首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variant human cystatin C (L68Q) is an amyloidogenic protein. It deposits in the cerebral vasculature of Icelandic patients with cerebral amyloid angiopathy, leading to stroke. Wild-type and variant cystatin C are cysteine proteinase inhibitors which form concentration dependent inactive dimers; however, variant cystatin C dimerizes at lower concentrations and has an increased susceptibility to a serine protease. We studied the effect of the L68Q amino acid substitution on cystatin C properties, utilizing full length cystatin C purified in mild conditions from media of cells stably transfected with either the wild-type or variant cystatin C genes. The variant cystatin C forms fibrils in vitro detectable by electron microscopy in conditions in which the wild-type protein forms amorphous aggregates. We also show by circular dichroism, steady-state fluorescence and Fourier-transformed infrared spectroscopy that the amino acid substitution modifies cystatin C structure by destabilizing alpha-helical structures and exposing the tryptophan residue to a more polar environment, yielding a more unfolded molecule. These spectral changes demonstrate that variant cystatin C has a three-dimensional structure different from that of the wild-type protein. The structural differences between variant and wild-type cystatin C account for the susceptibility of the variant protein to unfolding, proteolysis and fibrillogenesis.  相似文献   

2.
Amyloidogenic proteins like cystatin C and prion proteins have been shown to form dimers by exchange of subdomains of the monomeric proteins. This process, called "three-dimensional domain swapping," has also been suggested to play a part in the generation of amyloid fibrils. One variant of cystatin C, L68Q cystatin C, is highly amyloidogenic, and persons carrying the corresponding gene suffer from massive cerebral amyloidosis leading to brain hemorrhage and death in early adult life. The present work describes the production of two variants of wild type and L68Q cystatin C with disulfide bridges at positions selected to inhibit domain swapping without affecting the biological function of the four cystatin C variants as cysteine protease inhibitors. The capacity of the four variant proteins to form dimers was tested and compared with that of wild type and L68Q cystatin C. In contrast to the latter two proteins, all four protein variants stabilized by disulfide bridges were resistant toward the formation of dimers. The capacity of the two stabilized variants of wild type cystatin C to form amyloid fibrils was investigated and found to be reduced by 80% compared with that of wild type cystatin C. In an effort to investigate whether exogenous agents could also suppress the formation of dimers of wild type and L68Q cystatin C, a monoclonal antibody or carboxymethylpapain, an inactivated form of a cysteine protease, was added to systems inducing dimerization of wild type and L68Q cystatin C. It was observed that catalytic amounts of both the monoclonal antibody and carboxymethylpapain could suppress dimerization.  相似文献   

3.
Human L68Q cystatin C is one of the known human amyloidogenic proteins. In its native state it is a monomer with alpha/beta structure. Experimental evidence suggests that L68Q variant associates into dimeric intermediates and that the dimers subsequently self-assemble to form amyloid deposits and insoluble fibrils. Details of the pathway of L68Q mutant amyloid formation are unclear; however, different experimental approaches with resolutions at molecular level have provided some clues. Probably, the stability and flexibility of monomeric L68Q variant play essential roles in the early steps of amyloid formation; thus, it is necessary to characterize early conformational changes of L68Q cystatin C monomers. In this paper, we demonstrate the possibility that the differences between the monomeric forms of wild-type (wt) cystatin C and its L68Q variant are responsible for higher tendency of the L68Q cystatin C amyloidogenesis. We started our studies with the simulations of wt and L68Q cystatin C monomers. Nanosecond time scale molecular dynamics simulations at 308K were performed using AMBER7.0 program. The results show that the structure of the L68Q monomer was changed, relative to the wt cystatin C structure. The results support earlier speculation that the L68Q point mutation would easily lead to dimer formation.  相似文献   

4.
Cystatin C and the prion protein have been shown to form dimers via three-dimensional domain swapping, and this process has also been hypothesized to be involved in amyloidogenesis. Production of oligomers of other amyloidogenic proteins has been reported to precede fibril formation, suggesting oligomers as intermediates in fibrillogenesis. A variant of cystatin C, with a Leu68-->Gln substitution, is highly amyloidogenic, and carriers of this mutation suffer from massive cerebral amyloidosis leading to brain hemorrhage and death in early adulthood. This work describes doughnut-shaped oligomers formed by wild type and L68Q cystatin C upon incubation of the monomeric proteins. Purified oligomers of cystatin C are shown to fibrillize faster and at a lower concentration than the monomeric protein, indicating a role of the oligomers as fibril-assembly intermediates. Moreover, the present work demonstrates that three-dimensional domain swapping is involved in the formation of the oligomers, because variants of monomeric cystatin C, stabilized against three-dimensional domain swapping by engineered disulfide bonds, do not produce oligomers upon incubation under non-reducing conditions. Redox experiments using wild type and stabilized cystatin C strongly suggest that the oligomers, and thus probably the fibrils as well, are formed by propagated domain swapping rather than by assembly of domain-swapped cystatin C dimers.  相似文献   

5.
Hereditary cystatin C amyloid angiopathy is an autosomal dominant disorder in which a variant form of cystatin C (L68Q) readily forms amyloid deposits in cerebral arteries in affected individuals resulting in early death. L68Q protein deposits in human cystatin C amyloid angiopathy patients have also been found in tissues outside of the brain including the testis, suggesting possible effects on fertility. Heterozygous transgenic mice (L68Q) that express the human L68Q variant of cystatin C under the control of the mouse cystatin C promoter were unable to generate offspring, suggesting the presence of L68Q cystatin C amyloid affected sperm function. In vitro studies showed that epididymal spermatozoa from L68Q mice were unable to fertilize oocytes and exhibited poor sperm motility. Furthermore, spermatozoa from L68Q mice exhibited reduced cell viability compared with wild type (WT) spermatozoa and often were detected in large agglutinated clumps. Examination of the epididymal fluid and spermatozoa from L68Q mice showed increased levels and distinct forms of cystatin C amyloid that were not present in WT mice. The addition of epididymal fluid from L68Q mice to WT spermatozoa resulted in a recapitulation of the L68Q phenotype in that WT spermatozoa showed reduced cell viability and motility compared with WT spermatozoa incubated in epididymal fluid from WT mice. L68Q epididymal fluid that was depleted of cystatin C amyloids, however, did not impair the motility of WT spermatozoa. Taken together these studies suggest that amyloids in the epididymal fluid can be cytotoxic to the maturing spermatozoa resulting in male infertility.  相似文献   

6.
Cystatin C, a major extracellular cysteine proteinase inhibitor, is deposited as amyloid in brain haemorrhage patients with hereditary cystatin C amyloid angiopathy (HCCAA). A disease-causing mutation on the genetic level results in the substitution Leu68-->Gln (L68Q) in cystatin C, which causes protein instability. Besides carrying the L68Q substitution, cystatin C in amyloid deposits isolated from patients is N-terminally truncated by 10 amino acids. To elucidate the role of the N-terminal truncation for protein stability and aggregation properties, (delta1-10,L68Q)-cystatin C was produced in an Escherichia coli expression system and characterised. Unlike wild-type cystatin C, this variant rapidly dimerised under physiological conditions. Two unfolding intermediates of (delta1-10,L68Q)-cystatin C were identified, under the same pH and ionic strength conditions as required to form intermediates of full-length L68Q cystatin C. No evidence was found that the N-terminal truncation per se alters protein stability and leads to higher forms of aggregation. Monomeric as well as dimeric L68Q cystatin C incubated with neutrophil elastase was truncated as in HCCAA patients' amyloid. A protein variant with a thrombin cleavage site placed in front of residue Gly11 in L68Q cystatin C was constructed and used to confirm that the N-terminal segment is similarly accessible to proteinases in the monomeric and dimeric states of L68Q cystatin C. Thus, the N-terminal segment of L68Q cystatin C is exposed to proteolytic attack and does not seem to be involved in intramolecular contacts leading to dimerisation or higher-order aggregation. We conclude that the N-terminal truncation likely is an event secondary to amyloid formation, and of no relevance for the development of HCCAA.  相似文献   

7.
Human cystatin C (HCC) is one of the amyloidogenic proteins to be shown to oligomerize via a three‐dimensional domain swapping mechanism. This process precedes the formation of a stable dimer and proceeds particularly easily in the case of the L68Q mutant. According to the proposed mechanism, dimerization of the HCC precedes conformational changes within the β2 and β3 strands. In this article, we present conformational studies, using circular dichroism and MD methods, of the β2‐L1‐β3 (His43‐Thr72) fragment of the HCC involved in HCC dimer formation. We also carried out studies of the β2‐L1‐β3 peptide, in which the Val57 residue was replaced by residues promoting β‐turn structure formation (Asp, Asn, or Pro). The present study established that point mutation could modify the structure of the L1 loop in the β‐hairpin peptide. Our results showed that the L1 loop in the peptide excised from human cystatin C is broader than that in cystatin C. In the HCC protein, broadening of the L1 loop together with the unfavorable L68Q mutation in the hydrophobic pocket could be a force sufficient to cause the partial unfolding and then the opening of HCC or its L68Q mutant structure for further dimerization. We presume further that the Asp57 and Asn57 mutations in the L1 loop of HCC could stabilize the closed form of HCC, whereas the Pro57 mutation could lead to the opening of the HCC structure and then to dimer/oligomer formation. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 373–383, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

8.
Oligomerization of human cystatin C (HCC) leads to amyloid deposits in brain arteries, and this process is greatly accelerated with a naturally occurring L68Q variant. The crystal structures of N-truncated and full-length HCC (cubic form) showed dimer formation via three-dimensional (3D) domain swapping, and this observation has led to the suggestion that an analogous domain-swapping mechanism, but propagated in an open-ended fashion, could be the basis of HCC fibril formation. Here we report that full-length HCC, when crystallized in a new, tetragonal form, dimerizes by swapping the same secondary structure elements but with a very different overall structure generated by the flexibility of the hinge linking the moveable elements. The beta-strands of the beta-cores of the two folding units of the present dimer are roughly parallel, while they formed an angle of about 100 degrees in the previous two structures. The dimers pack around a crystallographic dyad by extending their molecular beta-sheets in an intermolecular context. At the other edge of the molecular beta-sheet, side-chain-side-chain hydrogen bonds propagate the beta-structure in the same direction. In consequence, a supramolecular crystal structure is generated, with all the beta-strands of the domain-swapped dimers being perpendicular to one crystallographic direction. This observation is relevant to amyloid aggregation of HCC, as X-ray diffraction studies of amyloid fibrils show them to have ordered, repeating structure, consistent with the so-called cross-beta structure, in which extended polypeptide chains are perpendicular to the fiber axis and form infinite beta-sheets that are parallel to this axis.  相似文献   

9.
Human cystatin C variant (L68Q), one of the amyloidgenic proteins, has been shown to form dimeric structure spontaneously via domain swapping and easily cause amyloid deposits in the brains of patients suffering from Alzheimer's disease or hereditary cystatin C amyloid angiopathy. The monomeric L68Q and wild-type (wt) HCCs share similar structural feature consisting of a core with a five-stranded anti-parallel beta-sheet (beta-region) wrapped around a central helix. In this study, various molecular dynamics simulations were conducted to investigate the conformational fluctuations of the monomeric L68Q and wt HCCs at various combinations of temperature (300 and 500K) and pH (2 and 7) to gain insights into the domain swapping mechanism. The results show that elevated temperature accelerates the disruption of the hydrophobic core and acidic condition promotes the destruction of three salt bridges between beta2 and beta3 in both HCCs. The results also indicate that the interior hydrophobic core of the L68Q variant is relatively unstable, leading to domain swapping more readily comparing to wt HCC under conditions favoring this process. However, these two monomeric HCCs adopt the same mechanism of domain swapping as follows: (i) first, the interior hydrophobic core is disrupted; (ii) subsequently, the central helix departs from the beta-region; (iii) then, the beta2-L1-beta3 hairpin structure unfolds following the so-called "zip-up" mechanism; and (iv) finally, the open form HCC is generated.  相似文献   

10.
To address the role of glycosylation on fibrillogenicity of amyloidogenic chicken cystatin, the consensus sequence for N-linked glycosylation (Asn106-Ile108 --> Asn106-Thr108) was introduced by site-directed mutagenesis into the wild-type and amyloidogenic chicken cystatins to construct the glycosylated form of chicken cystatins. Both the glycosylated and unglycosylated forms of wild-type and amyloidogenic mutant I66Q cystatin were expressed and secreted in a culture medium of yeast Pichia pastoris transformants. Comparison of the amount of insoluble aggregate, the secondary structure, and fibrillogenicity has shown that the N-linked glycosylation could prevent amyloid fibril formation of amyloidogenic chicken cystatin secreted in yeast cells without affecting its inhibitory activities. Further study showed this glycosylation could inhibit the formation of cystatin dimers. Therefore, our data strongly suggested that the mechanism causing the prevention of amyloidogenic cystation fibril formation may be realized through suppression of the formation of three-dimensional domain-swapped dimers and oligomers of amyloidogenic cystatin by the glycosylated chains at position 106.  相似文献   

11.
Cystatins are natural inhibitors of cysteine proteases, enzymes that are widely distributed in animals, plants, and microorganisms. Human cystatin C (hCC) has been also recognized as an aggregating protein directly involved in the formation of pathological amyloid fibrils, and these amyloidogenic properties greatly increase in a naturally occurring L68Q hCC variant. For a long time only dimeric structure of wild-type hCC has been known. The dimer is created through 3D domain swapping process, in which two parts of the cystatin structure become separated from each other and next exchanged between two molecules. Important role in the domain swapping plays the L1 loop, which connects the exchanging segments and, upon dimerization, transforms from a β-turn into a part of a long β-strand. In the very recently published first monomeric structure of human cystatin C (hCC-stab1), dimerization was abrogated due to clasping of the β-strands from the swapping domains by an engineered disulfide bridge. We have designed and constructed another mutated cystatin C with the smallest possible structural intervention, that is a single-point mutation replacing hydrophobic V57 from the L1 loop by polar asparagine, known as a stabilizer of a β-turn motif. V57N hCC mutant occurred to be stable in its monomeric form and crystallized as a monomer, revealing typical cystatin fold with a five-stranded antiparallel β-sheet wrapped around an α-helix. Here we report a 2.04 Å resolution crystal structure of V57N hCC and discuss the architecture of the protein in comparison to chicken cystatin, hCC-stab1 and dimeric hCC.  相似文献   

12.
In 3D domain swapping, first described by Eisenberg, a structural element of a monomeric protein is replaced by the same element from another subunit. This process requires partial unfolding of the closed monomers that is then followed by adhesion and reconstruction of the original fold but from elements contributed by different subunits. If the interactions are reciprocal, a closed-ended dimer will be formed, but the same phenomenon has been suggested as a mechanism for the formation of open-ended polymers as well, such as those believed to exist in amyloid fibrils. There has been a rapid progress in the study of 3D domain swapping. Oligomers higher than dimers have been found, the monomer-dimer equilibrium could be controlled by mutations in the hinge element of the chain, a single protein has been shown to form more than one domain-swapped structure, and recently, the possibility of simultaneous exchange of two structural domains by a single molecule has been demonstrated. This last discovery has an important bearing on the possibility that 3D domain swapping might be indeed an amyloidogenic mechanism. Along the same lines is the discovery that a protein of proven amyloidogenic properties, human cystatin C, is capable of 3D domain swapping that leads to oligomerization. The structure of domain-swapped human cystatin C dimers explains why a naturally occurring mutant of this protein has a much higher propensity for aggregation, and also suggests how this same mechanism of 3D domain swapping could lead to an open-ended polymer that would be consistent with the cross-beta structure, which is believed to be at the heart of the molecular architecture of amyloid fibrils.  相似文献   

13.
Human cystatin C (hCC) is a low molecular mass protein that belongs to the cystatin superfamily. It is an inhibitor of extracellular cysteine proteinases, present in all human body fluids. At physiological conditions, hCC is a monomer, but it has a tendency to dimerization. Naturally occurring hCC mutant, with leucine in position 68 substituted by glutamine (L68Q), is directly involved in the formation of amyloid deposits, independently of other proteins. This process is the primary cause of hereditary cerebral amyloid angiopathy, observed mainly in the Icelandic population. Oligomerization and fibrillization processes of hCC are not explained equally well, but it is proposed that domain swapping is involved in both of them. Research carried out on the fibrillization process led to new hypothesis about the existence of a steric zipper motif in amyloidogenic proteins. In the hCC sequence, there are 2 fragments which may play the role of a steric zipper: the loop L1 region and the C‐terminal fragment. In this work, we focused on the first of these. Nine hexapeptides covering studied hCC fragment were synthesized, and their fibrillogenic potential was assessed using an array of biophysical methods. The obtained results showed that the studied hCC fragment has strong profibrillogenic propensities because it contains 2 fragments fulfilling the requirements for an effective steric zipper located next to each other, forming 1 super‐steric zipper motif. This hCC fragment might therefore be responsible for the enhanced amyloidogenic properties of dimeric or partially unfolded hCC.  相似文献   

14.
Wakasugi K  Nakano T  Morishima I 《Biochemistry》2004,43(18):5119-5125
Neuroglobin (Ngb) is a newly discovered globin that is expressed in vertebrate brain. It has been reported that Ngb levels increase in neurons in response to oxygen deprivation, and that Ngb protects neurons from hypoxia. However, the mechanism of this neuroprotection remains unclear. In the present study, we identified human cystatin C, a cysteine proteinase inhibitor, as an Ngb-binding protein by using a yeast two-hybrid system. Surface plasmon resonance experiments verified that Ngb binds to cystatin C dimers, not to the monomers. Because both intracellular cystatin C and the amyloidogenic variant of cystatin C form dimers, Ngb may modulate the intracellular transport (or secretion) of cystatin C to protect against neuronal death under conditions of oxidative stress and/or it may have a role in the development of neurodegenerative diseases.  相似文献   

15.
Su YC  Lin JC  Liu HL 《Biotechnology progress》2005,21(4):1315-1320
In this study, a homology model of carp ovum cystatin was constructed based on the crystal structure of chicken egg white cystatin. The results of amino acid sequence alignment indicate that these two proteins exhibit 36.11% of sequence identity. The resultant homology model reveals that carp ovum cystatin shares similar folds as chicken egg white cystatin, particularly in the conserved regions of Q48-V49-G52 and P98-W99 and the locations of two disulfide bonds, C67-C76 and C90-C110. However, the results of 1 ns molecular dynamics simulations show that carp ovum cystatin exhibits less structural integrity than chicken egg white cystatin in explicit water at 300 K. The relatively hydrophilic Met62 of carp ovum cystatin, corresponding to the hydrophobic Leu68 of human cystatin C and Ile66 of chicken egg white cystatin, may destabilize the hydrophobic core and form a dimeric structure more easily through domain swapping. A total of 16 positively charged residues are equally distributed on the surface of carp ovum cystatin, resulting in agglutination with the negatively charged spermatozoa via electrostatic interaction. Thus, carp ovum cystatin is considered to be important in preventing carp eggs from polyspermy.  相似文献   

16.
Human cystatin C (HCC) inhibits papain-like cysteine proteases by a binding epitope composed of two beta-hairpin loops and the N-terminal segment. HCC is found in all body fluids and is present at a particularly high level in the cerebrospinal fluid. Oligomerization of HCC leads to amyloid deposits in brain arteries at advanced age but this pathological process is greatly accelerated with a naturally occurring Leu68Gln variant, resulting in fatal amyloidosis in early adult life. When proteins are extracted from human cystatin C amyloid deposits, an N-terminally truncated cystatin C (THCC) is found, lacking the first ten amino acid residues of the native sequence. It has been shown that the cerebrospinal fluid may cause this N-terminal truncation, possibly because of disintegration of the leucocytes normally present in this fluid, and the release of leucocyte proteolytic enzymes. HCC is the first disease-causing amyloidogenic protein for which oligomerization via 3D domain swapping has been observed. The aggregates arise in the crystallization buffer and have the form of 2-fold symmetric dimers in which a long alpha-helix of one molecule, flanked by two adjacent beta-strands, has replaced an identical domain of the other molecule, and vice versa. Consistent with a conformational change at one of the beta-hairpin loops of the binding epitope, the dimers (and also any other oligomers, including amyloid aggregates) are inactive as papain inhibitors. Here, we report the structure of N-truncated HCC, the dominant form of cystatin C in amyloid deposits. Although the protein crystallized under conditions that are drastically different from those for the full-length protein, the structure reveals dimerization by the same act of domain swapping. However, the new crystal structure is composed of four independent HCC dimers, none of which has the exact 2-fold symmetry of the full-length dimer. While the four dimers have the same overall topology, the exact relation between the individual domains shows a variability that reflects the flexibility at the dimer-specific open interface, which in the case of 3D domain-swapped HCC consists of beta-interactions between the open hinge loops and results in an unusually long intermolecular beta-sheet. The dimers are engaged in further quaternary interactions resulting in spherical, closed octameric assemblies that are identical to that present in the crystal of the full-length protein. The octamers interact via hydrophobic patches formed on the surface of the domain-swapped dimers as well as by extending the dimer beta-sheet through intermolecular contacts.  相似文献   

17.
Rat cystatin C was purified to apparent homogeneity from rat urine after induction of a tubular dysfunction with sodium chromate. Twentyfold concentrated urine was chromatographed by a rapid purification procedure. A two-step purification including affinity chromatography on carboxymethyl papain- Sepharose and high-resolution anion exchange chromatography was developed. The purified protein has an apparent molecular mass of 15 kDa and pI of 10.2; its aminoacid composition was similar to human cystatin C. As opposed to previous data, purified urinary rat cystatin C did not contain significant amounts of carbohydrate. Antisera against rat cystatin C, raised in rabbits, partially cross-reacted with human and mouse cystatin C, indicating their antigenic similarities. Like human cystatin C, native rat cystatin C, named slow form, is degraded into a more acidic form, called fast form, by a loss of N-terminal amino acids; fast form displayed a pI of 9.4.  相似文献   

18.
Wild-type human cystatin C is directly involved in pathological fibrils formation, leading to hemorrhage, dementia and eventually death of people suffering from cerebral amyloid angiopathy. Some studies on cystatin C oligomerization have been already done but some points are still unclear. In order to learn more about this important process, we have investigated thermal and chemical (guanidine hydrochloride-induced) denaturation of human cystatin C. Studies performed using tryptophan fluorescence, calorimetry, circular dichroism and Fourier transform infrared spectroscopy demonstrate that neither chemical nor thermal denaturation of hCC are simple two-state events. One recognized intermediate form was dimeric cystatin C, whose appearance was preceded mainly by changes in the L2 binding loop. The other form occurred only in the chemical denaturation process and was characterized by partially recovered interactions maintaining the protein tertiary structure. Our studies also strongly indicate that the -structural motif of cystatin C is directly implicated in formation of temperature-induced aggregates.Abbreviations Gdn.HCl guanidine hydrochloride - hCC human cystatin C  相似文献   

19.
Cystatins are present in mammals, birds, fish, insects, plants, fungi and protozoa and constitute a large protein family, with most members sharing a cysteine protease inhibitory function. In humans 12 functional cystatins exist, forming three groups based on molecular organisation and distribution in the organism. The type 1 cystatins (A and B) are known as intracellular, type 2 cystatins (C, D, E/M, F, G, S, SN and SA) extracellular and type 3 cystatins (L- and H-kininogen) intravascular proteins. The present paper is focused on the human cystatins and especially those of type 2, which are directed (with signal peptides) for cellular export following translation. Results indicating existence of systems for significant internalisation of type 2 cystatins from the extracellular to intracellular compartments are reviewed. Data showing that human neuroblastoma cell lines generally secrete high levels, but also contain high amounts of cystatin C are presented. Culturing of these cells in medium containing cystatin C at concentrations found in body fluids resulted in increased intracellular cystatin C, as a result of an uptake process. At immunofluorescence cytochemistry a pronounced vesicular cystatin C staining was observed. The simplistic denotation of the type 2 cystatins as extracellular inhibitors is thus challenged, and possible biological functions of the internalised cystatins are discussed. To illustrate the special case of high cellular cystatin content seen in cells of patients with hereditary cystatin C amyloid angiopathy, expression vectors for wild-type and L68Q mutated cystatin C were used to transfect SK-N-BE(2) cells. Clones overexpressing the two variants showed increased secreted levels of cystatin C. Within the cells the L68Q variant appeared to mainly localise to the endoplasmic reticulum rather than to acidic vesicular organelles, indicating limitations in the transport out from the cell rather than increased uptake as explanation for the elevated cellular cystatin levels seen in hereditary cystatin C amyloid angiopathy.  相似文献   

20.
ABSTRACT

Rat cystatin C was purified to apparent homogeneity from rat urine after induction of a tubular dysfunction with sodium chromate. Twentyfold concentrated urine was chromatographed by a rapid purification procedure. A two-step purification including affinity chromatography on carboxymethyl papain- Sepharose and high-resolution anion exchange chromatography was developped. The purified protein has an apparent molecular mass of 15 kDa and pI of 10.2; its aminoacid composition was similar to human cystatin C. As opposed to previous data, purified urinary rat cystatin C did not contain significant amounts of carbohydrate. Antisera against rat cystatin C, raised in rabbits, partially cross-reacted with human and mouse cystatin C, indicating their antigenic similarities. Like human cystatin C, native rat cystatin C, named slow form, is degraded into a more acidic form, called fast form, by a loss of N-terminal amino acids; fast form displayed a pI of 9.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号