首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of thyroidectomy (Tx) and subsequent treatment with 3,5,3′-triiodothyronine (T3) or combined replacement therapy (TR) with T3 and thyroxine (T4) on the substrate and temperature kinetics properties of Na+,K+-ATPase and lipid/phospholipid makeup of rat kidney microsomes were examined. Enzyme activity was somewhat high in the hypothyroid (Tx) animals and increased significantly following T3 treatment, while TR treatment caused a decrease. In the Tx and T3 groups enzyme activity resolved in two kinetic components, while in the TR group the enzyme showed allosteric behavior up to 0.5 mm ATP concentration. The K m and V max values of both the components decreased in Tx animals without affecting the catalytic efficiency. T3 treatment caused a significant increase in the V max of both the components, with a significant increase in the catalytic efficiency, while the K m values were not upregulated. The TR regimen lowered the K m and V max of component II but improved the catalytic efficiency. Thyroid status-dependent changes were also noted in the temperature kinetics of the enzyme. Regression analysis revealed that changes in the substrate and temperature kinetics parameters correlated with specific phospholipid components.  相似文献   

2.
Early and late effects of alloxan diabetes and subsequent treatment with insulin on the temperature kinetics properties of succinate oxidase (SO) activity in rat kidney mitochondria were examined. In diabetic animals SO activity increased significantly and the increase was more pronounced at the late stage. Insulin treatment partially restored SO activity. However, the effect was temperature-dependent. In diabetic animals the energy of activation in the low temperature range (EL) increased significantly while that in the high temperature range (EH) decreased. The latter seems to be responsible for improving catalytic efficiency in the diabetic state. Insulin treatment normalized EH only in the 1-month diabetic group. The phase transition temperature (Tt), decreased in diabetic animals. Insulin treatment caused an increase beyond the control value in Tt in 1-month diabetic animals. The results suggest that insulin status-dependent modulation of SO activity is a complex process.  相似文献   

3.
Belgian endive (Cichorium intybus) was genetically transformed usingAgrobacterium rhizogenes to insert wild type root-inducing, leftward, transferred DNA (Ri TL-DNA) into the nuclear genome. Transformed root cultures gave rise to plants (R0 generation) having the transformed phenotype described for other species, including increased branching, sterility, annual flowering and wrinkled leaves. Transformation circumvented the need for vernalization in order to flower, but not the need for inductive day length. Progeny (R1 generation) were analysed by molecular hybridization and phenotypes were characterized relative to normal controls and to the R0 generation. The extent of the T l -DNA varied among siblings, with restriction fragmentEco R1 15, containing open reading frames 10, 11 and 12 (rol A, B and C), segregating as a single insertion. Phenotypic alterations in these plants indicate that the transformed phenotype in endive is at least partially due to the genes carried on theEco R1 fragment 15.  相似文献   

4.
Summary After co-cultivation of diploid Nicotiana plumbaginifolia protoplasts with an octopine-type Agrobacterium tumefaciens strain (LBA 4013) putative transformants were selected for hormone-independent growth, and were tested for T-DNA markers. The number of transformants expressing only TL-DNA markers, i.e. phytohormone autotrophy and octopine synthase, was an order of magnitude higher than that of the cell lines which were simultaneously positive for both TL- and TR-DNA markers (the latter being mannopine and agropine). In one transformant, line no. 101, only the TR-DNA markers were found. Not each of the TL-, or TR-DNA markers were expressed in each transformant resulting in a variety of phenotypes. It included the unorganized or the shoot-teratoma type of growth combined with the presence or absence of opines; e.g. agropine was absent from some of the transformants containing its precursor, mannopine. 5-Azacytidine did not induce agropine synthesis in these lines. Southern blot analysis showed that the TR-DNA region coding for agropine synthesis was rearranged or absent in one of these lines. Similar variation in the expression of agropine and mannopine production was observed in transformants obtained with the leucinopine-type strain A281.From line 101 plants could be easily regenerated with the ability to synthesize agropine and mannopine. The segregation in the self-progeny fitted to a 3:1 ratio, indicating that the TR-DNA was carried by a single chromosome. The Southern blot analysis showed that only opine-positive plants contained TR-DNA. It also confirmed the absence of the TL-DNA, demonstrating the independent integration of the TR-region of the octopine-type Ti plasmid pTi Ach5.  相似文献   

5.
C. Fu    D. Li    W. Hu    Y. Wang  † Z. Zhu   《Journal of fish biology》2007,70(2):347-361
The growth and energy budget for F2‘all‐fish’ growth hormone gene transgenic common carp Cyprinus carpio of two body sizes were investigated at 29·2° C for 21 days. Specific growth rate, feed intake, feed efficiency, digestibility coefficients of dry matter and protein, gross energy intake (IE), and the proportion of IE utilized for heat production (HE) were significantly higher in the transgenics than in the controls. The proportion of IE directed to waste products [faecal energy (FE) and excretory energy loss (ZE+UE) where ZE is through the gills and UE through the kidney], and the proportion of metabolizable energy (ME) for recovered energy (RE) were significantly lower in the transgenics than in the controls. The average energy budget equation of transgenic fish was as follows: 100 IE= 19·3 FE+ 6·0 (ZE+UE) + 45·2 HE+ 29·5 RE or 100 ME= 60·5 HE+ 39·5 RE. The average energy budget equation of the controls was: 100 IE= 25·2 FE+ 7·4 (ZE+UE) + 35·5 HE+ 31·9 RE or 100 ME= 52·7 HE+ 47·3 RE. These findings indicate that the high growth rate of ‘all‐fish’ transgenic common carp relative to their non‐transgenic counterparts was due to their increased feed intake, reduced lose of waste productions and improved feed efficiency. The benefit of the increased energy intake by transgenic fish, however, was diminished by their increased metabolism.  相似文献   

6.
The effect of thyroidectomy (Tx) and subsequent treatment with triiodothy-ronine (T3) on rat kidney mitochondrial oxidative phosphorylation was examined. Thyroidectomy resulted in lowering of state 3 respiration rates and cytochrome contents. Thyroidectomized animals administered with T3 (20 Μg/100 g body wt) resulted in the nonsynchronous stimulation of state 3 respiration rates in kidney mitochondria with glutamate, Β-hydroxybutyrate, succinate and ascorbate+TMPD as substrates. Cytoch-rome contents were also elevated differentially. Increase in the state 4 respiration rates was transient and reversible. However, primary dehydrogenases were not generally altered in the Tx and T3-treated Tx animals. The results thus indicate that the T3treatment to-Tx animals brings about differential and nonsynchronous increase in the respiratory parameters and respiratory chain components of kidney mitochondria.  相似文献   

7.
The partial phase diagram and the hydration properties of the 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE)-water system, in the absence and presence of 30 mol% cholesterol, have been investigated by solid state phosphorus NMR of the lipid and deuterium NMR of heavy water. The POPE-D2O phase diagram resembles other phosphatidylethanolamine (PE)-water systems: below water-to-lipid molar ratios (Ri) of 3 the lamellar gel (L or Lc)-to-hexagonal type II (HII) phase sequence is observed on increasing the temperature. For Ri3 the thermotropic sequence (L or Lc)-L-HII is detected. On increasing hydration from Ri=3, the HII phase is detected from 40°C to 85°C whereas the gel phase is observed from 40°C to 30°C. The limiting hydrations of the gel, L and HII phases are Ri 3, 17 and 20, respectively. The number of bound water molecules per lipid is ca. 8 in both the La and HII phases. The presence of cholesterol stabilizes the hexagonal phase 20°C below temperatures at which it is observed in its absence and reduces the limiting hydration of the fluid and hexagonal phases to Ri 9 and 14, respectively. The structure and/or dynamics of the water bound to the interface are markedly modified on going from the L to the HII phase.Abbreviations NMR Nuclear magnetic resonance - DDPE 1,2-Didodecyl-rac-glycerol-3-phosphoethanol-amine - DHPE 1,2-Dihexadecyl-sn-glycerol-3-phosphoethanol-amine - DOPE 1,2-Dioleoyl-sn-glycerol-3-phosphoethanol-amine - POPE 1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphoetha-nolamine - DAPE 1,2-Diarachinoyl-sn-glycerol-3-phosphoethanol-amine - DMPC 1,2-Dimyristol-sn-glycerol-3-phosphocholine - DPPC 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine - Tc lamellar gel-to-lamellar fluid transition temperature - Th lamellar fluid-to-hexagonal transition temperature  相似文献   

8.
Among various metal ions of physiological interest, Cu2+ is uniquely capable of catalyzing the oxidation of NADH by H2O2. This oxidation is stimulated about fivefold in the presence of imidazole. A similar activating effect is found for some imidazole derivatives (1-methyl imidazole, 2-methyl imidazole, andN-acetyl-L-histidine). Some other imidazole-containing compounds (L-histidine,L-histidine methyl ester, andL-carnosine), however, inhibit the Cu2+-catalyzed peroxidation of NADH. Other chelating agents such as EDTA andL-alanine are also inhibitory. Stoichiometry for NADH oxidation per mole of H2O2 utilized is 1, which excludes the possibility of a two-step oxidation mechanism with a nucleotide free-radical intermediate. About 92% of the NADH oxidation product can be identified as enzymatically active NAD+. D2O, 2,5-dimethylfuran, and 1,4-diazabicyclo [2.2.2]-octane have no significant effect on the oxidation, thus excluding1O2 as a mediator. Similarly, OH· is also not a likely intermediate, since the system is not affected by various scavengers of this radical. The results suggest that a copper-hydrogen peroxide intermediate, when complexed with suitable ligands, can generate still another oxygen species much more reactive than its parent compound, H2O2.  相似文献   

9.
A method for microperfusion of isolated segments of the midgut epithelium of Drosophila larvae has been developed to characterize cellular transport pathways and membrane transporters. Stereological ultrastructural morphometry shows that this epithelium has unusually long tight junctions, with little or no lateral intercellular volume normally found in most epithelia. Amplification of the apical and basal aspects of the cells, by ≈ 17-fold and ≈ 7-fold, respectively, predicts an almost exclusively transcellular transport system for solutes. This correlates with the high lumen-negative transepithelial potential (Vt) of 38 to 45 mV and high resistance (Rt) of 800 to 1400 Ω • cm2 measured by terminated cable analysis, in contrast to other microperfused epithelia like the renal proximal tubule. Several blockers (amiloride 10−4 M, ouabain 10−4 M, bumetanide 10−4 M), K+-free solutions, or organic solutes such as D-glucose 10 mM or DL-alanine 0.5 mM failed to affect Vt or Rt. Bafilomycin-A1 (3 to 5 μM) decreased Vt by ≈ 40% and short-circuit current (Isc) by ≈ 50%, and decreased intracellular pH when applied from the basal side only, consistent with an inhibition of an electrogenic V-H+-ATPase located in the basal membrane. Gradients of H+ were detected by pH microelectrodes close to the basal aspect of the cells or within the basal extracellular labyrinth. The apical membrane is more conductive than the basal membrane, facilitating secretion of base (presumably HCO3), driven by the basal V-H+-ATPase.  相似文献   

10.
In 20-year-old longleaf pine, we examined short-term effects of reduced live leaf area (A L) via canopy scorching on sap flow (Q; kg H2O h−1), transpiration per unit leaf area (E L; mm day−1), stem CO2 efflux (R stem; μmol m−2 s−1) and soil CO2 efflux (R soil; μmol m−2 s−1) over a 2-week period during early summer. R stem and Q were measured at two positions (1.3-m or BH, and base of live crown—BLC), and R soil was measured using 15 open-system chambers on each plot. E L before and after treatment was estimated using Q measured at BLC with estimates of A L before and after scorching. We expected Q to decrease in scorched trees compared with controls resulting from reduced A L. We expected R stem at BLC and BH and R soil to decrease following scorching due to reduced leaf area, which would decrease carbon supply to the stem and roots. Scorching reduced A L by 77%. Prior to scorching, Q at BH was similar between scorch and control trees. Following scorching, Q was not different between control and scorch trees; however, E L increased immediately following scorching by 3.5-fold compared to control trees. Changes in E L in scorched trees corresponded well with changes in VPD (D), whereas control trees appeared more decoupled over the 5-day period following treatment. By the end of the study, R stem decreased to 15–25% in scorched trees at both stem positions compared to control trees. Last, we found that scorching resulted in a delayed and temporary increase in R soil rather than a decrease. No change in Q and increased E L following scorching indicates a substantial adjustment in stomatal conductance in scorched trees. Divergence in R stem between scorch and control trees suggests a gradual decline in stem carbohydrates following scorching. The absence of a strong R soil response is likely due to non-limiting supplies of root starch during early summer.  相似文献   

11.
Preparative-scale fermentation of ginsenoside Rb1 (1) with Acremonium strictum AS 3.2058 gave three new compounds, 12β-hydroxydammar-3-one-20 (S)-O-β-d-glucopyranoside (7), 12β, 25-dihydroxydammar-(E)-20(22)-ene-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (8), and 12β, 20 (R), 25-trihydroxydammar-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (9), along with five known compounds, ginsenoside Rd (2), gypenoside XVII (3), ginsenoside Rg3 (4), ginsenoside F2 (5), and compound K (6). The structural elucidation of these metabolites was based primarily on one- and two-dimensional nuclear magnetic resonance and high-resolution electron spray ionization mass spectra analyses. Among these compounds, 26 are also the metabolites of ginsenoside Rb1 in mammals. This result demonstrated that microbial culture parallels mammalian metabolism; therefore, A. strictum might be a useful tool for generating mammalian metabolites of related analogs of ginsenosides for complete structural identification and for further use in pharmaceutical research in this series of compounds. In addition, the biotransformation kinetics was also investigated.  相似文献   

12.
Agrobacterium rhizogenes was assessed as a vehicle for transformation ofLotus corniculatus. Plants were co-transformed usingA. rhizogenes strain LBA 9402 harbouring the bacterial plasmid pRi1855 and the binary transformation vector pJit 73. pRi 1855 transfers both TL and TR sequences, while pJit 73 encodes β-glucuronidase (GUS) and also two selectable marker genes giving resistance to the antibiotics kanamycin and hygromycin. Three primary transformants (lines 1,6 and 12) were subjected to detailed morphological and biochemical analysis and lines 6 and 12 were also analysed at the molecular level. Tissues of both lines 6 and 12 were resistant to hygromycin and expressed GUS. Analysis of various tissues of each line showed a significantly lower GUS activity in line 6 than in line 12. Genetical analysis of progeny produced between control plants and lines 6 and 12 indicated that line 6 had one dose of theuid gene while line 12 had two or more independently segregating doses of the gene. Both lines 6 and 12 contained multiple copies of TL-DNA, while only line 6 was TR positive. In the progeny of lines 6 and 12 there was no evidence for linkage of TL-DNA withuid, while in the progeny of line 6, TR-DNA was under-represented. GUS-positive progeny which were free of both TL and TR sequences were identified from both lines.  相似文献   

13.
Summary In intact ileal mucosa, uptake of SO4 across the brush border membrane requires the presence of Na and is saturable, withK1/2=1.3mm at 140mm Na (P.L. Smith, S.A. Orellana & M. Field, 1981.J. Membrane Biol. 63:199–206). The present study examines the substrate specificities and transport stoichiometry of the Na-dependent SO4 uptake process. The effects of variations in medium anion and cation composition on lumen-to-epithelium influx of SO4 (J me SO4 ) were determined under short-circuit conditions.J me SO4 is inhibited by thiosulfate, but not by phosphate, methylsulfate, vanadate or taurocholate. Cl is weakly inhibitory. Uptake of SO4 is poorly supported by Li, and is unaffected by K, indicating a specific dependence on Na. At low SO4 concentration (0.22mm),J me SO4 is a hyperbolic function of medium Na concentration; the corresponding Hill plot is linear with a slope of 1.0, suggesting a transport stoichiometry of 1 Na: 1 SO4. At high SO4 concentration (6.7mm), the Na-dependent SO4 velocity curve is sigmoidal and yields a Hill plot which is again linear but has a slope of 1.56, suggesting transport of more than 1 Na per SO4. SO4 uptake in presence of Na exhibits a dependence on medium pH. At 0.22mm SO4 and 140mm Na,J me SO4 was doubled by lowering pH from 7.4 to 6.8. However, at 6.7mm SO4 and 140mm Na, changing pH had no effect onJ me SO4 over the range 6.8 to 8.5. The pH dependence ofJ me SO4 at 6.7mm SO4 was restored when medium Na was lowered to 3mm, suggesting that pH sensitivity is a function of the concentration of preformed NaSO 4 ion pair. The results suggest that SO4 influx across the ileal brush border occurs by electroneutral Na+/NaSO 4 or Na+/H+/SO 4 2– cotransport, the former being favored by high concentrations of Na and SO4.  相似文献   

14.
The anti-HLA-DQ3 monoclonal antibodies (mAb) KS13, SO1, SO2, SO3, SO4, and SO5 recognize spatially close but distinct antigenic determinants, since they crossinhibit each other in their binding to HLA-DQ3 antigens, but do not share idiotopes recognized in their antigen combining site by syngeneic and anti-id antisera and mAb. Furthermore, mAb SO1, SO3, SO4, and SO5 react also with HLA-DQ allospecificities other than HLA-DQ3. Sequence analysis of the heavy (V H ) and light (V L ) chain variable region of the six mAb revealed preferential usage of V H 36–60 and V K 12/13 gene families. However, the individual V H and V L germline gene usage by the six mAb is diverse and the utilization of D, J H , and J L gene segments is heterogeneous. The diverse usage of V H and V L gene segments and heterogeneous amino acid sequences of V H and V L CDR, together with the heterogeneous idiotypic profile, may reflect the complexity of the determinants recognized by the six mAb on HLA-DQ3 antigens. The results we have presented provide for the first time information about the structural basis of the diversity of antibodies recognizing human histocompatibility antigens.The nucleotide sequence data reported in this Papershave been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers L20499, L20957, L20961, L24557, L24558 and L20962, respectively, for V H region genes, and L20956, L20958, L24555, L24556, L20959, and L20960, respectively, for V L region genes  相似文献   

15.
l-tryptophan was produced froml-serine and indole by immobilized Escherichia coli cells in organic-aqueous systems. Selective adsorption was the method chosen to enable both product separation andl-serine reutilization. Amongst various adsorbents tested activated carbons and neutral polymeric resins (XAD-4 and XAD-7) showed good performance. The neutral resins could selectively concentrate thel-tryptophan from dilute aqueous solutions and adsorbed only 5% of the unconvertedl-serine. High separation factors (l-tryptophan/l-serine and indole/l-tryptophan) were obtained with these adsorbents. Despite a lower capacity, the XAD-7 resin had the advantage of desorbingl-tryptophan with basic or acidic solutions, while organic solvents were required to desorb, at the same concentration levels, this compound from XAD-4.In a packed bed column filled with XAD-4 resin or activated carbon, totall-tryptophan adsorption and recovery were achieved at linear velocities up to 5.0 cm/min and 3.2 cm/min respectively. Successive sorbent reutilization, following continuous sorption and elution steps, was carried out in packed bed columns with the neutral resins and activated carbon.Thel-form of tryptophan, after crystallization, was identified by HPTLC.List of Symbols HPLC High Performance Liquid Chromatography - HPTLC High Performance Thin Layer Chromatography - Trp tryptophan - Ser Serine - A amount of sorbent(g) - c equilibrium solute concentration in the aqueous phase (g/dm3) - c i initial (before adding the sorbent) liquid phase concentration (g/dm3) - C T tryptophan concentration in the inlet solution (g/dm3) - C To tryptophan concentration in the outlet solution (g/dm3) - E z axial dispersion coefficient (m2/s) - k experimental constant (Eq. 1, 2 and 3) - K 1 rate constant of adsorption (min–1) - L column length(m) - n experimental constant (eq. 1, 2 and 3) - q equilibrium solid phase concentration (g solute/g sorbent) - q max maximum capacity of sorbent (g solute/g sorbent) - t time(s) - v liquid velocity (m/s) - V volume of liquid phase(dm3) - V e eluted volume(dm3) - V r volume needed to saturate the column (dm3)  相似文献   

16.
This study investigated a set of new potential antidiabetes agents. Derivatives of usnic acid were designed and synthesized. These analogs and nineteen benzylidene analogs from a previous study were evaluated for enzyme inhibition of α-glucosidase. Analogs synthesized using the Dakin oxidative method displayed stronger activity than the pristine usnic acid (IC50>200 μM). Methyl (2E,3R)-7-acetyl-4,6-dihydroxy-2-(2-methoxy-2-oxoethylidene)-3,5-dimethyl-2,3-dihydro-1-benzofuran-3-carboxylate ( 6b ) and 1,1′-(2,4,6-trihydroxy-5-methyl-1,3-phenylene)di(ethan-1-one) ( 6e ) were more potent than an acarbose positive control (IC50 93.6±0.49 μM), with IC50 values of 42.6±1.30 and 90.8±0.32 μM, respectively. Most of the compounds synthesized from the benzylidene series displayed promising activity. (9bR)-2,6-Bis[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 1c ), (9bR)-3,7,9-trihydroxy-8,9b-dimethyl-2,6-bis[(2E)-3-phenylprop-2-enoyl]dibenzo[b,d]furan-1(9bH)-one ( 1g ), (9bR)-2-acetyl-6-[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 2d ), (9bR)-2-acetyl-6-[(2E)-3-(3-chlorophenyl)prop-2-enoyl]-3,7,9-trihydroxy-8,9b-dimethyldibenzo[b,d]furan-1(9bH)-one ( 2e ), (6bR)-8-acetyl-3-(4-chlorophenyl)-6,9-dihydroxy-5,6b-dimethyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 3e ), (6bR)-8-acetyl-6,9-dihydroxy-5,6b-dimethyl-3-phenyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 3h ), (6bR)-3-(2-chlorophenyl)-8-[(2E)-3-(2-chlorophenyl)prop-2-enoyl]-6,9-dihydroxy-5,6b-dimethyl-2,3-dihydro-1H-[1]benzofuro[2,3-f][1]benzopyran-1,7(6bH)-dione ( 4b ), and (9bR)-6-acetyl-3,7,9-trihydroxy-8,9b-dimethyl-2-[(2E)-3-phenylprop-2-enoyl]dibenzo[b,d]furan-1(9bH)-one ( 5c ) were the most potent α-glucosidase enzyme inhibitors, with IC50 values of 7.0±0.24, 15.5±0.49, 7.5±0.92, 10.9±0.56, 1.5±0.62, 15.3±0.54, 19.0±1.00, and 12.3±0.53 μM, respectively.  相似文献   

17.
The arachidonate cascade is important for the generation of reactive species (RS), and cyclooxygenase (COX) is a key enzyme of this cascade. Tissues of 24-month-old rat lung showed a 2-fold increase in RS, malondialdehyde and thromboxane B2 than those of 6-month-old rat. We found that the effects of 50 µM H2O2 and 200 µM t-butylhydroperoxide (t-BHP) specify on COX activity, and that their effects increased cytosolic COX activity in a concentration-dependent manner (1–50 µM) in 24-month-old rat. Our results suggested that COX activators such as t-BHP and H2O2, which are located in cytosol, are essential for the activation of COX in aged lung.  相似文献   

18.
Summary A vanadate-sensitive H+-translocating ATPase isolated from red beet plasma membrane has been solubilized in active form and successfully reconstituted into artificial proteoliposomes. The H+-ATPase was solubilized in active form with deoxycholate, CHAPSO or octylglucoside in the presence of glycerol. Following detergent removal by gel filtration and reconstitution into proteoliposomes, ATP:Mg-dependent H+ transport could be measured as ionophore-reversible quenching of acridine orange fluorescence. Solubilization resulted in a three-to fourfold purification of the plasma membrane ATPase, with some additional enrichment of specific activity following reconstitution. H+ transport activity was inhibited half-maximally between 1 and 5 M vanadate (Na3VO4) and nearly abolished by 100 M vanadate. ATPase activity of native plasma membrane showed aK i for vanadate inhibition of 9.5 M, and was inhibited up to 80% by 15 to 20 M vanadate (Na3VO4). ATPase activity of the reconstituted vesicles showed aK i of 2.6 M for vanadate inhibition. The strong inhibition by low concentrations of vanadate indicates a plasma membrane rather than a mitochondrial or tonoplast origin for the reconstituted enzyme.  相似文献   

19.
Two Leuconostoc oenos mutant strains unable to metabolize malic acid were differentiated by [U-14C]-labelled L-malate transport assays into a malolactic-enzyme-deficient mutant and a malate-transport-defective mutant. A mathematical analysis of the data from L-malic acid uptake at three pH values (5.2, 4.5, and 3.2) in the malolactic-enzyme-deficient strains suggest two simultaneous uptake mechanisms, presumably a carrier-mediated transport and a passive diffusion for the anionic and the undissociated forms of the acid, respectively. The apparent affinity constant (K m t) and the maximal rate (V m t) values for L-malate active transport were, 12 mM and 43 mol L-malate·mg–1·s–1, respectively. Active transport was constitutive and strongly inhibited by protonophores and by ATPase inhibitors. L-Lactic acid appeared to inhibit L-malic acid transport, suggesting an L-lactate/L-malate exchange. At pH values of 4.5 or above, the passive diffusion of L-malic acid was negligible. However, at pH 3.2, the mean pH of wine, the permeability of the cells to the undissociated acid by simple diffusion could represent more than 50% of total L-malic acid uptake, with a diffusion constant (K D) of 0.1 s–1. Correspondence to: C. Divies  相似文献   

20.
In order to understand the pathway involved in the chemical enhancement of photosynthetic rate, sodium bisulfite (NaHSO3) and benzyladenine (BA), a growth regulator, were applied to strawberry plants. The influence of these compounds on gas exchange and millisecond delayed light emission (ms-DLE) was investigated using 2-month-old plants. Results showed the net photosynthetic rate (A) in leaves was promoted by both NaHSO3 and BA. Stomatal conductance (g) and transpiration rate (E) were significantly increased only by BA, while intercellular CO2 concentration (Ci) was significantly decreased by NaHSO3. The enhancement of A by NaHSO3 and BA was only a short-term effect, lasting approximately 5 days for NaHSO3 and 30 h for BA. Plants treated with NaHSO3, BA or NaHSO3 + BA, showed no significant fluctuations in carboxylation efficiency (CE), photorespiration (RP) or dark respiration (RD). These results suggest that the influences of NaHSO3 and BA on gas exchange particularly A, could be via different mechanisms: the enhancement of A by the application of low concentrations of NaHSO3 appears to be associated with increased cyclic electron flow, while BA enhancement of A is at least partially due to increased g and/or E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号