首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activities of potato nucleotide pyrophosphatase and cyclic nucleotide phosphodiesterase against a common substrate, p-nitrophenyl thymidine 5-phosphate and its histochemical analogue, AS-BI-naphthyl thymidine 5-phosphate, were determined with the aid of relatively specific inhibitors, NAD and 2,3-cAMP, respectively. These inhibitors were utilized to reexamine wheat (Triticum aestivum L. cv. Mironovska 808) seeds and 3–5-d old shoots for the occurrence and histochemical localization of nucleotide pyrophosphatase, and to establish the localization of cyclic nucleotide phosphodiesterase. Nucleotide pyrophosphatase is a cytoplasmic enzyme found to be particularly active in the coleoptile epidermis and hypodermis, leaf mesophyll, as well as in developing fibres and phloem. Cyclic nucleotide phosphodiesterase is also a cytoplasmic enzyme active in the shoot vascular bundles, particularly the xylem, and in the seed. Within the seed it is highly active in the crushed cell layer adjacent to the scutellum and in endosperm cells adjacent to the aleurone layer. Within the embryo, cyclic nucleotide phosphodiesterase is most active in epithelial cells adjacent to the crushed cell layer, the suspensor, radicle and root-cap, as well as in the pro-vascular tissues of the scutellum.  相似文献   

2.
The localization of acid phosphatase (EC 3.1.3.2) in aleurone layers of barley (Hordeum vulgare L. cv. Himalaya) grains was studied. Phosphatase (EC 3.1.3.26) activity, assayed with phytic acid as the substrate, is present in the dry grain at low leveis and increases during incubation in H2O at 25°C for three days. When aleurone layers are isolated from imbibed grain and incubated for 18 h in buffer with or without 50 μM gibberellic acid (GA3), the level of extractable phosphatase activity increases two- to threefold, and phosphatase is released into the medium. GA, promotes the release of phosphatase activity: aleurone layers incubated in GA, release twice as much phosphatase as layers incubated in buffer. Nine isoenzymes of phosphatase are found in aleurone layers of barley by non-denaturing polyacrvlamide gel electropho-resis. Six of these forms, isoenzymes 1,2,3,5,6 and 8, can be extracted from dry tissue, and after three days of imbibition in H2O an additional isoenzyme, isoenzyme 9, is found in aleurone extracts. When isolated aleurone layers are incubated for a further 22 h in buffer with or without GA3, isoenzyme 7 is found and yet another form, isoenzyme 4, is found in layers incubated in GA3. Eight isoenzymes are released from aleurone layers into the incubation medium. Isoenzymes 5 and 6 are released in buffer both with and without GA3, even when cycloheximide is present; cycloheximide inhibits the release of the other isoenzymes. Isoenzymes 1-4, 7 and 8, on the other hand, are secreted into the incubation medium only when GA3, is present. Isoenzyme 9 is not released into the incubation medium. Acid phosphatase activity was localized in aleurone tissue using cytochemical, cell fractionation, and enzymatic methods. Cytochemical localization of ATPase (EC 3.6.1.8) in aleurone tissue showed the presence of enzyme activity in cell wall, protein bodies, endoplasmic reticulum, Golgi apparatus, and mitochondria. Analysis of organelle fractions isolated by density gradient centrifugation showed that the activity of acid phosphatase isoenzymes 1, 2 and 3 was prominently associated with the phytin globoid of protein bodies, and analysis of the activity released from the cell wall by enzymatic digestion showed that it was almost exclusively isoenzymes 5 and 6.  相似文献   

3.
R. L. Jones 《Protoplasma》1987,138(2-3):73-88
Summary The cytochemical localization of adenosine triphosphatase (ATPase) was studied in the aleurone layer of barley (Hordeum vulgare L. cv. Himalaya). Isolated barley aleurone layers secrete numerous enzymes having acid phosphatase activity, including ATPase. The secretion of these enzymes was stimulated by incubation of the aleurone layer in gibberellic acid (GA3). ATPase was localized using the metal-salt method in tissue incubated in CaCl2 with and without GA3. In sections of tissue incubated without GA3, cytochemical staining was confined to a narrow band of cytoplasm adjacent to the starchy endosperm and to the cell wall of the innermost tier of aleurone cells. Cytochemical staining was absent from the organelles of tissues not treated with GA3. In tissue incubated in the presence of GA3, cytochemical staining was evident throughout the cytoplasm and cell walls of the tissue. In the cell wall, electron-dense deposits were found only in digested channels. The cell-wall matrix of GA3-treated aleurone did not stain, indicating that it does not permit diffusion of enzyme. In the cytoplasm of GA3-treated aleurone, all organelles except microbodies, plastids, and spherosomes stained for ATPase activity; endoplasmic reticulum (ER), Golgi apparatus, and mitochondria showed intense deposits of stain. The ER of the aleurone is a complex system made up of flattened sheets of membrane, which may be associated with both the Golgi apparatus and the plasma membrane. The dictyosome did not stain uniformly for ATPase activity; rather there was a gradation in staining of the cisternae from thecis (lightly stained) to thetrans (heavily stained) face. Vesicles associated with dictyosome cisternae also stained intensely as did the protein bodies of GA3-treated aleurone cells.  相似文献   

4.
Polyadenylated mRNA was purified from the aleurone cells of Cyamopsis tetragonoloba (guar) seeds germinated for 18 h and used for the construction of a cDNA library. Clones with the -galactosidase encoding gene were identified using oligo-nucleotide mixed probes based on the NH2 terminal amino acid sequence and on the sequence of an internal peptide. The nucleotide sequence of the cDNA clone showed that the enzyme is synthesized as a precursor with a 47 amino acid NH2 terminal extension. This pre-sequence most likely functions to target the protein outside the aleurone cells into the endosperm. Based upon structural features, it is proposed to divide the precursor into a pre-(signal sequence) part and a glycosylated pro-part comparable with those of the yeast mat A/ factor and killer factor. A comparison of the derived amino acid sequence of this -galactosidase from plant origin revealed significant stretches of homology with respect to the amino acid sequences of the enzymes from Saccharomyces cerevisiae and from human origin but only to a minor extent compared with the -galactosidase from Escherichia coli.  相似文献   

5.
A metal-salt precipitation method with p-nitrophenyl phosphate as substrate has been used to localize in the electron microscope acid phosphatase activity in isolated aleurone layers of barley (Hordeum vulgare L.), treated for 16 h in the presence or absence of gibberellic acid (GA3). The paper confirms results obtained earlier with an azo-dye precipitation method of enzyme localization. In addition the results show for the first time that in GA3-treated tissue enzyme activity is associated with the endoplasmic reticulum (ER), there being reaction product deposited in the ER cisternae. It is suggested that this activity represents new enzyme synthesized on ER in response to GA3 and probably destined for secretion.Abbreviation ER endoplasmic reticulum  相似文献   

6.
Acid and alkaline phosphatase activities were evaluated using batch fermenter cultues ofPenicillium citrinum, an organism used in studies of fungal functioning in soil. Fungal activity was assessed by monitoring rates of O2 utilization, glucose utilization, dry weight changes over time, and lengths of FDA-stained hyphae. At low growth rates (7 g dry wt increases·h–1·ml–1) and low culture activity, phosphatase activity at both pH 8.5 and 5.5 tended to decrease with culture age, with the exception that phosphatase activity at pH 8.5 peaked during early stationary phase. At higher growth rates (25 g dry wt increase·h–1·ml–1) and high culture activity, phosphatase activity tended to remain constant throughout the course of the experiment. The relationship between phosphatase activity and other measures of fungal activity was consistent only at low growth rates for acid phosphatase. These results suggest that phosphatase measurements will be of limited utility in assessing activity, except at low growth rates.  相似文献   

7.
The tannins chebulinic acid or tara tannin were added to an incubation system in which GA3 induces enzyme synthesis in endosperm half seeds of barley (Hordeum vulgare L.). The activity of amylase and acid phosphatase in the incubation medium was reduced compared to the activity in the medium after incubation with GA3 alone. When embryo half seeds of barley were incubated with chebulinic acid or tara tannin in the absence of added GA3, the enzyme activity of the incubation medium was also reduced. The activity of preformed enzymes obtained from endosperm half seeds previously induced with GA3 was not reduced by the addition of tannin. Comparisons were made of the amount of enzyme activity from breis of aleurone layers incubated with GA3 in the presence and absence of tannins. The amounts of activity were relatively small and approximately equal in both cases, indicating that secretion from the aleurone was not blocked by the tannins. The reduction of enzyme activity caused by tannins in both endosperm and embryo half seeds could be completely reversed by the addition of GA3.  相似文献   

8.
I. D. Bowen  J. A. Bryant 《Protoplasma》1978,97(2-3):241-250
Summary p-Nitrophenyl phosphatase activity was cytochemically demonstrated within protein bodies, cell walls and the cell-wall cytoplasmic interface in storage cells of germinating pea seeds. The activity associated with the cell wall increased over the initial period of germination and seedling growth. All enzymatically active components atpH 5.0 were found to represent acid phosphatase, since they were inhibited by sodium fluoride and survived treatment with 1-p-bromotetramisole and ouabain. The relevance of these observations to biochemical data is discussed.  相似文献   

9.
Cereal endosperm is a model system for cell fate determination in plants. In wild-type plants the outermost endosperm cells adopt aleurone cell fate, while all underlying cells display starchy endosperm cell fate. Mutant analysis showed that cell fate is determined by position rather than lineage. To further characterise the precise cell fate of the outermost cells, we performed a differential screen and isolated the novel marker gene Vpp1. It encodes a vacuolar H+-translocating inorganic pyrophosphatase (V-PPase) and is mainly expressed in kernels, leaves and tassels. In kernels, its expression is restricted to the aleurone layer with the maximum of expression shifting from the adaxial to the abaxial side during early stages. Together with three other marker genes Vpp1 was then used to analyse the cell fate of the outermost cells in Dap3, Dap7, cr4 and dek1 mutants, all of which have aberrant aleurone layers. In the Dap3 and Dap7 mutants the Vpp1 and Ltp2 markers but not the A1 and Zein markers were expressed in patches without aleurone indicating that the outermost cells had some but not all features of aleurone cells and did not simply adopt starchy endosperm cell fate. A similar result was obtained in the cr4 mutant, although Ltp2 expression was less generalised. In other Dap7 patches characterised by multiple aleurone-like cell layers the expression of Vpp1 and Ltp2 confirmed the aleurone cell fate of the cells in the additional cell layers. The analysis of dek1 mutants confirmed the starchy endosperm cell fate of the majority but not all outermost cells. Based on these data we propose a model suggesting a stepwise commitment to aleurone cell fate. Sequential steps are marked by the expression of Vpp1, the expression of Ltp2, the acquisition of a regular shape and thick walls and finally pigmentation coupled with A1 expression.  相似文献   

10.
The effects of GA3 and/or ABA on the α-amylase activity and the ultrastructure of aleurone cells in halves of seeds without embryos (embryo-less half seeds) of oats (Avena sativa L.) were studied. α-Amylase activity was detected by the starch-agar gel method in the aleurone layers of embryo-less half seeds soaked in 1 μM GA3 solution or 100 μM GA3+10 μM ABA solution but not in those of seeds soaked in distilled water, 10 μM ABA solution, or 1 μM GA3+10 μM ABA solution. Ultrastructural examinations of aleurone cells with α-amylase activity showed a decrease in the number of sphaerosomes, the appearance of flattened saccules pressed to the surface of aleurone grains, and the development and transformations of the rER from a slender form to the one with wide inner spaces. In the aleurone cells in which the enzyme activity was not detected, components of the rER showed only slender profiles. The number of sphaerosomes did not decrease, and no flattened saccules appeared in the aleurone cells treated with 10 μM ABA or 1 μM GA3+10 μM ABA.  相似文献   

11.
Isolated wheat (Triticum aestivum var. Potam) aleurone layers have a high capacity to acidify their environment, and secrete hydrolytic enzymes (endoxylanase, glucanase, α-amylase, proteases, etc.) under the control of GA3. Acidic pH and xylanases are found to be essential for cell wall relaxation in growing tissues, but aleurone is a non-growing, non-dividing tissue. In this tissue, we studied the effect of these loosening factors on aleurone cell walls.Exposure to pH 3.0 caused the release of carbohydrates and calcium ions from the pericarp, and a small amount of carbohydrates, mainly polysaccharides, from aleurone layers from which pericarp tissue had been removed. 50 percnt; of the total sugars released into the incubation medium by these isolated aleurone tissue was arabinose, but no xylose, calcium ions, or phenolic compounds were found. Acid preincubation decreased by 30 percnt; the susceptibility of aleurone cell walls to degradation by exogenously-applied endoxylanase, and also modified the architecture of cell wall as observed by autofluorescence of phenolic groups. These findings suggest that acid treatment and endoxylanase action, rather than having a loosening effect on aleurone cell wall, can have an opposite effect, increasing the resistance of aleurone cell walls to loosening.  相似文献   

12.
Lignin is an integral constituent of the primary cell walls of the dark-grown maize (Zea mays L.) coleoptile, a juvenile organ that is still in the developmental state of rapid cell extension. Coleoptile lignin was characterized by (i) conversion to lignothiolglycolate derivative, (ii) isolation of polymeric fragments after alkaline hydrolysis, (iii) reactivity to antibodies against dehydrogenative polymers prepared from monolignols, and (iv) identification of thioacidolysis products typical of lignins. Substantial amounts of lignin could be solubilized from the coleoptile cell walls by mild alkali treatments. Thioacidolysis analyses of cell walls from coleoptiles and various mesocotyl tissues demonstrated the presence of guaiacyl-, syringyl- and (traces of)p-hydroxyphenyl units besidesp-coumaric and ferulic acids. There are tissue-specific differences in amount and composition of lignins from different parts of the maize seedling. Electron-microscopic immunogold labeling of epitopes recognized by a specific anti-guaiacyl/syringyl antibody demonstrated the presence of lignin in all cell walls of the 4-d-old coleoptile. The primary walls of parenchyma and epidermis were more weakly labeled than the secondary wall thickenings of tracheary elements. No label was found in middle lamellae and cell corners. Lignin epitopes appeared first in the tracheary elements on day 2 and in the parenchyma on day 3 after sowing. Incubation of coleoptile segments in H2O2 increased the amount of extractable lignin and the abundance of lignin epitopes in the parenchyma cell walls. Lignin deposition was temporally and spatially correlated with the appearance of epitopes for prolinerich proteins, but not for hydroxyproline-rich proteins, in the cell walls. The lignin content of coleoptiles was increased by irradiating the seedlings with white or farred light, correlated with the inhibition of elongation growth, while growth promotion by auxin had no effect. It is concluded that wall stiffness, and thus extension growth, of the coleoptile can be controlled by lignification of the primary cell walls. Primary-wall lignin may represent part of an extended polysaccharide-polyphenol network that limits the extensibility of the cell walls.Abbreviations G, S, H guaiacyl, syringyl andp-hydroxyphenyl constituents of lignin - HRGP hydroxyproline-rich glycoprotein - LTGA lignothioglycolic acid - PRP proline-rich protein Dedicated to Professor Benno Parthier on occasion of his 65th birthdayDeceased 7 November 1996  相似文献   

13.
The temporal, nonconcerted development of activities of malate synthase (MS), isocitrate lyase (ICL), and catalase (Cat) was explored in more detail in maturing and germinated cotton (Gossypium hirsutum L.) seeds. RNA was extracted at six intervals beginning at 17 days post anthesis (DPA) through 72 hours post imbibition (HPI). In vitro translations revealed that mRNAs for each enzyme were translatable at all intervals. Enzyme activities and immunoselected proteins also were found at all intervals. Similar specific activities throughout maturation indicated that embryo cells were not accumulating inactive protein. The steady-state level of mRNAs encoding each enzyme exhibited different patterns of change during seed maturation, and each peaked at least 24 h before peak enzyme activities in germinated seeds. All three enzymes occur together as early as 17 DPA in a coordinate manner; however, the subsequent, nonconcerted increases in protein, activity, and mRNA for each enzyme indicate that developmental expression in cotton seed embryos is regulated in a noncoordinate fashion by as yet unidentified specific control mechanism(s).Abbreviations ABA abscisic acid - bp base pairs - DPA days post anthesis - HPI hours post imbibition - kb kilobase (pairs) - M r relative molecular weight - S Svedberg unit (10-13s)  相似文献   

14.
15.
Summary Aleurone layers of barley contain large amounts of a soluble oligosaccharide which was identified as sucrose (30–40 g/mg fresh weight). Treatment of the layers with gibberellic acid (GA3) causes the release of sucrose from the cells. This release requires the participation of metabolic processes, including protein synthesis. When embryoless half-seeds are incubated sucrose accumulates in the aleurone layers, but when seeds are germinated the sucrose content of the aleurone layers declines. Labeling experiments with radioactive glucose and fructose show that aleurone layers continuously synthesize sucrose and that the release, but not the synthesis of sucrose is enhanced by GA3.  相似文献   

16.
The single gene encoding limit dextrinase (pullulan 6-glucanohydrolase; EC 3.2.1.41) in barley (Hordeum vulgare) has 26 introns that range in size from 93 to 822 base pairs. The mature polypeptide encoded by the gene has 884 amino acid residues and a calculated molecular mass of 97,417 D. Limit dextrinase mRNA is abundant in gibberellic acid-treated aleurone layers and in germinated grain. Gibberellic acid response elements were found in the promoter region of the gene. These observations suggest that the enzyme participates in starch hydrolysis during endosperm mobilization in germinated grain. The mRNA encoding the enzyme is present at lower levels in the developing endosperm of immature grain, a location consistent with a role for limit dextrinase in starch synthesis. Enzyme activity was also detected in developing grain. The limit dextrinase has a presequence typical of transit peptides that target nascent polypeptides to amyloplasts, but this would not be expected to direct secretion of the mature enzyme from aleurone cells in germinated grain. It remains to be discovered how the enzyme is released from the aleurone and whether another enzyme, possibly of the isoamylase group, might be equally important for starch hydrolysis in germinated grain.  相似文献   

17.
The effects of gibberellic acid (GA3), kinetin (KIN), benzyladenine and ethylene (E) on mitotic activity and chromosomal aberrations in root tips of barley seeds (Hordeum vulgare L. cv. “Bülbül 89”) germinated under salt stress were investigated. It was determined that all of these plant growth regulators (PGRs) decreased mitotic index in root tips of barley seeds germinated at 20 °C and in distilled water. Furthermore, some of the PGRs studied increased significantly the frequency of chromosomal aberrations. The frequency of chromosomal aberrations in seeds treated with E and KIN was considerably higher than in the seeds germinated under nonstress conditions. The inhibitory effect of salt stress on mitotic index increased with increasing salt concentration (0.30, 0.35, 0.40 and 0.45 molal, m). GA3 and KIN pretreatments showed a successful performance in ameliorating the negative effects of increasing salinity on mitotic activity. The number of chromosomal aberrations also increased with increasing NaCl concentration. However, most of the PGR pretreatments studied alleviated the detrimental effects of increasing salinity on chromosomal aberrations. KIN pretreatment at 0.30 and 0.35 m salinity could not rescued the cytogenetic activity of salt stress on this parameter.  相似文献   

18.
Philippe S  Tranquet O  Utille JP  Saulnier L  Guillon F 《Planta》2007,225(5):1287-1299
A polyclonal antibody has been raised against ferulic acid ester linked to arabinoxylans (AX). 5-O-feruloyl-α-l-arabinofuranosyl(1→4)-β-d-xylopyranosyl was obtained by chemical synthesis, and was coupled to bovine serum albumin for the immunization of rabbit. The polyclonal antibody designated 5-O-Fer-Ara was highly specific for 5-O-(trans-feruloyl)-l-arabinose (5-O-Fer-Ara) structure that is a structural feature of cell wall AX of plants belonging to the family of Gramineae. The antibody has been used to study the location and deposition of feruloylated AX in walls of aleurone and starchy endosperm of wheat grain. 5-O-Fer-Ara began to accumulate early in aleurone cell wall development (beginning of grain filling, 13 days after anthesis, DAA) and continued to accumulate until the aleurone cells were firmly fixed between the starchy endosperm and the nucellus epidermis (19 DAA). From 26 DAA to maturity, the aleurone cell walls changed little in appearance. The concentration of 5-O-Fer-Ara is high in both peri- and anticlinal aleurone cell walls with the highest accumulation of 5-O-Fer-Ara at the cell junctions at the seed coat interface. The situation is quite different in the starchy endosperm: whatever the stage of development, a low amount of 5-O-Fer-Ara epitope was detected. Contrary to what was observed for aleurone cell walls, no peak of accumulation of feruloylated AX was noticed between 13 and 19 DAA. Visualization of labelled Golgi vesicles suggested that the feruloylation of AX is intracellular. The distribution of (5-O-Fer-Ara) epitope is further discussed in relation to the role of ferulic acid and its dehydrodimers in cell wall structure and tissue organization of wheat grain.  相似文献   

19.
Metaphloem sieve elements ofSelaginella willdenowii are elongated cells with slightly oblique or transverse end walls. Pores are seen on both lateral and end walls, although they are more numerous on the latter. Parenchyma cells exhibiting strong enzyme activities (acid phosphatase, non specific esterase, succinate dehydrogenase, cytochrome oxidase, peroxidase) are present between sieve elements and tracheids in each vascular bundle. A functional association thus appears to exist between these parenchyma cells and the conducting elements.—The occurrence of transverse to slightly oblique end walls in sieve elements seems to characterize the ligulate Lycopsids (as opposed to the aligulateLycopodium where sieve elements possess slanting, very oblique, end walls).
  相似文献   

20.
Summary Enzymatic levels and subcellular localization of malate synthase in maturing seeds of castor bean (Ricinus communis cv. Hale) are reported. Extracts of maturing seeds exhibited moderately high specific activity (9.68 nmoles/min/mg protein) at 15–20 DAP and lower specific activity (0.49) in mature, dry seeds. Subcellular localization of the enzyme during seed maturation was primarily cytosolic (85%). The remainder of the activity in sucrose gradients was located at high density (1.21 g/cm3). Dry seeds did not contain organelle-bound malate synthase activity. In extracts of 4-day germinated seeds the enzyme was present at high specific activity (12.8 nmoles/min/mg protein) with better than 85% of the total activity in glyoxysomes (1.24 g/cm3).Two polypeptides, 62kDa and 66kDa, reactive with anti-malate synthase were detected at high density in sucrose gradients of homogenates of late-maturing seeds (60 DAP); dry seeds; and seeds imbibed for 6 h. One polypeptide, 62 kDa, in 4-day germinated seeds, reacted with anti-malate synthase. Immunoreactive polypeptides in late-maturing and dry seeds were present at approximately 1/760 of the level found in 4-day germinated seeds. We conclude that malate synthase activity is prominent during early seed maturation but is very low and minimally compartmentalized during late maturation. The rapidly sedimenting immunoreactive polypeptides from dry seeds are enzymatically inactive and are presumed to be of no physiological significance.Abbreviations DAP days after pollination - MS malate synthase - EDTA ethylenediamine tetraacetic acid - SDS sodium dodecylsulfate - PAGE polyacrylamide gel electrophoresis - BSA bovine serum albumin - IgG gamma globulin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号