首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
N S Tan  M L Ng  Y H Yau  P K Chong  B Ho  J L Ding 《FASEB journal》2000,14(12):1801-1813
Three truncated fragments, harboring different sushi domains, namely, sushi123, sushi1, and sushi3 domains, of Factor C were produced as biologically active secreted recombinant proteins. Sushi1 and 3 each has a high-affinity LPS binding site with K:(d) of 10(-9) to 10(-10) M. Positive cooperativity in sushi123 resulted in a 1000-fold increase in K:(d)2. The core LPS binding region of sushi1 and 3 reside in two 34-mer peptides, S1 and S3. A rigidly held disulfide-bonded structure is not essential but is important for LPS binding, as confirmed by a 100- to 10000-fold decrease in affinity. Both S1 and S3 can inhibit LAL reaction and LPS-induced hTNF-alpha secretion with different potency. LAL assay revealed that at least two molecules of S1 bind cooperatively to one LPS molecule, with Hill's coefficient of 2.42. The LPS binding by S3 is independent and noncooperative. The modified SDelta1 and SDelta3 peptides exhibited increased LPS neutralization potential although its LPS binding affinities indicated only a 10-fold improvement. Hence, the structural difference of the four sushi peptides conferred different efficiencies in LPS neutralization without altering their binding affinity for LPS. Circular dichroism spectrometry revealed that the four peptides underwent conformational change in the presence of lipid A, transitioning from a random coil to either an alpha-helical or beta-sheet structure. Two factors are critical for the sensitivity of Factor C to LPS: 1) the presence of multiple binding sites for LPS on a single Factor C molecule; and 2) high positive cooperativity in LPS binding. The results showed that in the design of an improved LPS binding and neutralizing peptide, charge balance of the peptide is a critical parameter in addition to its structure.  相似文献   

2.
The interaction of hemoglobin (Hb) with endotoxins [i.e. with enterobacterial deep rough mutant lipopolysaccharide (LPS) Re and the "endotoxic principle" of LPS, lipid A] was investigated using a variety of physical techniques and with two biological assays, tumor necrosis factor (TNF)-alpha induction in human mononuclear cells and the Limulus amebocyte lysate (LAL) assay. Fourier-transform IR-spectroscopic experiments indicate nonelectrostatic binding to the hydrophobic moiety with a slight rigidification of the lipid A acyl chains, and an increase in the inclination of the lipid A backbone with respect to the membrane surface from 35 degrees to more than 40 degrees due to Hb binding, but no change of the predominantly alpha-helical secondary structures of Hb due to LPS binding. From isothermal titration calorimetry, the molar [Hb] : [endotoxin] binding ratio lies between 1 : 3 and 1 : 5 molar. Synchrotron radiation X-ray diffraction measurements indicate a reorientation of the lipid A aggregates from one cubic structure to another, the final structure belonging to space group Q224. The LPS-induced TNF-alpha production of mononuclear cells is enhanced by Hb, whereas in the LAL assay an LPS concentration-dependent increase or decrease was observed. Although a detailed mechanism of action cannot be given, the enhancement of LPS bioactivity can be understood in the light of the previously presented conformational concept; Hb induces an increase in the conical shape of the lipid A moiety of LPS, higher cross-section of the hydrophobic than the hydrophilic part, and of the inclination angle of the diglucosamine backbone with respect to the direction of the acyl chains.  相似文献   

3.
Li C  Ng ML  Zhu Y  Ho B  Ding JL 《Protein engineering》2003,16(8):629-635
Endotoxin, also known as lipopolysaccharide (LPS), is the major mediator of septic shock due to Gram-negative bacterial infection. Chemically synthesized S3 peptide, derived from Sushi3 domain of Factor C, which is the endotoxin-sensitive serine protease of the limulus coagulation cascade, was previously shown to bind and neutralize LPS activity. For large-scale production of this peptide and to mimick other pathogen-recognizing molecules, tandem multimers of the S3 gene were constructed and expressed in Escherichia coli. The recombinant tetramer of S3 (rS3-4mer) was purified by anion exchange and digested into monomers (rS3-1mer). Both the rS3-4mer and rS3-1mer were functionally analyzed for their ability to bind LPS by an ELISA-based method and surface plasmon resonance. The LAL inhibition and TNFalpha-release test showed that rS3-1 mer can neutralize the LPS activity as effectively as the synthetic S3 peptide, while rS3-4mer displays an enhanced inhibitory effect on LPS-induced activities. Both recombinant peptides exhibited low cytotoxicity and no haemolytic activity on human cells. This evidence suggests that the recombinant sushi peptides have potential use for the detection, removal of endotoxin and/or anti-endotoxin strategies.  相似文献   

4.
Lipopolysaccharide (LPS, i.e. endotoxin) present in meningococcal outer-membrane protein and polysaccharide preparations made for vaccine use was quantitated by a silver-stain method following SDS-PAGE. The reactivities of LPS in the preparations were also measured by rabbit pyrogenicity and Limulus amoebocyte lysate (LAL) assay. Although rabbit pyrogenicity and LAL assay are more sensitive than the silver stain method, the latter provided an actual amount of LPS present in the protein or in the polysaccharide. For a meningococcal protein preparation, rabbit pyrogenicity showed about one-tenth, and even less by LAL assay, of the actual amount of LPS. This is because protein-bound LPS in meningococcal protein preparations is about 10-fold less active in causing fever in rabbits, and 20- to 40-fold less active in the gelation of LAL than the same amount of a purified free LPS which is generally used as a reference in quantitating LPS in these two assays. As for the small amount of LPS present in a meningococcal polysaccharide preparation, similar LPS content was obtained when measured by the three methods suggesting that the LPS is not bound to the polysaccharide in contrast to that in the proteins mentioned above. The purified meningococcal LPS was pyrogenic in rabbits at 1 ng/kg.  相似文献   

5.
In this study we compared the interleukin 1 (IL 1)-inducing capacity and the reactivity in the Limulus amoebocyte assay (LAL) of purified lipopolysaccharides (LPSs) from various bacterial strains. LPSs differed greatly in their capacities (on a weight basis) to induce IL 1 release from serum-free cultured human monocytes. LPS species that induced high levels of IL 1 release from human monocytes exhibited a high thiobarbiturate-reactive 2-keto-3-deoxy-octonic acid (KDO) content. No relationship was found between the IL 1-inducing activity and the LAL reactivity of purified LPSs. Filtration experiments in which membranes of decreasing size-exclusion limits were used demonstrated that molecular species of LPS with an apparent Mr below 3,000 may induce IL 1, whereas only species with an apparent Mr above 8,000 are recognized in the LAL assay. The latter observation suggests that the reaction with LAL requires an aggregated form of LPS. These results indicate that biologically active LPS species can cross dialysis membranes in vivo although no LAL reactive material is detected in the blood compartment. The Limulus assay is an insufficient criterion for the absence of LPS in biological fluids.  相似文献   

6.
An intracellular serine protease zymogen, factor C, is an initiator in the hemolymph coagulation system of horseshoe crab. We purified this zymogen from the hemocytes of the American horseshoe crab, Limulus (L.) polyphemus, the objective being to compare its properties with those of the Japanese horseshoe crab, Tachypleus (T.) tridentatus, factor C. The purified zymogen L.-factor C showed similar properties to those of T.-factor C, in terms of molecular mass (123,000), amino acid composition (1,011 residues), subunit structure (two chains), and antigenicity. Like the zymogen T.-factor C, this zymogen was also activated autocatalytically in the presence of bacterial lipopolysaccharide (LPS) and its synthetic lipid A analogue. A most interesting finding is that both protease zymogens are rapidly activated by alpha-chymotrypsin or rat mast cell chymase, but not by trypsin. The active enzyme factor C showed alpha-thrombin-like specificity toward synthetic tripeptide substrates. This factor C was also strongly inhibited by an alpha-thrombin inhibitor, D-Phe-Pro-Arg-chloromethyl ketone. Thus, the enzymatic properties of factor C are similar to those of mammalian alpha-thrombin. On the other hand, the coagulation cascade system present in the hemocyte lysate was activated when chymotrypsin, free from LPS, was added to the lysate used to detect the endotoxins. The implication of our findings is that the chymotrypsin-catalyzed initiation of the horseshoe crab coagulation system is unique, since all known mammalian coagulation, fibrinolysis and complement systems are initiated by trypsin-like enzymes.  相似文献   

7.
Bacterial cell wall peptidoglycan (PGN) and lipopolysaccharide (LPS), which are both macrophage activators and polyclonal B cell mitogens, were shown to bind to the same dominant 70-kDa 6.5 pI protein on the surface of mouse B lymphocytes. This conclusion was supported by the following results: (a) the PGN- and LPS-binding proteins co-migrated following photoaffinity cross-linking and two-dimensional polyacrylamide gel electrophoresis; (b) cross-linking of PGN to this 70-kDa protein was competitively inhibited by LPS (IC50 = 7.3 microM), LPS from a deep rough mutant (IC50 = 6.9 microM), and lipid A (IC50 = 18-72 microM); (c) cross-linking of LPS to this 70-kDa protein was competitively inhibited by polymeric soluble PGN (IC50 = 0.09 microM) and sonicated high Mr PGN (IC50 = 0.6 microM); (d) cross-linking of both PGN and LPS to this 70-kDa protein was also competitively inhibited by dextran sulfate (IC50 = 115-124 microM); (e) cross-linking of both PGN and LPS to this 70-kDa protein was inhibited by a (GlcNAc)2-specific lectin; and (f) peptide maps of the 70-kDa proteins digested with chymotrypsin, subtilisin, staphylococcal protease V, or papain were identical for PGN- and LPS-binding proteins and unique for each enzyme. Based on competitive inhibition experiments, binding of PGN to the 70-kDa protein was 20-1200 times stronger than the binding of LPS or lipid A on a per mol basis. However, when aggregated micellar structures of LPS or lipid A were considered, the avidities of LPS and PGN binding were similar. These results demonstrate binding of PGN and LPS to the same 70-kDa protein on lymphocytes and suggest that the binding is specific for the (GlcNAc-MurNAc)n backbone of PGN and the (GlcNAc)2 part of lipid A.  相似文献   

8.
Concentrations of bacterial lipopolysaccharide (LPS) as low as 1 ng/ml suppressed the activity of the scavenger receptor on cultured human monocyte-macrophages. In contrast, concentrations of LPS as high as 100 ng/ml had no effect on the activity of the low density lipoprotein (LDL) receptor. LPS and purified forms of the lipid A moiety of LPS were effective in suppressing scavenger receptor activity. However, acid hydrolysis of the labile phosphate group of the native diphosphorylated lipid A to form monophosphoryl lipid A rendered the molecule ineffective in suppressing scavenger receptor activity. LPS at a concentration of 100 ng/ml had no effect on the secretion of apolipoprotein E, phagocytic activity, tumoricidal activity, or the protein content of monocyte-macrophages. We conclude that the active component of LPS that mediates suppression of scavenger receptor activity is diphosphoryl lipid A.  相似文献   

9.
Factor B is a serine-protease zymogen in the horseshoe crab coagulation cascade, and it is the primary substrate for activated factor C, the LPS-responsive initiator of the cascade. Factor C is autocatalytically activated to α-factor C on LPS and is artificially converted to β-factor C, another activated form, by chymotrypsin. It is not known, however, whether LPS is required for the activation of factor B. Here we found that wild-type factor B expressed in HEK293S cells is activated by α-factor C, but not by β-factor C, in an LPS-dependent manner and that β-factor C loses the LPS binding activity of factor C through additional cleavage by chymotrypsin within the N-terminal LPS-binding region. Surface plasmon resonance and quartz crystal microbalance analyses revealed that wild-type factor B binds to LPS with high affinity comparable with that of factor C, demonstrating that factor B is the second LPS-binding zymogen in the cascade. An LPS-binding site of wild-type factor B was found in the N-terminal clip domain, and the activation rate of a clip domain deletion mutant was considerably slower than that of wild-type factor B. Moreover, in the presence of LPS, Triton X-100 inhibited the activation of wild-type factor B by α-factor C. We conclude that the clip domain of factor B has an important role in localizing factor B to the surface of Gram-negative bacteria or LPS released from bacteria to initiate effective proteolytic activation by α-factor C.  相似文献   

10.
The specificity of endotoxin (lipopolysaccharide, LPS) in the carbocyanine dye reaction was investigated, and then a stoichiometric study of the dye-LPS interaction was conducted with attention to the relationship of biological activities of LPS to the reactivity with the dye. Absorption maxima of some bacterial components in the dye reaction were as follows; LPS from both Escherichia coli and Pseudomonas aeruginosa and lipid A from E. coli LPS, 465 nm; Shigella flexneri LPS, 460 nm; Salmonella minnesota R595 glycolipid, 470 nm; polysaccharide from E. coli LPS, 650 nm; yeast RNA, 620 nm; streptococcal M protein and pyrogenic exotoxin, 610 nm; and free fatty acids, 445-450 nm. The absorbance at 465 nm was increased approximately threefold by sonicating LPS for 1-3 min, which roughly paralleled the decrease in turbidity of the LPS aqueous solution. The Limulus amoebocyte lysate (LAL) gelation activity of LPS increased 10-fold when LPS was sonicated for 0.5-5 min, but it decreased to the control level after further treatment. This decrease, however, was overcome by sonication in the presence of 5 mmol of L-ascorbic acid used as an antioxidant. The LAL gelation activity of LPS was inactivated in parallel with an increase in the ratio (w/w) of dye to LPS from 1.73 to 6.90 in the dye-LPS mixture. Pyrogenicity of LPS was also clearly inactivated when the ratio was over 1.73. The ratios of the height of the beta band at 465 nm (dye-LPS complex) to that of the alpha band at 510 nm (free dye) were increased by sonicating LPS, indicating that the binding character, or stacking tendency, was increased by sonicating LPS.  相似文献   

11.
Lipopolysaccharide (LPS) binding protein (LBP), a recently discovered 60-kDa acute phase protein, is present in the acute phase serum of many species including human, rabbits, mice, and rats. Using either highly purified LBP from acute phase rabbit serum or unfractionated acute phase rabbit serum as a source of LBP, we examined the binding of LBP to LPS immobilized on plastic microtiter plates and to LPS electrotransferred to nitrocellulose after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The presence of LBP bound to LPS was detected with goat anti-rabbit LBP and peroxidase-conjugated rabbit anti-goat IgG. LBP was found to bind to a variety of LPS types from both rough and smooth strains of Gram-negative bacteria, to lipid A, and to the tetraacyl glucosamine disaccharide diphosphate precursor IVA, but bound very poorly to the diacyl glucosamine phosphate, lipid X. No binding to 3-deoxyoctulosonic acid was observed. Binding affinities for LPS are near 10(9) M-1. The data presented here support the concept that LBP contains a binding site for lipid A.  相似文献   

12.
Sialylation of the lipopolysaccharide (LPS) is an important mechanism used by the human pathogen Haemophilus influenzae to evade the innate immune response of the host. We have demonstrated that N-acetylneuraminic acid (Neu5Ac or sialic acid) uptake in H. influenzae is essential for the subsequent modification of the LPS and that this uptake is mediated through a single transport system which is a member of the tripartite ATP-independent periplasmic (TRAP) transporter family. Disruption of either the siaP (HI0146) or siaQM (HI0147) genes, that encode the two subunits of this transporter, results in a complete loss of uptake of [14C]-Neu5Ac. Mutant strains lack sialylated glycoforms in their LPS and are more sensitive to killing by human serum than the parent strain. The SiaP protein has been purified and demonstrated to bind a stoichiometric amount of Neu5Ac by electrospray mass spectrometry. This binding was of high affinity with a Kd of approximately 0.1 microM as determined by protein fluorescence. The inactivation of the SiaPQM TRAP transporter also results in decreased growth of H. influenzae in a chemically defined medium containing Neu5Ac, supporting an additional nutritional role of sialic acid in H. influenzae physiology.  相似文献   

13.
Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria, and is the causative agent of endotoxin shock. LPS induces signal transduction in immune cells when it is recognized by the cell surface complex of toll-like receptor 4 (TLR4) and MD-2. The complex recognizes the lipid A structure in LPS, which is buried in the membrane of the outer envelope. To present the Lipid A structure to the TLR4/MD-2, processing of LPS by LPS-binding protein (LBP) and CD14 is required. In previous studies, we expressed recombinant proteins of human MD-2 and CD14 as fusion proteins with thioredoxin in Escherichia coli, and demonstrated their specific binding abilities to LPS. In this study, we prepared a recombinant fusion protein containing 212 amino terminal residues of human LBP (HLB212) by using the same expression system. The recombinant protein expressed in E. coli was purified as a complex form with host LPS. The binding was not affected by high concentrations of salt, but was prevented by low concentrations of various detergents. Both rough-type LPS lacking the O antigen and smooth-type LPS with the antigen bound to HLBP212. Therefore, oligosaccharide repeats appeared to be unnecessary for the binding. A nonpathogenic penta-acylated LPS also bound to HLBP212, but the binding was weaker than that of the wild type. The hydrophobic interaction between the LBP and acyl chains of lipid A appears to be important for the binding. The recombinant proteins of LPS-binding molecules would be useful for analyzing the defense mechanism against infections.  相似文献   

14.
Factors V(a) and X(a) (FV(a) and FX(a), respectively) assemble on phosphatidylserine (PS)-containing platelet membranes to form the essential "prothrombinase" complex of blood coagulation. The C-terminal domain (C2) of FV(a) (residues 2037-2196 in human FV(a)) contains a soluble phosphatidylserine (C6PS) binding pocket flanked by a pair of tryptophan residues, Trp(2063) and Trp(2064). Mutating these tryptophans abolishes FV(a) membrane binding. To address both the roles of these tryptophans in C6PS or membrane binding and the role of the C2 domain lipid binding site in regulation of FV(a) cofactor activity, we expressed W(2063,2064)A mutants of the recombinant C2 domain (rFV(a2)-C2) and of a B domain-deleted factor V light isoform (rFV(a2)) in Hi-5 and COS cells, respectively. Intrinsic fluorescence showed that wild-type rFV(a2)-C2 binds to C6PS and to 20% PS/PC membranes with apparent K(d) values of 2.8 microM and 9 nM, respectively, while mutant rFV(a2)-C2 does not. Equilibrium dialysis confirmed that mutant rFV(a2)-C2 does not bind to C6PS. Mutant rFV(a2) binds to C6PS (K(d) approximately 37 microM) with an affinity comparable to that of wild-type rFV(a2) (K(d) approximately 20 microM), although it does not bind to PS/PC membranes to which wild-type rFV(a2) binds with native affinity (K(d) approximately 3 nM). Both wild-type and mutant rFV(a2) bind to active site-labeled FX(a) (DEGR-X(a)) in the presence of 400 microM C6PS with native affinity (K(d) approximately 3-4 nM) to produce a solution rFV(a2)-FX(a) complex of native activity. We conclude that (1) the C2 domain PS site provides all but approximately 1 kT of the free energy of FV(a) membrane binding, (2) tryptophans lining the C2 lipid binding pocket are critical to C6PS and membrane binding and insert into the bilayer interface during membrane binding, (3) occupancy of the C2 lipid binding pocket is not necessary for C6PS-induced formation of the FX(a)-FV(a) complex or its activity, but (4) another PS site on FV(a) does have a regulatory role.  相似文献   

15.
MD-2, a eukaryotic accessory protein, is an essential component for the molecular pattern recognition of bacterial endotoxins. MD-2 interacts with lipid A of endotoxins [lipopolysaccharide (LPS) or lipooligosaccharide (LOS)] to activate human toll-like receptor (TLR) 4. The structure of lipid A influences the subsequent activation of human TLR4 and the immune response, but the basis for the discrimination of lipid A structures is unclear. A recombinant human MD-2 (rMD-2) protein was produced in the Pichia pastoris yeast expression system. Human embryonic kidney (HEK293) cells were transfected with human TLR4 and were stimulated with highly purified LOS (0.56 pmol) from Neisseria meningitidis or LPS from other structurally defined bacterial endotoxins in the presence or absence of human rMD-2. Human rMD-2 restored, in a dose-dependent manner, interleukin (IL-8) responsiveness to LOS or LPS in TLR4-transfected HEK293 cells. The interaction of endotoxin with human rMD-2 was then assessed by enzyme-linked immunosorbent assays. Wild-type meningococcal LOS (Wt m LOS) bound human rMD-2, and binding was inhibited by an anti-MD-2 antibody to MD-2 dose-dependently (P < 0.005). Wt m LOS or meningococcal KDO(2)-lipid A had the highest binding affinity for human rMD-2; unglycosylated meningococcal lipid A produced by meningococci with defects in the 3-deoxy-d-manno-2-octulosonic acid (KDO) biosynthesis pathway did not appear to bind human rMD-2 (P < 0.005). The affinity of meningococcal LOS with a penta-acylated lipid A for human rMD-2 was significantly less than that for hexa-acylated LOS (P < 0.05). The hierarchy in the binding affinity of different lipid A structures for human rMD-2 was directly correlated with differences in TLR4 pathway activation and cytokine production by human macrophages.  相似文献   

16.
Infections caused by Staphylococcus aureus – particularly nosocomial infections - represent a great concern. Usually, the early stage of pathogenesis consists on asymptomatic nasopharynx colonization, which could result in dissemination to other mucosal niches or invasion of sterile sites, such as blood. This pathogenic route depends on scavenging of nutrients as well as binding to and disrupting extracellular matrix (ECM). Manganese transport protein C (MntC), a conserved manganese-binding protein, takes part in this infectious scenario as an ion-scavenging factor and surprisingly as an ECM and coagulation cascade binding protein, as revealed in this work. This study showed a marked ability of MntC to bind to several ECM and coagulation cascade components, including laminin, collagen type IV, cellular and plasma fibronectin, plasminogen and fibrinogen by ELISA. The MntC binding to plasminogen appears to be related to the presence of surface-exposed lysines, since previous incubation with an analogue of lysine residue, ε-aminocaproic acid, or increasing ionic strength affected the interaction between MntC and plasminogen. MntC-bound plasminogen was converted to active plasmin in the presence of urokinase plasminogen activator (uPA). The newly released plasmin, in turn, acted in the cleavage of the α and β chains of fibrinogen. In conclusion, we describe a novel function for MntC that may help staphylococcal mucosal colonization and establishment of invasive disease, through the interaction with ECM and coagulation cascade host proteins. These data suggest that this potential virulence factor could be an adequate candidate to compose an anti-staphylococcal human vaccine formulation.  相似文献   

17.
The secretion of factor B by mouse peritoneal macrophages was found to be enhanced following in vivo or in vitro stimulation with lipopolysaccharide (LPS). The intravenous administration of LPS to mice of various strains caused an increased release of factor B but not the release of acid phosphatase by the peritoneal macrophages obtained from the stimulated mice. In vitro stimulation of cultured macrophages with LPS resulted in an enhanced secretion of both factor B and acid phosphatase. The dose-dependent augmentation of factor B secretion by LPS was found in the macrophages from LPS-responsive C3H/HeN mice, whereas the macrophages from LPS-unresponsive C3H/HeJ mice did not respond to either phenol-extracted LPS or butanol-extracted LPS. The ability of LPS to cause the enhancement of factor B secretion by macrophages was abolished by alkali or acid treatment of LPS, indicating that its lipid A part was responsible for the observed effect.  相似文献   

18.
CLOTTING PROCESSES IN CRUSTACEA DECAPODA   总被引:2,自引:0,他引:2  
1. In Limulidae, all the factors involved in the coagulation processes are located inside the amoebocytes. The cellular coagulogen is a single 20,000-polypeptide-chain protein. It is converted into a non-covalently crosslinked gel by a serine protease enzyme which cleaves a single peptide bond, releasing peptice C.
2. Pro-clotting enzyme can be activated by two independent pathways: coagulation is induced by either LPS or 1,3-β-D-glucan, both of which result in gel formation. The two pathways comprise a complex enzyme cascade with several limited protein proteolyses.
3. In Decapoda, clotting factors are found in both the cell-free plasma and haemocyte compartments. Analogous factors are present in Insecta.
4. Plasma coagulogen is a 400,000 molecular weight protein with both lipid and carbohydrate moieties. Its soluble polymers are converted into covalently crosslinked polymers of coagulin by Ca2+-dependent transglutaminase. In crayfish, it is also found in other tissues such as soft integument and calcified cuticle. Its concentration varies greatly with the species investigated. It seems to possess many diversified functions such as plasma coagulation, protein transport of tanning agents, lipid and sugar transport and protein storage, and resembles fibronectin.
5. A type of cellular coagulogen seems to be present in the haemocytes of Decapoda. It can be converted to a gel by a serine protease pro-clotting enzyme. This pro-enzyme can be activated by either LPS or 1,3-β-D-glucans. The mechanism of LPS action is not entirely clear. 1,3-β-D-glucans also activate the prophenoloxidase system and cause phenoloxidase attachment to foreign surfaces of haemocyte lysates. The latter system is restricted to semi-granular and granular haemocytes, and plays an important part in host-defence reactions.
6. The evolutin of clotting processes throughout the phylogenetic tree is discussed.  相似文献   

19.
We have characterized the binding of LPS to an 80-kDa LPS-binding protein detected by an LPS photoaffinity probe to be present on murine splenocytes. Specific binding of LPS to the 80-kDa protein is directly proportional to LPS concentration at low concentrations of LPS and is saturable at high concentrations of LPS. Binding is inhibited by both homologous and heterologous underivatized LPS as well as by polysaccharide-free lipid A, indicating a specificity for the biologically active component of LPS. Analysis of the kinetics of binding indicate a time-dependent increase over the first 15 min, but increases are not detected after this time. Binding of LPS to the 80-kDa LPS-binding protein is reduced but still readily detectable at 4 degrees C in the presence of azide. The presence of the 80-kDa LPS-binding protein in an isolated cytoplasmic membrane fraction of murine splenocytes as well as its release from intact splenocytes by octylglucoside suggest that this LPS-binding protein is membrane localized. The results are consistent with, but do not establish unequivocally, the identity of the 80-kDa LPS-binding protein as a specific membrane receptor for lipid A.  相似文献   

20.
Activation of vitamin K-dependent plasma proteases occurs by specific interaction with components of the blood coagulation cascade. In this report, we describe the direct expression and enzymatic characterization of the human coagulation zymogen factor X and its activated form, factor Xa, from transformed Chinese hamster ovary fibroblast cell lines. Expression was achieved using either a full-length factor X cDNA or a unique mutant factor Xa cDNA. The functional factor Xa precursor contained a novel tripeptide bridge in place of the native 52-amino acid activation peptide. This mutation allowed for intracellular processing and secretion of the activated form of factor X. Secreted recombinant factors X (rX) and Xa (rXa) were purified by sequential anion-exchange and immunoaffinity chromatography. The enzymatic activities of factors rX and rXa were compared with those of plasma factors X and Xa in three independent assay systems. In comparison to human plasma factor X, the amidolytic, prothrombinase complex, and plasma clotting activities of factor rX were 50, 85, and 43%, respectively. The corresponding comparative activities for factor rXa were 32, 64, and 48%, respectively. The ability to directly express mutant forms of biologically active human factor X will facilitate the structure/function analysis of this important blood coagulation protein and may lead to the development of novel coagulation inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号