are strongly linked to coronary heart disease. In this report, our goal was to develop small heterocyclic compound that inhibit sPLA2. The title compounds were also tested against α-glucosidase and α-amylase. This array of enzymes was selected due to their implication in blood glucose regulation and diabetic cardiovascular complications. Therefore, two distinct series of quinoxalinone derivatives were synthesised; 3-[N′-(substituted-benzylidene)-hydrazino]-1H-quinoxalin-2-ones 3a–f and 1-(substituted-phenyl)-5H-[1,2,4]triazolo[4,3-a]quinoxalin-4-ones 4a–f. Four compounds showed promising enzyme inhibitory effect, compounds 3f and 4b–d potently inhibited the catalytic activities of all of the studied proinflammatory sPLA2. Compound 3e inhibited α-glucosidase (IC50?=?9.99?±?0.18 µM); which is comparable to quercetin (IC50?=?9.93?±?0.66 µM), a known inhibitor of this enzyme. Unfortunately, all compounds showed weak activity against α-amylase (IC50?>?200 µM). Structure-based molecular modelling tools were utilised to rationalise the SAR compared to co-crystal structures with sPLA2-GX as well as α-glucosidase. This report introduces novel compounds with dual activities on biochemically unrelated enzymes mutually involved in diabetes and its complications.  相似文献   

16.
A novel series of chromone-isatin derivatives 6a6p were designed, synthesized and characterized by 1H NMR, 13C NMR and HRMS. These novel synthetic compounds were evaluated for inhibitory activity against yeast α-glucosidase enzyme. The results of biological test have shown that all tested compounds exhibited excellent to potent inhibitory activity in the range of IC50?=?3.18?±?0.12–16.59?±?0.17?μM as compared to the standard drug acarbose (IC50?=?817.38?±?6.27?μM). Compound 6j (IC50?=?3.18?±?0.12?μM) with a hydroxyl group at the 7-position of chromone and a 4-bromobenzyl group at the N1-positions of isatin, was found to be the most active compound among the series. Furthermore, molecular docking study was performed to help understand binding interactions of the most active analogs with α-glucosidase enzyme. These results indicated that this class of compounds had potential for the development of anti-diabetic agents.  相似文献   

17.
In the present study, some thiazole derivatives were synthesized via the ring closure reaction of 1-[2-(2-oxobenzo[d]thiazol-3(2H)-yl)acetyl]thiosemicarbazide with various phenacyl bromides. The chemical structures of the compounds were elucidated by 1H NMR, 13C NMR and mass spectral data and elemental analyses. Each derivative was evaluated for its ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) using a modification of Ellman’s spectrophotometric method. The compounds were also investigated for their cytotoxic properties using MTT assay. The most potent AChE inhibitor was found as compound 4e (IC50?=?25.5?±?2.12 µg/mL) followed by compounds 4i (IC50?=?38.50?±?2.12 µg/mL), 4c (IC50?=?58.42?±?3.14 µg/mL) and 4g (IC50?=?68?±?2.12 µg/mL) when compared with eserine (IC50?=?0.025?±?0.01 µg/mL). Effective compounds on AChE exhibited weak inhibition on BuChE (IC50 > 80 µg/mL). MTT assay indicated that the cytotoxic dose (IC50?=?71.67?±?7.63 µg/mL) of compound 4e was higher than its effective dose.  相似文献   

18.
A new cinnamic acid derivative was isolated from the whole plant of Viola betonicifolia as off white needle. On the basis of various modern spectroscopic techniques including HREI–MS and 1D and 2D NMR, its structure was elucidated as 2,4-dihydroxy, 5-methoxy-cinnamic acid. It showed marked inhibition against DPPH (diphenyl-2-picryl hydrazyl) free radicals with IC50 = 124?±?5.76 µM. The antioxidant property of the compound was compared with α-tocopherole and vitamin C having IC50 values 96?±?0.46 and 90?±?0.56 µM, respectively. In case of antiglycation assay, the compound exhibited moderate activity (IC50 = 355?±?7.56 µM) similar to standard compound, rutin (IC50 = 294?±?0.56 µM). However, it was non-toxic to PC-3 cell line. It is concluded that 2,4-dihydroxy, 5-methoxy-cinnamic acid has antiglycation potential which was further augmented by its antioxidant activity and thus offered an ideal natural therapeutic option for the effective management of diabetes.  相似文献   

19.
Abstract

In our study, a series of new harmine derivatives has been prepared by cycloaddition reaction using various arylnitrile oxides and evaluated in vitro against acetylcholinesterase and 5-lipoxygenase enzymes, MCF7 and HCT116 cancer cell lines. Some of these molecules have been shown to be potent inhibitors of acetylcholinesterase and MCF7 cell line. The greatest activity against acetylcholinesterase (IC50?=?10.4?µM) was obtained for harmine 1 and cytotoxic activities (IC50?=?0.2?µM) for compound 3a. Two derivatives 3e and 3f with the thiophene and furan systems, respectively, showed good activity against 5- lipoxygenase enzyme (IC50?=?29.2 and 55.5?µM, respectively).  相似文献   

20.
The inhibitory activities of selected cyclic urea and carbamate derivatives (113) toward α-glucosidase (α-Gls) in in vitro assay were examined in this study. All examined compounds showed higher inhibitory activity (IC50) against α-Gls compared to standard antidiabetic drug acarbose. The most potent was benzyl (3,4,5-trimethoxyphenyl)carbamate (12) with IC50?=?49.85?±?0.10?µM. In vitro cytotoxicity of the investigated compounds was tested on three human cancer cell lines HeLa, A549 and MDA-MB-453 using MTT assay. The best antitumour activity was achieved with compound 2 (trans-5-phenethyl-1-phenylhexahydro-1H-imidazo[4,5-c]pyridin-2(3H)-one) against MDA-MB-453 human breast cancer cell line (IC50?=?83.41?±?1.60?µM). Cyclic ureas and carbamates showed promising anti-α-glucosidase activity and should be further tested as potential antidiabetic drugs. The PLS model of preliminary QSAR study indicated that, in planing the future synthesis of more potent compounds, the newly designed should have the substituents capable of polar interactions with receptor sites in various positions, while avoiding the increase of their lipophilicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号