首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Expression of Bcl-2 family protein, Bfl-1/A1 has been found to differ considerably amongst macrophages infected with virulent Mycobacterium tuberculosis H37Rv or with avirulent M. tuberculosis H37Ra. Present work was undertaken to deduce the significance of differential expression of Bfl-1/A1 in the outcome of mycobacterial infection. We have studied the role of Bfl-1/A1 particularly in autophagy formation in tubercle bacilli infected cells since autophagy has been recognized as a component of innate immunity against pathogenic mycobacteria. First, we have confirmed that upon infection virulent strain H37Rv retain Bfl-1/A1 for longer period and impose autophagosome maturation block within infected cells as evident from confocal microscopy. Moreover, down regulation of Bfl-1/A1 by siRNA induced autophagy formation and reduced bacterial growth. Furthermore, even the avirulent strain H37Ra resist autophagosome maturation and survive if the cellular level of Bfl-1 is maintained in THP-1 cells by stable transfection (Bfl-1 overexpressing cells). No noteworthy difference in mTOR expression was observed between normal THP-1 and Bfl-1 overexpressing THP-1 cells infected with either strain of mycobacteria. Interestingly, we found that not only mTOR but also Bfl-1/A1 is involved in rapamycin induced autophagy in mycobacteria infected macrophages. We have found that Bfl-1 physically interacts with Beclin 1 in Bfl-1 overexpressing THP-1 as well as in H37Rv infected THP-1 cells as they co-precipitated. Taken together, our results clearly demonstrated that Bfl-1/A1 negatively regulates autophagy and expression of Bfl-1/A1 in H37Rv infected macrophages provides the bacteria a survival strategy to overcome host defense.  相似文献   

2.
Bfl-1, an anti-apoptotic protein of the Bcl-2 family, has been identified as a potential therapeutic target for B-cell malignancies. We describe herein the first characterization of peptide aptamers selected against Bfl-1. We show that most of the Bfl-1 peptide aptamers do not interact with Bcl-2, Bcl-xL, or Mcl-1 in yeast and that some of them restore the pro-apoptotic activity of Bax in yeast in which Bax and Bfl-1 proteins are coexpressed. When expressed in mammalian cells, peptide aptamers interact with Bfl-1 and sensitize B-cell lines to apoptosis induced by chemotherapeutic agents. We further demonstrate that a nonconstrained peptide derived from one aptamer variable region reverses Bfl-1 anti-apoptotic activity in HeLa cells through disruption of Bax-Bfl-1 interaction. This peptide also promotes cell death in lymphoma B-cell lines expressing a high level of Bfl-1 and sensitizes these cells to drug-induced apoptosis. Taken together, these results further validate Bfl-1 as a therapeutic target for malignant B-cells and suggest that peptide aptamers may be a useful tool for guiding the identification of small compounds that target the anti-apoptotic Bfl-1 protein.  相似文献   

3.
Bfl-1 is a pro-survival Bcl-2 family member overexpressed in a subset of chemoresistant tumours, including melanoma. Here, we characterised the expression and regulation of Bfl-1 in normal and malignant melanocytes and determined its role in protecting these cells from chemotherapy-induced apoptosis. Bfl-1 was mitochondrially resident in both resting and apoptotic cells and experienced regulation by the proteasome and NFκB pathways. siRNA-mediated knockdown enhanced sensitivity towards various relevant drug treatments, with forced overexpression of Bfl-1 protective. These findings identify Bfl-1 as a contributor towards therapeutic resistance in melanoma cells and support the use of NFκB inhibitors alongside current treatment strategies.  相似文献   

4.
Overexpression of the anti-apoptotic Bcl-2 family proteins occurs commonly in human cancers. Bfl-1 is highly expressed in some types of malignant cells, contributing significantly to tumor cell survival and chemoresistance. Therefore, it would be desirable to have chemical antagonists of Bfl-1. To this end, we devised a fluorescence polarization assay (FPA) using Bfl-1 protein and fluorescein-conjugated Bid BH3 peptide, which was employed for high-throughput screening of chemical libraries. Approximately 66 000 compounds were screened for the ability to inhibit BH3 peptide binding to Bfl-1, yielding 14 reproducible hits with ≥50% displacement. After dose-response analysis and confirmation using a secondary assay based on time-resolved fluorescence resonance energy transfer (TR-FRET), two groups of Bfl-1-specific inhibitors were identified, including chloromaleimide and sulfonylpyrimidine series compounds. FPAs generated for each of the six anti-apoptotic Bcl-2 proteins demonstrated selective binding of both classes of compounds to Bfl-1. Analogs of the sulfonylpyrimidine series were synthesized and compared with the original hit for Bfl-1 binding by both FPAs and TR-FRET assays. The resulting structure-activity relation analysis led to the chemical probe compound CID-2980973 (ML042). Collectively, these findings demonstrate the feasibility of using the HTS assay for discovery of selective chemical inhibitors of Bfl-1.  相似文献   

5.
Following caspase-8 mediated cleavage, a carboxyl-terminal fragment of the BH3 domain-only Bcl-2 family member Bid transmits the apoptotic signal from death receptors to mitochondria. In a screen for possible regulators of Bid, we defined Bfl-1/A1 as a potent Bid interacting protein. Bfl-1 is an anti-apoptotic Bcl-2 family member, whose preferential expression in hematopoietic cells and endothelium is controlled by inflammatory stimuli. Its mechanism of action is unknown. We find that Bfl-1 associates with both full-length Bid and truncated (t)Bid, via the Bid BH3 domain. Cellular expression of Bfl-1 confers protection against CD95- and Trail receptor-induced cytochrome c release. In vitro assays, using purified mitochondria and recombinant proteins, demonstrate that Bfl-1 binds full-length Bid, but does not interfere with its processing by caspase-8, or with its mitochondrial association. Confocal microscopy supports that Bfl-1, which at least in part constitutively localizes to mitochondria, does not impede tBid translocation. However, Bfl-1 remains tightly and selectively bound to tBid and blocks collaboration between tBid and Bax or Bak in the plane of the mitochondrial membrane, thereby preventing mitochondrial apoptotic activation. Lack of demonstrable interaction between Bfl-1 and Bak or Bax in the mitochondrial membrane suggests that Bfl-1 generally prevents the formation of a pro-apoptotic complex by sequestering BH3 domain-only proteins.  相似文献   

6.
Anti-apoptotic Bfl-1 and pro-apoptotic Bax, two members of the Bcl-2 family sharing a similar structural fold, are classically viewed as antagonist regulators of apoptosis. However, both proteins were reported to be death inducers following cleavage by the cysteine protease μ-calpain. Here we demonstrate that calpain-mediated cleavage of full-length Bfl-1 induces the release of C-terminal membrane active α-helices that are responsible for its conversion into a pro-apoptotic factor. A careful comparison of the different membrane-active regions present in the Bfl-1 truncated fragments with homologous domains of Bax show that helix α5, but not α6, of Bfl-1 induces cell death and cytochrome c release from purified mitochondria through a Bax/Bak-dependent mechanism. In contrast, both helices α5 and α6 of Bax permeabilize mitochondria regardless of the presence of Bax or Bak. Moreover, we provide evidence that the α9 helix of Bfl-1 promotes cytochrome c release and apoptosis through a unique membrane-destabilizing action whereas Bax-α9 does not display such activities. Hence, despite a common 3D-structure, C-terminal toxic domains present on Bfl-1 and Bax function in a dissimilar manner to permeabilize mitochondria and induce apoptosis. These findings provide insights for designing therapeutic approaches that could exploit the cleavage of endogenous Bcl-2 family proteins or the use of Bfl-1/Bax-derived peptides to promote tumor cell clearance.  相似文献   

7.
Introduction of the maleimide function via a spacer into histidine-containing peptides was found to produce ring closure by nucleophilic addition of the Nim-imino function of the histidine side-chain to the activated double bond of the maleimide. As an intramolecular cyclization reaction it proceeds at remarkably higher rates than the bimolecular alkylation of histidine derivatives with N-ethyl-maleimide. Correspondingly, in the case of the histidine-peptides examined only mixtures of the cyclic isomeric compounds were isolated and structurally characterized by 1H-NMR analysis. As expected, prevention of this reaction in histidine-containing maleoyl-peptides can be achieved by Nim-protection of the imidazole group. However, upon removal of this protection, the reaction takes place again, thus remarkably hampering the usefulness of the maleimide/thiol addition principle in conjugate chemistry for peptides. On the other hand this reaction could represent an interesting new approach for the design of cyclic peptidomimetic analogs.  相似文献   

8.
Bfl-1/A1 is generally recognized as a Bcl-2-related inhibitor of apoptosis. We show that Bfl-1 undergoes constitutive ubiquitin/proteasome-mediated turnover. Moreover, while Bfl-1 suppresses apoptosis induced by staurosporine or cytokine withdrawal, it is proapoptotic in response to tumor necrosis factor (TNF) receptor activation in FL5.12 pro-B cells. Its anti- versus proapoptotic effect is regulated by two proteolytic events: (1) its constitutive proteasome-mediated turnover and (2) its TNF/cycloheximide (CHX)-induced cleavage by mu-calpain, or a calpain-like activity, coincident with acquisition of a proapoptotic phenotype. In vitro studies suggest that calpain-mediated cleavage of Bfl-1 occurs between its Bcl-2 homology (BH)4 and BH3 domains. This would be consistent with the generation of a proapoptotic Bax-like BH1-3 molecule. Overall, our studies uncovered two new regulatory mechanisms that play a decisive role in determining Bfl-1's prosurvival versus prodeath activities. These findings might provide important clues to counteract chemoresistance in tumor cells that highly express Bfl-1.  相似文献   

9.
Previously, we reported that anti-apoptotic Bfl-1 is converted to a pro-apoptotic protein following fusion at its N-terminus with green fluorescent protein (GFP) (GFP-Bfl-1). In this study, we performed a Bfl-1 deletion study in order to elucidate the underlying mechanism of GFP-Bfl-1-induced cell death. We found that the Bcl-2 homology (BH) domains in Bfl-1 are dispensable with respect to cell death and that GFP fusion with the 29 amino acids of the C-terminal region of Bfl-1 (GFP-BC) is sufficient to induce cell death. Moreover, when BC was fused with other tagging partners like GST or MBP, little cell death was observed, implying that the GFP region is as important as the BC region for GFP-BC-induced cell death. Further deletion analysis defined a region of GFP as a determinant of GFP-BC-induced cell death. Confocal microscopic analysis showed that GFP-chimeras containing the BC region of Bfl-1 are located mainly in mitochondria. The GFP-BC-induced cell death accompanied cellular caspase activation, and treatment with the pan-caspase inhibitor, Boc-D-FMK, partially inhibited GFP-BC-induced cell death. However, the over-expression of anti-apoptotic molecules, such as Bcl-x(L) and CrmA, did not block GFP-BC-induced cell death. In summary, GFP-BC induces cell death with caspase activation through mitochondria dependent process.  相似文献   

10.
Ko JK  Choi KH  Kim HJ  Choi HY  Yeo DJ  Park SO  Yang WS  Kim YN  Kim CW 《FEBS letters》2003,551(1-3):29-36
Human Bfl-1 is an anti-apoptotic Bcl-2 family member. Here, we found that Bfl-1 was converted into a potent death-promoting protein by green fluorescent protein (GFP) fusion with its N-terminus. The transient expression of GFP-Bfl-1 induced cytochrome c release and triggered apoptosis in 293T cells, which depended on the mitochondrial localization of GFP-Bfl-1. Apoptosis induced by GFP-Bfl-1 was significantly blocked by the pan-caspase inhibitor carbobenzoxy-Val-Ala-Asp-fluoromethyl ketone, but was not blocked by either Bcl-xL or Bfl-1. Our findings provide a useful model for understanding the structural basis of Bcl-2 family proteins that act in an opposite way despite sharing structural similarity between anti-apoptotic and pro-apoptotic proteins.  相似文献   

11.
A new method for the preparation of ampicillin-BSA conjugate by a three step procedure was developed. The first step is the introduction of a maleimide residue to ampicillin by a cross-linking reagent, MBS. The second step is reductive cleavage of disulfide bonds in BSA. The third step is thioether formation between the introduced maleimide residues and the reduced thiol groups. The obtained ampicillin-BSA conjugated raised an anti-ampicillin serum in rabbits. A new reagent, MPGS, was used for enzyme labelling of ampicillin to avoid immunological cross reaction. Using the enzyme labelled ampicillin and anti-ampicillin serum, enzyme immunoassay of ampicillin was successful in detecting 4 ng to 1 mug. Cross reactivities of anti-ampicillin to ampicillin analogs were studied by the enzyme immunoassay to find that the antiserum is specific to penicillin especially to ampicillin but hardly reacts with cephalosporins or the penicilloic acid derivative of ampicillin.  相似文献   

12.
Unlike other antiapoptotic members of the Bcl-2 family, Bfl-1 does not contain a well defined C-terminal transmembrane domain, and whether the C-terminal tail of Bfl-1 functions as a membrane anchor is not yet clearly established. The molecular modeling study of the full-length Bfl-1 performed within this work suggests that Bfl-1 may co-exist in two distinct conformational states: one in which its C-terminal helix α9 is inserted in the hydrophobic groove formed by the BH1–3 domains of Bfl-1 and one with its C terminus. Parallel analysis of the subcellular localization of Bfl-1 indicates that even if Bfl-1 may co-exist in two distinct conformational states, most of the endogenous protein is tightly associated with the mitochondria by its C terminus in both healthy and apoptotic peripheral blood lymphocytes as well as in malignant B cell lines. However, the helix α9 of Bfl-1, and therefore the binding of Bfl-1 to mitochondria, is not absolutely required for the antiapoptotic activity of Bfl-1. A particular feature of Bfl-1 is the amphipathic character of its C-terminal helix α9. Our data clearly indicate that this property of helix α9 is required for the anchorage of Bfl-1 to the mitochondria but also regulates the antiapoptotic function Bfl-1.Apoptosis is a highly regulated process that plays a key role in maintaining cellular homeostasis, and a delicate balance between proapoptotic and antiapoptotic regulators of apoptosis pathways ensures the proper survival of cells in a variety of tissues. Imbalance between proapoptotic and antiapoptotic proteins occurs in diseases such as cancer, where an overexpression of antiapoptotic proteins endows cells with a selective survival advantage that promotes malignancy. Bcl-2 family members are essential regulators of the intrinsic apoptotic pathway, which act at the level of mitochondria as initiators of cell death (1). This family comprises nearly 20 proteins divided into three main groups. Antiapoptotic members such as Bcl-2, Bcl-xL, Bcl-w, Bfl-1, and Mcl-1 promote cell survival, whereas proapoptotic members such as Bax and Bak function as death effectors. The life and death balance is displaced in favor of cell death by proapoptotic BH3-only proteins such as Bim, Bad, Bid, Puma, and Noxa, which interact with antiapoptotic proteins and inactivate their function (2) or directly interact with and activate the Bax-like proteins (3).Distinct subcellular localizations of antiapoptotic members have been reported correlating with the accessibility of their C-terminal tail. The C-terminal tail of the antiapoptotic proteins Bcl-2, Bcl-xL, and Bcl-w possess a hydrophobic region known to be a membrane anchor domain. Thus, Bcl-2 localizes to mitochondria as well as to the endoplasmic reticulum and nuclear membranes (4, 5, 6), and deletion of its C-terminal amino acids abrogates its targeting to the outer mitochondrial membrane (7). In contrast, in healthy cells, Bcl-xL and Bcl-w localize mainly in the cytosol because their C-terminal tails are sequestered. Bcl-xL exists as a homodimer through the exchange of the C-terminal tail bound in the hydrophobic groove of the reciprocal dimer partner (8), whereas the C-terminal tail of Bcl-w occupies its own hydrophobic groove in the monomer form (9, 10). It has been proposed that, following apoptotic stimuli, interaction of the BH3 domain from BH3-only proteins with the hydrophobic groove of Bcl-w or Bcl-xL liberates their C-terminal tail and then the two proteins translocate to the mitochondria (8, 11).Unlike Bcl-2, Bcl-xL, and Bcl-w, Bfl-1 and its murine homolog, A1, do not contain a well defined C-terminal transmembrane domain (12, 13). C-terminal ends of these two proteins are similar and contain several hydrophilic residues that interrupt their putative transmembrane hydrophobic domain. Whether the C-terminal tail of Bfl-1 functions as a membrane anchor remains to be clarified. Immunofluorescence analyses in an earlier study have shown that overexpressed human Bfl-1 is predominantly localized in the endoplasmic/nuclear envelope regions (14). Then, recent independent studies, with Bfl-1-overexpressing cells, suggested that Bfl-1 localizes to the mitochondria (15, 16, 17) and that the C-terminal end of Bfl-1 is important for anchoring Bfl-1 to the mitochondria due to GFP-Bfl-1 being associated to the mitochondria, whereas GFP-Bfl-1, devoid of its C-terminal tail, also localizes in the cytosol (16, 18). However, localization of endogenous Bfl-1 has never been investigated. In this study, we present a molecular modeling study of full-length Bfl-1 (FL-Bfl-1), based on the crystal structure of a truncated form of Bfl-1 (residues 1–149) in complex with the BIM-BH3 peptide (Protein Data Bank code 2VM6).4 Our model suggests that Bfl-1 may co-exist in two distinct conformational states, the first one with its C-terminal helix α9 (residues 155–175) inserted in the hydrophobic groove formed by the BH1–3 domain of Bfl-1, and the second one with its C-terminal tail. Interestingly, helical wheel projection of the C-terminal helix of Bfl-1 highlights its amphipathic character, a feature of transmembrane helices or membrane anchors. These observations incited the reinvestigation of the subcellular localization of Bfl-1 in both malignant B cell lines and peripheral blood lymphocytes (PBLs).5 We demonstrate here that endogenous Bfl-1 is preferentially anchored to the mitochondria in malignant B cell lines but also in healthy PBLs. Moreover, we show that both the anchorage of Bfl-1 to the mitochondria and the anti-apoptotic function of the protein are dependent on the amphipathic nature of the C-terminal helix.  相似文献   

13.
Various reaction intermediates of sarcoplasmic reticulum Ca2+,Mg2+-ATPase were stabilized and accumulated by modifying a specific SH group or by using nucleotide analogs. Conformational changes of the Ca2+,Mg2+-ATPase during the catalytic cycle were studied in the stabilized intermediates by the use of fluorescent and spin probes, which were introduced at specific SH groups of ATPase, namely one highly reactive but functionally nonessential (SHN) and one essential for the decomposition of the E-P intermediate (SHD) [Kawakita, M., et al. (1980) J. Biochem. 87, 609-617]. The fluorescence intensity of N-(7-dimethylamino-4-methyl-3-coumarinyl)maleimide attached to SHD decreased by 2.5% upon addition of 10 microM AMP-P(NH)P provided that Ca2+ was also present. The AMP-P(NH)P-induced fluorescence change could also be detected by using other fluorescent probes such as N-[p-(2-benzimidazolyl)phenyl]maleimide and N-(1-anilinonaphthyl-4)maleimide. Moreover, labeling at SHN gave similar results. When SHN was labeled with N-[p-(2-benzimidazolyl)phenyl]maleimide, the fluorescence intensity also decreased by 2.5% upon addition of ATP only in the presence of Ca2+, where E-P formation took place. A conformational difference between ECa1-P X ADP and ECa1-P was suggested from saturation transfer ESR measurement of spin-labeled ATPase by using ADP beta S as an ADP analog to cause accumulation of ECa1-P X ADP beta S complex. Possible structural similarities among some of the intermediates are discussed based on these findings.  相似文献   

14.
15.
Mast cells are best known for their role in allergic reactions, where aggregation of FcεRI leads to the release of mast cell mediators causing allergic symptoms. The activation also induces a survival program in the cells, i.e., activation-induced mast cell survival. The aim of the present study was to investigate how the activation-induced survival is mediated. Cord blood-derived mast cells and the mast cell line LAD-2 were activated through FcεRI crosslinking, with or without addition of chemicals that inhibit the activity or expression of selected Bcl-2 family members (ABT-737; roscovitine). Cell viability was assessed using staining and flow cytometry. The expression and function of Bcl-2 family members BFL-1 and MCL-1 were investigated using real-time quantitative PCR and siRNA treatment. The mast cell expression of Bfl-1 was investigated in skin biopsies. FcεRI crosslinking promotes activation-induced survival of human mast cells and this is associated with an upregulation of the anti-apoptotic Bcl-2 family member Bfl-1. ABT-737 alone or in combination with roscovitine decreases viability of human mast cells although activation-induced survival is sustained, indicating a minor role for Bcl-X(L), Bcl-2, Bcl-w and Mcl-1. Reducing BFL-1 but not MCL-1 levels by siRNA inhibited activation-induced mast cell survival. We also demonstrate that mast cell expression of Bfl-1 is elevated in birch-pollen-provocated skin and in lesions of atopic dermatitis and psoriasis patients. Taken together, our results highlight Bfl-1 as a major effector in activation-induced human mast cell survival.  相似文献   

16.
C S Lai  N M Tooney  E G Ankel 《FEBS letters》1984,173(2):283-286
The local environment of the free sulfhydryl groups in plasma fibronectin has been investigated by ESR techniques using a series of maleimide spin labels, varying in chain length between the maleimide and nitroxide free radical groups. Chemical modification with these analogs does not affect either the CD spectra or the cell adhesion activity of the protein molecule. The ESR results show that the free sulfhydryl group of plasma fibronectin is in a cleft about 10.5 A in length. The significance of this finding is discussed.  相似文献   

17.
18.
DNA-damaging agents can induce premature senescence in cancer cells, which contributes to the static effects of cancer. However, senescent cancer cells may re-enter the cell cycle and lead to tumor relapse. Understanding the mechanisms that control the viability of senescent cells may be helpful in eliminating these cells before they can regrow. Treating human squamous cell carcinoma (SCC) cells with the anti-cancer compounds, resveratrol and doxorubicin, triggered p53-independent premature senescence by invoking oxidative stress-mediated DNA damage. This process involved the mTOR-dependent phosphorylation of SIRT1 at serine 47, resulting in the inhibition of the deacetylase activity of SIRT1. SIRT1 phosphorylation caused concomitant increases in p65/RelA NF-κB acetylation and the expression of an anti-apoptotic Bfl-1/A1. SIRT1 physically interacts with the mTOR-Raptor complex, and a single amino acid substitution in the TOS (TOR signaling) motif in the SIRT1 prevented Ser-47 phosphorylation and Bfl-1/A1 induction. The pharmacologic and genetic inhibition of mTOR, unphosphorylatable S47A, or F474A TOS mutants restored SIRT1 deacetylase activity, blocked Bfl-1/A1 induction, and sensitized prematurely senescent SCC cells for apoptosis. We further show that the treatment of UVB-induced SCCs with doxorubicin transiently stabilized tumor growth but was followed by tumor regrowth upon drug removal in p53(+/-)/SKH-1 mice. The subsequent treatment of stabilized SCCs with rapamycin decreased tumor size and induced caspase-3 activation. These results demonstrate that the inhibition of SIRT1 by mTOR fosters survival of DNA damage-induced prematurely senescent SCC cells via Bfl-1/A1 in the absence of functional p53.  相似文献   

19.
Methods for screening protein-protein interactions are useful in protein science and for the generation of drug leads. We set out to develop a simplified assay to rapidly test protein-protein interactions, with a library of 400 pentapeptides comprising the 20 natural amino acids at two variable positions followed by three glycines (NH2-X1X2GGG). The library was used to identify the epitope of monoclonal antibody (mAb) 10D11 directed against the HOXD4 protein. Three pentapeptide 'hits' were selected (VYGGG, PWGGG and WKGGG) from direct binding assays screening for pentapeptide-mAb interactions; and from assays using pentapeptides in solution to competitively block HOXD4-mAb interactions. Alignment of the three 'hit' pentapeptides to the HOXD4 sequence predicts the mAb 10D11 epitope as NH2-VYPWMK. Synthesis of NH2-VYPWMK hexapeptide confirmed this prediction; and an alanine scan of HOXD4 ablated binding by mAb 10D11 when amino acids in the putative epitope were mutated. We propose that these simplified but diverse libraries can be used for rapid epitope mapping of some mAbs, and for generating lead small peptide analogs that interfere with receptor-ligand or other protein-protein interactions, or with enzymatic activity.  相似文献   

20.
Peloruside A, a microtubule-stabilising agent from a New Zealand marine sponge, inhibits mammalian cell division by a similar mechanism to that of the anticancer drug paclitaxel. Wild type budding yeast Saccharomyces cerevisiae (haploid strain BY4741) showed growth sensitivity to peloruside A with an IC(50) of 35μM. Sensitivity was increased in a mad2Δ (Mitotic Arrest Deficient 2) deletion mutant (IC(50)=19μM). Mad2 is a component of the spindle-assembly checkpoint complex that delays the onset of anaphase in cells with defects in mitotic spindle assembly. Haploid mad2Δ cells were much less sensitive to paclitaxel than to peloruside A, possibly because the peloruside binding site on yeast tubulin is more similar to mammalian tubulin than the taxoid site where paclitaxel binds. In order to obtain information on the primary and secondary targets of peloruside A in yeast, a microarray analysis of yeast heterozygous and homozygous deletion mutant sets was carried out. Haploinsufficiency profiling (HIP) failed to provide hits that could be validated, but homozygous profiling (HOP) generated twelve validated genes that interact with peloruside A in cells. Five of these were particularly significant: RTS1, SAC1, MAD1, MAD2, and LSM1. In addition to its known target tubulin, based on these microarray 'hits', peloruside A was seen to interact genetically with other cell proteins involved in the cell cycle, mitosis, RNA splicing, and membrane trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号