首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between the susceptibility to convulsions, the content of pyridoxal 5′-phosphate and the activity of pyridoxal kinase (EC 2.7.1.35) and glutamate decarboxylase (EC 4.1.1.15) in brain, was studied in the developing mouse. Seizures were induced by pyridoxal phosphate-σ-glutamyl hydrazone (PLPGH), a drug previously reported to reduce the levels of pyridoxal 5′-phosphate and as a consequence to inhibit the activity of glutamate decarboxylase in brain of adult mice. It was found that the seizure pattern, as well as the time of appearance of convulsions, differed between 2- and 5-day old mice and 10-day old or older mice, indicating a progressive increase in seizure susceptibility during development. In brain, pyridoxal kinase activity and pyridoxal 5′-phosphate levels were decreased by the administration of PLPGH at all ages studied, whereas glutamate decarboxylase activity was inhibited less than 25% in 2- and 5-day old mice, and about 50% thereafter. Parallelly, the activation of glutamate decarboxylase by pyridoxal 5′-phosphate added in vitro to control homogenates was less in 2- and 5-day old mice than in older animals. It is concluded that the increase in the susceptibility to seizures induced by PLPGH during development is probably related to the increase observed in the sensitivity of glutamate decarboxylase in vivo to a decrease of pyridoxal 5′-phosphate levels. The correlation between pyridoxal 5′-phosphate, glutamate decarboxylase, and seizure susceptibility seems to be established at about 10 days of age.  相似文献   

2.
Glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) from rabbit skeletal muscle is inhibited by pyridoxal-5′-phosphate. The inhibition observed in steady-state kinetic studies is competitive with respect to dihydroxyacetone phosphate and uncompetitive with respect to NADH. Similar inhibition was found for a series of related compounds which in order of increasing effectiveness of inhibition were: 4-deoxypyridoxine < pyridoxal < pyridoxic acid < pyridoxal-5′-phosphate < pyridoxine and pyridoxamine-5′-phosphate. Pyridoxal-5′-phosphate also reacts slowly with the enzyme to produce an adduct which upon treatment with sodium borohydride results in irreversible modification of the enzyme. The nature of the adduct was investigated by titration of the enzyme with pyridoxal-5′-phosphate, uv-visible and fluorescence spectroscopy, amino acid analysis, and peptide mapping. All such studies are consistent with a single, highly reactive lysyl residue on each enzyme subunit. Protection of the lysyl residue against modification was afforded by the presence of NADH. The modified enzyme, on the other hand, possessed kinetic properties similar to the native enzyme including a nearly identical inhibition constant for pyridoxal-5′-phosphate. Pyridoxal-5′-phosphate, therefore, seems to have two sites of interaction on the enzyme: a reversible binding site competitive with substrate and a Schiff-base site protected by NADH. These properties of glycerol-3-phosphate dehydrogenase set it apart from functionally similar enzymes.  相似文献   

3.
2-Deoxy-2-[(2R,3S)-2-fluoro-3-hydroxytetradecanamido]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-D-glucopyranose and its (2S,3R)-isomer were respectively synthesized from allyl 2-[(2R,3S)-3-(benzyloxycarbonyloxy)-2-fluorotetradecanamido]-2-deoxy-4,6-O-isopropylidene-β-D-glucopyranoside and its corresponding (2S,3R)-isomer. Both target compounds did not activate macrophage, but the (2S,3R)-analogue strongly inhibited the binding of LPS to macrophage.  相似文献   

4.
Pyridoxamine (pyridoxine) 5′-phosphate oxidase (EC 1.4.3.5) purified from rabbit liver is competitively inhibited by the reaction product, pyridoxal 5′-phosphate. The Ki, 3 μM, is considerably lower than the Km for either natural substrate (18 and 24 μM for pyridoxamine 5′-phosphate and 25 and 16 μM for pyridoxine 5′-phosphate in 0.2 M potassium phosphate at pH 8 and 7, respectively). The Ki determined using a 10% rabbit liver homogenate is the same as that for the pure enzyme; hence, product inhibition invivo is probably not diminished significantly by other cellular components. Similar determinations for a 10% rat liver homogenate also show strong inhibition by pyridoxal 5′-phosphate. Since the reported liver content of free or loosely bound pyridoxal 5′-phosphate is greater than Ki, the oxidase in liver is probably associated with pyridoxal 5′-phosphate. These results also suggest that product inhibition of pyridoxamine-P oxidase may regulate the invivo rate of pyridoxal 5′-phosphate formation.  相似文献   

5.
Synthesis of (R)-2-trimethylsilyl-2-hydroxyl-propionitrile via asymmetric transcyanation of acetyltrimethylsilane with acetone cyanohydrin in an aqueous/organic biphasic system catalyzed by (R)-hydroxynitrile lyase from Prunus japonica seed meal was successfully carried out for the first time. The optimal volume ratio of aqueous to organic phase, buffer pH value and reaction temperature were 15% (v/v), 5.0 and 30°C, respectively, under which both substrate conversion and product enantiomeric excess (ee) were 99%. Silicon atom in the substrate showed great effect on the reaction. Acetyltrimethylsilane was a much better substrate for (R)-hydroxynitrile lyase from Prunus japonica than its carbon analogue.  相似文献   

6.
Bacterial strain B-009, capable of using racemic 1,2-propanediol (PD), was identified as a rapid-growing member of the genus Mycobacterium. The strain is phylogenetically related to M. gilvum, but has slightly different physiological characteristics. An NAD+-dependent enantioselective alcohol dehydrogenase, which acts on R-PD, was purified from the strain. The enzyme was a homodimer of a peptide coded by a 1047-bp gene (mbd1). A highly conserved sequence for medium-chain dehydrogenase/reductases with a preference for secondary alcohols was found in the gene. Hydroxyacetone was produced from R-PD by an enzymatic reaction, indicating that position 2 of the substrate was oxidized. The enzyme activity was highest for (2R,3R)-2,3-butanediol (R,R-BD), enabling the enzyme to be identified as (2R,3R)-2,3-butanediol dehydrogenase (R,R-BD-DH). A homology search revealed M. gilvum, M. vanbaalenii, and M. semegmatis to have ORFs similar to mbd1, suggesting the widespread distribution of genes encoding R,R-BD-DH among mycobacterial strains.  相似文献   

7.
A facile and short synthesis of (1S,5R,6S)-5-azido-6-benzyloxycyclohex-2-en-1-ol (1) has been achieved in high yield starting from 4,5-epoxycyclohex-1-ene by using a catalytic asymmetric allylic oxidation reaction.  相似文献   

8.
The kinetics of the inhibition of mouse brain glutamate decarboxylase by pyri-doxaI-5′-phosphate oxime-O-acetic acid (PLPOAA) was studied. The inhibition was noncompetitive with regard to glutamic acid; it could be partially reversed by pyridoxal phosphate, but only when the concentration of the latter in the incubation medium was higher than that of pyridoxal-5′-phosphate oxime-O-acetic acid. The inhibition produced by aminooxyacetic acid, which is remarkably greater than that produced by PLPOAA, was also partially reversed only when an excess of pyridoxal phosphate was added. Both in the presence and in the absence of a saturating concentration of pyridoxal phosphate, the activity of the enzyme was decreased by PLPOAA at a 10?4m concentration to a value of about 50 per cent of the control value obtained without added coenzyme. This activity could not be further reduced even when PLPOAA concentration was increased to 5 × 10?3m . This same minimal activity of glutamate decarboxylase was obtained after dialysis of the enzymic preparation, or after incubation with glutamic acid in the cold followed by filtration through Sephadex G-25. The addition of pyridoxal phosphate to the dialysed or glutamic acid-treated enzyme restored the activity to almost the control values. PLPOAA did not affect the activity of glutamate decarboxylase from E. coli or that of DOPA decarboxylase and GABA transaminase from mouse brain. To account for the results obtained it is postulated that brain glutamate decarboxylase has two types of active site, one with firmly bound, non-dialysable pyridoxal phosphate and the other with loosely bound, dialysable coenzyme; PLPOAA behaves as a weak inhibitor probably because it can combine mainly with the loosely bound coenzyme site, while aminooxyacetic acid is a potent inhibitor probably because it can block both the ‘loosely bound coenzyme’ and the ‘firmly bound coenzyme’ sites.  相似文献   

9.
Fatty acid synthetase from goose uropygial gland was inactivated by treatment with pyridoxal 5′-phosphate. Malonyl-CoA and acetyl-CoA did not protect the enzyme whereas NADPH provided about 70% protection against this inactivation. 2′-Monophospho-ADP-ribose was nearly as effective as NADPH while 2′-AMP, 5′-AMP, ADP-ribose, and NADH were ineffective suggesting that pyridoxal 5′-phosphate modified a group that interacts with the 5′-pyrophosphoryl group of NADPH and that the 2′-phosphate is necessary for the binding of the coenzyme to the enzyme. Of the seven component activities catalyzed by fatty acid synthetase only the enoyl-CoA reductase activity was inhibited. Inactivation of both the overall activity and enoyl-CoA reductase of fatty acid synthetase by this compound was reversed by dialysis or dilution but not after reduction with NaBH4. The modified protein showed a characteristic Schiff base absorption (maximum at 425 nm) that disappeared on reduction with NaBH4 resulting in a new absorption spectrum with a maximum at 325 nm. After reduction the protein showed a fluorescence spectrum with a maximum at 394 nm. Reduction of pyridoxal phosphate-treated protein with NaB3H4 resulted in incorporation of 3H into the protein and paper chromatography of the acid hydrolysate of the modified protein showed only one fluorescent spot which was labeled and ninhydrin positive and had an Rf identical to that of authentic N6-pyridoxyllysine. When [4-3H]pyridoxal phosphate was used all of the 3H, incorporated into the protein, was found in pyridoxyllysine. All of these results strongly suggest that pyridoxal phosphate inhibited fatty acid synthetase by forming a Schiff base with the ?-amino group of lysine in the enoyl-CoA reductase domain of the enzyme. The number of lysine residues modified was estimated with [4-3H]pyridoxal-5′-phosphate/NaBH4 and by pyridoxal-5′-phosphate/NaB3H4. Scatchard analysis showed that modification of two lysine residues per subunit resulted in complete inactivation of the overall activity and enoyl-CoA reductase of fatty acid synthetase. NADPH prevented the inactivation of the enzyme by protecting one of these two lysine residues from modification. The present results are consistent with the hypothesis that each subunit of the enzyme contains an enoyl-CoA reductase domain in which a lysine residue, at or near the active site, interacts with NADPH.  相似文献   

10.
Abstract: [(2S,2′R,3′R)-2-(2′,3′-[3H]Dicarboxycyclopropyl)glycine ([3H]DCG IV) binding was characterized in vitro in rat brain cortex homogenates and rat brain sections. In cortex homogenates, the binding was saturable and the saturation isotherm indicated the presence of a single binding site with a KD value of 180 ± 33 nM and a Bmax of 780 ± 70 fmol/mg of protein. The nonspecific binding, measured using 100 µM LY354740, was <30%. NMDA, AMPA, kainate, l (?)-threo-3-hydroxyaspartic acid, and (S)-3,5-dihydroxyphenylglycine were all inactive in [3H]DCG IV binding up to 1 mM. However, several compounds inhibited [3H]DCG IV binding in a concentration-dependent manner with the following rank order of potency: LY341495 = LY354740 > DCG IV = (2S,1′S,2′S)-2-(2-carboxycyclopropyl)glycine > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid > (2S,1′S,2′S)-2-methyl-2-(2-carboxycyclopropyl)glycine > l -glutamate = ibotenate > quisqualate > (RS)-α-methyl-4-phosphonophenylglycine = l (+)-2-amino-3-phosphonopropionic acid > (S)-α-methyl-4-carboxyphenylglycine > (2S)-α-ethylglutamic acid > l (+)-2-amino-4-phosphonobutyric acid. N-Acetyl-l -aspartyl-l -glutamic acid inhibited the binding in a biphasic manner with an IC50 of 0.2 µM for the high-affinity component. The binding was also affected by GTPγS, reducing agents, and CdCl2. In parasagittal sections of rat brain, a high density of specific binding was observed in the accessory olfactory bulb, cortical regions (layers 1, 3, and 4 > 2, 5, and 6), caudate putamen, molecular layers of the hippocampus and dentate gyrus, subiculum, presubiculum, retrosplenial cortex, anteroventral thalamic nuclei, and cerebellar granular layer, reflecting its preferential (perhaps not exclusive) affinity for pre- and postsynaptic metabotropic glutamate mGlu2 receptors. Thus, the pharmacology, tissue distribution, and sensitivity to GTPγS show that [3H]DCG IV binding is probably to group II metabotropic glutamate receptors in rat brain.  相似文献   

11.
Short-step syntheses of (2RS,8R,10R)-YM-193221 (1) and tyroscherin (2), which are biologically active compounds isolated from Pseudallescheria sp., were accomplished in six and eight steps from L-tyrosine. The relative stereochemistry of natural YM-193221 was determined to be 8R *,10R *.  相似文献   

12.
(2S,3R,1′S,2′S)-Serricorole (1) and (2S,3R,1′R)-serricorone (2), sex pheromone components of the cigarette beetle (Lasioderma serricorne F.), were synthesized, starting from the enantiomers of methyl 3-hydroxypentanoate. The stereochemistry of the naturally occurring 1 was determined to be 2S,3R,1′S,2′S, and that of 2 to be 2S,3R,1′RS by comparing between the CD spectra of the natural and synthetic samples.  相似文献   

13.
Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease. Studies in Drosophila showed that genetic increase of the levels of the bioactive sphingolipid sphingosine-1-phosphate (S1P) or delivery of 2-acetyl-5-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, suppresses dystrophic muscle degeneration. In the dystrophic mouse (mdx), upregulation of S1P by THI increases regeneration and muscle force. S1P can act as a ligand for S1P receptors and as a histone deacetylase (HDAC) inhibitor. Because Drosophila has no identified S1P receptors and DMD correlates with increased HDAC2 levels, we tested whether S1P action in muscle involves HDAC inhibition. Here we show that beneficial effects of THI treatment in mdx mice correlate with significantly increased nuclear S1P, decreased HDAC activity and increased acetylation of specific histone residues. Importantly, the HDAC2 target microRNA genes miR-29 and miR-1 are significantly upregulated, correlating with the downregulation of the miR-29 target Col1a1 in the diaphragm of THI-treated mdx mice. Further gene expression analysis revealed a significant THI-dependent decrease in inflammatory genes and increase in metabolic genes. Accordingly, S1P levels and functional mitochondrial activity are increased after THI treatment of differentiating C2C12 cells. S1P increases the capacity of the muscle cell to use fatty acids as an energy source, suggesting that THI treatment could be beneficial for the maintenance of energy metabolism in mdx muscles.KEY WORDS: HDAC, S1P, THI, dys, Dystrophin, mdx  相似文献   

14.
Abstract

Several sugar-modified 2-(p-n-butylanilino)-2′-deoxyadenosine analogues, including arabino and 2′(R)-azido-2′-deoxy analogues and their 5′-triphosphates were synthesized. These nucleosides thus obtained exhibited moderate cytotoxicity against P-388 leukemic cells in culture (IC50 = 13–24 μ). In contrast to above results, the 5′-triphosphates have been shown to exert strong and selective inhibitory effects on mammalian DNA polymerase α (Ki= 0.02–0.04 μ).  相似文献   

15.
L-Phenylalanine was converted to optically impure (R)-(+)-2,6-dimethyl-1,5-heptadien-3-ol 2 (19% e.e.) .(R)-(+)-2 (96% e.e.) was prepared by a kinetic resolution of (±)-2. Acetylation of the pure (R)-(+ )- 2 gave the pheromone of the Comstock mealybug ( Pseudococcus comstockii KUWANA) [(R)-(+)-1].  相似文献   

16.
The first synthesis of an optically pure (2R,3R,4S)-hydantoin 2, analogue of (2S,3R,4S)-4-hydroxyisoleucine, was achieved in two steps in un-optimized 35% overall yield from previously reported aldehyde synthon 1. (2R,3R,4S)-Hydantoin is stable at acidic pH. This solves the major drawback of (2S,3R,4S)-4-hydroxyisoleucine that easily cyclizes into inactive lactone. Furthermore, (2R,3R,4S)-hydantoin stimulates the insulin secretion by 150% at 25 μM compared with 4-hydroxyisoleucine and insulin secretagogue drug repaglinide. In view of its stability and biological activity, (2R,3R,4S)-hydantoin represents a good candidate for type-2 diabetes management and control.  相似文献   

17.
A total synthesis of optically active pyriculol is described. The Wittig reaction between an aldehyde 19 and a triphenylphosphonium ylide 12 gave an intermediate 20. Successive treatment of 20 with p-toluenesulfonic acid, active manganese dioxide, and potassium carbonate gave (3′R,4′S)-pyriculol (23), which was identical with natural pyriculol (1) in all respects. From this synthesis, the absolute stereochemistry of pyriculol (1) was determined to be 2-[(3′R,4′S)-3′,4′-dihydroxy- (1′E,5′E)-1′,5′-heptadienyl]-6-hydroxybenzaldehyde  相似文献   

18.

The synthesis and properties of oligonucleotides (ONs) containing 9-(2,3,4-trihydroxybutyl)adenine, A C2 and A C3, are described. The ON containing A C2 involves the 3′ → 4′ and 3′ → 5′ phosphodiester linkages in the strand, whereas that containing A C3 possesses the 3′ → 4′ and 2′ → 5′ phosphodiester linkages. It was found that incorporation of the analogs, A C2 or A C3, into ONs significantly reduces the thermal and thermodynamic stabilities of the ON/DNA duplexes, but does not largely decrease the thermal and thermodynamic stabilities of the ON/RNA duplexes as compared with the case of the ON/DNA duplexes. It was revealed that the base recognition ability of A C2 is greater than that of A C3 in the ON/RNA duplexes.  相似文献   

19.
Sphingosine-1-phosphate lyase is a widely expressed enzyme that catalyzes the essentially irreversible cleavage of the signaling molecule sphingosine 1-phosphate. To investigate whether sphingosine-1-phosphate lyase influences mammalian cell fate decisions, a recombinant human sphingosine-1-phosphate lyase fused to green fluorescent protein was expressed in HEK293 cells. The recombinant enzyme was active, localized to the endoplasmic reticulum, and reduced baseline sphingosine and sphingosine 1-phosphate levels. Stable overexpression led to diminished viability under stress, which was attributed to an increase in apoptosis and was reversible in a dose-dependent manner by exogenous sphingosine 1-phosphate. In contrast to sphingosine 1-phosphate, the products of the lyase reaction had no effect on apoptosis. Lyase enzymatic activity was required to potentiate apoptosis, because cells expressing a catalytically inactive enzyme behaved like controls. Stress increased the amounts of long- and very long-chain ceramides in HEK293 cells, and this was enhanced in cells overexpressing wild type but not catalytically inactive lyase. The ceramide increases appeared to be required for apoptosis, because inhibition of ceramide synthase with fumonisin B1 decreased apoptosis in lyase-overexpressing cells. Thus, sphingosine-1-phosphate lyase overexpression in HEK293 cells decreases sphingosine and sphingosine 1-phosphate amounts but elevates stress-induced ceramide generation and apoptosis. This identifies sphingosine-1-phosphate lyase as a dual modulator of sphingosine 1-phosphate and ceramide metabolism as well as a regulator of cell fate decisions and, hence, a potential target for diseases with an imbalance in these biomodulators, such as cancer.  相似文献   

20.
Regulation of pyridoxal 5'-phosphate metabolism in liver   总被引:4,自引:0,他引:4  
The pyridoxal 5′-phosphate content of liver in vivo and of hepatocytes in vitro remains unaltered in the presence of excess unphosphorylated vitamin B6 precursors. Studies with isolated hepatocytes and subcellular fractions show that while product inhibition of pyridoxine phosphate oxidase does not limit synthesis sufficiently to account for the phenomenon, inhibition of phosphatase activity produces striking increases in pyridoxal 5′-phosphate concentration. Protein-binding protects it against degradation by the phosphatase. The data suggest that protein-binding and the enzymatic hydrolysis of pyridoxal 5′-phosphate, synthesized in excess, act jointly to preserve the constancy of the cellular content of this coenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号