首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
alpha 2-Adrenergic receptors, a population of receptors linked to inhibition of adenylate cyclase, accelerate Na+/H+ exchange in NG108-15 neuroblastoma x glioma cells (Isom, L. L., Cragoe, E. J., Jr., and Limbird, L. E. (1987) J. Biol. Chem. 262, 6750-6757). We now report that two other receptor populations linked to inhibition of adenylate cyclase, muscarinic cholinergic and delta-opiate receptors, also alkalinize the interior of NG108-15 cells, as measured with the pH-sensitive fluorescent probe, 2,7-biscarboxyethyl-5(6)-carboxy-fluorescein. Manipulations that block Na+/H+ exchange, i.e. removal of extracellular Na+, reduction of extracellular pH to equal that of intracellular pH, and addition of 5-amino-substituted analogs of amiloride, all block alpha 2-adrenergic, delta-opiate, or muscarinic cholinergic receptor-induced alkalinization in a parallel fashion. These data suggest that all three populations of receptors alkalinize NG108-15 cells by acceleration of Na+/H+ exchange and do so via a shared or similar mechanism. Although these three receptor populations are linked to inhibition of adenylate cyclase, decreased production of cAMP does not appear to be the mechanism responsible for receptor-accelerated Na+/H+ exchange. Thus, ADP-ribosylation of intact NG108-15 cells with Bordetella pertussis islet-activating protein prevents attenuation of prostaglandin E1-stimulated cAMP accumulation by alpha 2-adrenergic, muscarinic, and delta-opiate agonists but has no measurable effect on the ability of these agonists to accelerate Na+/H+ exchange. Similarly, manipulations that block receptor-accelerated Na+/H+ exchange influence but do not block receptor-mediated attenuation of cAMP accumulation. Thus, the present data suggest that these two receptor-mediated biochemical events, acceleration of Na+/H+ exchange and attenuation of cAMP accumulation, occur through divergent mechanisms in NG108-15 cells.  相似文献   

2.
alpha 2-Adrenergic receptors (alpha 2-AR) are negatively coupled to adenylyl cyclase via the GTP-binding protein Gi. However, inhibition of adenylylcyclase does not account for many effector cell responses to alpha 2-AR agonists, suggesting that the receptor can couple to other signal transduction pathways. One potential pathway may be the stimulation of Na+/H+ exchange elicited by alpha 2-AR activation in renal proximal tubule cells, platelets, and the NG-10815 cell line. To determine whether the various receptor-effector coupling mechanisms operate in a tissue-specific manner, we studied the effect of alpha 2-AR activation on basal and stimulated Na+/H+ exchange in epithelial cells isolated from human colon (HT-29 adenocarcinoma cells). Na+/H+ exchange was measured by quantitation of intracellular hydrogen ion concentration (acetoxymethyl ester 2,7-biscarboxyethyl-5(6)carboxyfluorescein) and 22Na+ uptake. HT-29 cells expressed an amiloride-sensitive Na+/H+ exchanger that was activated by reduction of intracellular pH (pHi) to 6.0 but was quiescent at a physiological pHi. The rapid alkalinization observed after acid loading (0.57 +/- 0.07 pH units/min/10(4) cells) was dependent on external sodium and was blocked by amiloride (Ki approximately 2.1 microM). Although epinephrine and the selective alpha 2-AR agonists clonidine and UK-14304 inhibited forskolin-activated adenylylcyclase, these compounds did not alter basal Na+/H+ exchange. Stimulated Na+/H+ exchange was similarly unaffected by epinephrine. In contrast, stimulated Na+/H+ exchanger activity was completely inhibited by the selective alpha 2-agonists clonidine, UK-14304, and guanabenz. This inhibitory effect was not blocked by the alpha 2-AR antagonist rauwolscine, and it is likely due to a direct interaction with the exchanger molecule itself. Structure/activity studies indicated that the compounds inhibiting exchanger activity possess either an imidazoline or guanidinium moiety. Although these molecules bear structural similarity to amiloride, they did not inhibit the amiloride-sensitive epithelial sodium channel in toad urinary bladder, suggesting that these compounds may be useful as "amiloride-like" ligands selective for the Na+/H+ exchanger. These data indicate that in the HT-29 intestinal cell line, in contrast to observations in other tissues, alpha 2-adrenergic receptors are not coupled to the Na+/H+ exchanger, suggesting that the cell-signaling mechanisms utilized by the alpha 2-AR are tissue specific.  相似文献   

3.
Previous reports from this laboratory have demonstrated that alpha 2-adrenergic receptors accelerate Na+/H+ exchange in NG108-15 neuroblastoma X glioma cells and evoke platelet secretion via a pathway involving Na+/H+ exchange. The present studies were designed to examine whether agents that interact with Na+/H+ antiporters also might influence alpha 2-adrenergic receptor-ligand interactions. We observed that Na+ decreases receptor affinity for the agonists epinephrine, norepinephrine, and UK14304 and slightly increases receptor affinity for the antagonists yohimbine and idazoxan in digitonin-solubilized preparations from porcine brain cortex. Increases in [H+] also decrease receptor affinity for agonists and cause either a slight increase or no change in receptor affinity for antagonists. Amiloride analogs accelerate the rate of [3H] yohimbine dissociation from digitonin-solubilized receptors with a relative effectiveness that parallels their ability to block Na+/H+ exchange in other systems. Interestingly, these modulatory effects of Na+,H+ and 5-amino-substituted analogs of amiloride are retained in homogeneous preparations of the alpha 2-adrenergic receptor, suggesting that the allosteric-binding sites for these agents are on the receptor-binding protein itself.  相似文献   

4.
Regulation of cytoplasmic pH (pHi) of the human monoblastic U-937 and erythroleukemic K-562 cell lines was investigated. The apparent resting pHi, as assessed by the fluorescent pH probe quenel, were 6.61 and 6.75 for the U-937 and K-562 cells, respectively. When extracellular Na+ was substituted by equimolar choline+, pHi decreased by about 0.2 units. The protein kinase C activating beta-form of the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA; 10(-10) and 10(-7) M) induced a dose-dependent alkalinization in both cell types of 0.03-0.12 units, whereas the alpha-form was inactive. The response was detectable after about 2 min and reached steady-state 10-15 min later. In the K-562 cells the alkalinization was mediated by Na+/H+ exchange as it was accompanied by stimulation of H+ extrusion and abolished by Na+ removal. The TPA response in the U-937 cells, however, was unaffected by Na+ removal, not accompanied by H+-efflux, and thus unrelated to Na+/H+ exchange. Since electron microscopy indicated development of multivesicular bodies with an acidic interior, the alkalinization can probably be accounted for by an intracellular mechanism. Ionomycin (10(-5) M) induced a rapid increase in the cytoplasmic Ca2+ concentration of both cell types and this response was accompanied by acidification followed by a Na+-dependent recovery. In the U-937, but not in the K-562, cells this recovery was followed by a net alkalinization. It is concluded that both cell types possess a Na+/H+ exchange of importance for pHi but that this mechanism is regulated differently in the U-937 and K-562 cells.  相似文献   

5.
The regulation of intracellular pH (pHi) was monitored in a virus-transformed cell clone derived from bovine ciliary body exhibiting characteristics of pigmented ciliary epithelium. Data were obtained from confluent monolayers grown on plastic coverslips in nominally bicarbonate-free media using the pH-sensitive absorbance of 5- (and 6-) carboxy-4',5'-dimethylfluorescein. Under resting conditions, pHi averaged 6.98 +/- 0.01 (SEM; n = 57). When cells were acid loaded by briefly exposing them to Ringer containing NH4+ and then withdrawing the NH4+, pHi spontaneously regained its initial value. In the presence of 1 mM amiloride or in the absence of Na+, this process was blocked, indicating the involvement of an Na+/H+ exchanger in the regulation of pHi after an acid load. Removing Na+ during resting conditions decreased cytoplasmatic pH. This acidification could be slowed by amiloride, which is evidence for reversal of the Na+/H+ countertransport exchanging intracellular Na+ for extracellular protons. Application of 1 mM amiloride during steady state led to a slow acidification. Thus the Na+/H+ exchanger is operative during resting conditions extruding protons, derived from cellular metabolism, or from downhill leakage into the cell. Addition of Na+ to Na+ -depleted cells led to an alkalinization, which was sensitive to amiloride, with an IC50 of about 20 microM. This alkalinization was attributed to the Na+/H+ exchanger and exhibited saturation kinetics with increasing Na+ concentrations, with an apparent KM of 29.6 mM Na+. It is concluded that Na+/H+ exchange regulates pHi during steady state and after an acid load.  相似文献   

6.
We studied the effects of epidermal growth factor (EGF), thyroid-stimulating hormone (TSH) and amiloride on cytoplasmic pH (pHi) in cultured porcine thyroid cells. We used 2',7'-bis(2-carboxyethyl)-5- (and 6-)carboxyfluorescein (BCECF), an internalized fluorescent pH indicator, to measure pHi. EGF stimulated thyroid cell alkalinization and proliferation, which were blocked by amiloride. EGF-stimulated thyroid cell alkalinization depended on extracellular Na+ concentrations. EGF stimulation resulted in an activation of Na+/H+ exchange, which alkalinized the cells. The results indicated that Na+/H+ exchange or cell alkalinization might function as a transmembrane signal transducer in the action of EGF. In the present system, TSH did not stimulate alkalinization or proliferation.  相似文献   

7.
Upon stimulation, the gastric parietal cell secretes a large quantity of isotonic HCl across its apical membrane which must be accompanied by the generation of base in the cytosol. The ability of this cell type to regulate cytosolic pH (pHi) was examined as a function of stimulation of acid secretion by histamine or forskolin. The pHi was estimated from the change of fluorescence of the trapped dye, 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein-bis-carboxyethylcarbo xy fluorescein in a purified cell suspension of rabbit parietal cells. Stimulation of the cell suspension raised pHi by an average of 0.13 +/- 0.038 pH units. The H+,K+-ATPase inhibitor, SCH28080 (2-methyl-8-[phenyl-methoxy]-imidazo-(1,2)-pyridine-3-acetonitrile) had only a small effect on the increase of pHi, therefore, was largely independent of H+,K+-ATPase activity. In Na+-free medium, where Na+/H+ exchange would be absent, the rise of pHi was only 0.03 pH units. This increase was blocked by SCH28080, showing that this small increment was the result of acid secretion. In Na+-containing medium, 90% of the increase was inhibited by an inhibitor of Na+/H+ exchange, dimethyl amiloride (DMA). This compound also blocked changes in pHi due to changes in extracellular Na+. Accordingly, most of the change in pHi upon stimulation of acid secretion by histamine and forskolin is due to activation of Na+/H+ exchange in the parietal cell basal-lateral membrane. The addition of DMA to stimulated, but not resting cells, gave a rapid acidification that was blocked by inhibition of anion exchange by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), showing that anion exchange was also activated by stimulation. In single cell recording, canalicular and cytosolic pH were monitored simultaneously using 9-amino acridine and dimethyl carboxyfluorescein, respectively. Cytosolic alkalinization correlated with acid accumulation in the secretory canaliculus until a set point was reached. Thereafter, acidification continued without further change in pHi. To determine the role of Na+/H+ and Cl-/HCO3- exchange in acid secretion, Cl(-)-depleted cells were suspended in medium containing 40 mM Cl-. DMA and DIDS each blocked acid secretion by about 40%, but in combination, acid secretion was blocked by more than 90%. Thus, basal-lateral Na+/H+ and Cl-/HCO3- exchange activities are necessary for acid secretion across the apical membrane of the parietal cell.  相似文献   

8.
We have examined the effects of hydrocortisone on growth and Na+/H+ exchange in cultured rat aortic vascular smooth muscle cells (VSMC). Hydrocortisone (2 microM) treatment of growth-arrested VSMC significantly decreased VSMC growth in response to 10% calf serum assayed by 3H-thymidine incorporation and cell number at confluence. This effect was associated with the appearance of an altered cell phenotype characterized by large, flat VSMC that did not form typical "hillocks." Na+/H+ exchange was also altered in hydrocortisone-treated cells assayed by dimethylamiloride-sensitive 22Na+ influx into acid-loaded cells or by intracellular pH (pHi) change using the fluorescent dye BCECF. Resting pHi was 7.25 +/- 0.04 and 7.15 +/- 0.05 in control and hydrocortisone-treated cells, respectively (0.1 less than P less than 0.05). Following intracellular acidification in the absence of external Na+, pHi recovery upon addition of Na+ was increased 89% in hydrocortisone-treated cells relative to control. This was due to an increase in the Vmax for the Na+/H+ exchanger from 17.5 +/- 2.4 to 25.9 +/- 2.0 nmol Na+/mg protein x min (P less than 0.01) without a significant change in Km. Treatment of VSMC with actinomycin D (1 microgram/ml) or cycloheximide (10 microM) completely inhibited the hydrocortisone-mediated increase in Na+/H+ exchange, indicating a requirement for both RNA and protein synthesis. Because hydrocortisone altered the Vmax for Na+/H+ exchange, in contrast to agonists such as serum or angiotensin II which alter the Km for intracellular H+ or extracellular Na+, respectively, we studied the effect of hydrocortisone on activation of Na+/H+ exchange by these agonists. In cells maintained at physiological pHi (7.2), the initial rate (2 min) of angiotensin II-stimulated alkalinization was increased 66 +/- 39% in hydrocortisone-treated compared with control cells. Hydrocortisone caused no change in angiotensin II-stimulated phospholipase C activity assayed by measurement of changes in intracellular Ca2+ or diacylglycerol formation. However, angiotensin II and serum stimulated only small increases in Na+/H+ exchange in acid-loaded (pHi = 6.8) hydrocortisone-treated cells. These findings suggest that hydrocortisone-mediated increases in VSMC Na+/H+ exchange occur in association with a nonproliferating phenotype that has altered regulation of Na+/H+ exchange activation. We propose that hydrocortisone-mediated growth inhibition may be a useful model for studying the role of Na+/H+ exchange in cell growth responsiveness.  相似文献   

9.
Retinoic acid, which induces the differentiation of HL 60 cells to granulocytes, produces a cell alkalinization from pHi = 7.03 to pHi = 7.37. The half-maximum effect of retinoic acid is observed at 10 nM. The effect of retinoic acid on the pHi develops slowly, and it precedes the differentiation of the cells. A cell alkalinization is also observed after differentiation of the cells by dimethyl sulfoxide. It is not observed using etretinate, a synthetic retinoid that does not promote the differentiation of HL 60 cells. Two pHi regulating mechanisms coexist in HL 60 cells. The Na+/H+ exchange system is the major mechanism that allows HL 60 cells to recover from an intracellular acidosis. A second mechanism is a Na-HCO3 cotransport system. During differentiation of the cells by retinoic acid, a 2-fold increase in the activity of the Na+/H+ exchange system is observed, while the activity of the NaHCO3 cotransport remains constant. The properties of interaction of the Na+/H+ exchanger with internal H+, external Na+, and Li+ as well as with amiloride and its derivatives are defined. The Na+/H+ exchanger of HL 60 cells is characterized by unusually low affinities for alkali cations and a high affinity for amiloride and its derivatives. The pHi dependence of the exchanger is not modified after differentiation by retinoic acid. It is concluded that the mechanism of activation of the Na+/H+ exchanger by retinoic acid is distinct from the short-term effect produced by mitogens and phorbol esters which change the pHi dependence of the system.  相似文献   

10.
Using the pH-sensitive absorbance of 5 (and 6)-carboxy-4',5'- dimethylfluorescein, we investigated the regulation of cytoplasmic pH (pHi) in monkey kidney epithelial cells (BSC-1). In the absence of HCO3-, pHi is 7.15 +/- 0.1, which is not significantly different from pHi in 28 mM HCO3-, 5% CO2 (7.21 +/- 0.07). After an acid load, the cells regulate pHi in the absence of HCO3- by a Na+ (or Li+)-dependent, amiloride-inhibitable mechanism (indicative of Na+/H+ antiport). In 28 mM HCO3-, while still dependent on Na+, this regulation is only blocked in part by 1 mM amiloride. A partial block is also observed with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) (1 mM). With cells pretreated with DIDS, 1 mM amiloride nearly totally inhibits this regulation. Cl- had no effect on pHi regulation in the acidic range. In HCO3(-)-free saline, Na+ removal leads to an amiloride-insensitive acidification, which is dependent on Ca2+. In 28 mM HCO3-, Na+ (and Ca2+) removal led to a pronounced reversible and DIDS-sensitive acidification. When HCO3- was lowered from 46 to 10 mM at constant pCO2 (5%), pHi dropped by a DIDS-sensitive mechanism. Identical changes in pHo (7.6 to 6.9) in the nominal absence of HCO3- led to smaller changes of pHi. In the presence but not in the absence of HCO3-, removal of Cl- led to a DIDS-sensitive alkalinization. This was also observed in the nominal absence of Na+, which leads to a sustained acidification. It is concluded that in nominally bicarbonate-free saline, the amiloride-sensitive Na+/H+ antiport is the predominant mechanism of pHi regulation at acidic pHi, while being relatively inactive at physiological values of pHi. In bicarbonate saline, two other mechanisms effect pHi regulation: a DIDS-sensitive Na+-HCO3- symport, which contributes to cytoplasmic alkalinization, and a DIDS-sensitive Cl-/HCO3- exchange, which is apparently independent of Na+.  相似文献   

11.
The contribution of Cl-/HCO3- exchange to intracellular pH (pHi) regulation in cultured chick heart cells was evaluated using ion-selective microelectrodes to monitor pHi, Na+ (aiNa), and Cl- (aiCl) activity. In (HCO3- + CO2)-buffered solution steady-state pHi was 7.12. Removing (HCO3- + CO2) buffer caused a SITS (0.1 mM)-sensitive alkalinization and countergradient increase in aiCl along with a transient DIDS-sensitive countergradient decrease in aiNa. SITS had no effect on the rate of pHi recovery from alkalinization. When (HCO3- + CO2) was reintroduced the cells rapidly acidified, aiNa increased, aiCl decreased, and pHi recovered. The decrease in aiCl and the pHi recovery were SITS sensitive. Cells exposed to 10 mM NH4Cl became transiently alkaline concomitant with an increase in aiCl and a decrease in aiNa. The intracellular acidification induced by NH4Cl removal was accompanied by a decrease in aiCl and an increase in aiNa that led to the recovery of pHi. In the presence of (HCO3- + CO2), addition of either amiloride (1 mM) or DIDS (1 mM) partially reduced pHi recovery, whereas application of amiloride plus DIDS completely inhibited the pHi recovery and the decrease in aiCl. Therefore, after an acid load pHi recovery is HCO3o- and Nao- dependent and DIDS sensitive (but not Ca2+o dependent). Furthermore, SITS inhibition of Na(+)-dependent Cl-/HCO3- exchange caused an increase in aiCl and a decrease in the 36Cl efflux rate constant and pHi. In (HCO3- + CO2)-free solution, amiloride completely blocked the pHi recovery from acidification that was induced by removal of NH4Cl. Thus, both Na+/H+ and Na(+)-dependent Cl-/HCO3- exchange are involved in pHi regulation from acidification. When the cells became alkaline upon removal of (HCO3- + CO2), a SITS-sensitive increase in pHi and aiCl was accompanied by a decrease of aiNa, suggesting that the HCO3- efflux, which can attenuate initial alkalinization, is via a Na(+)-dependent Cl-/HCO3- exchange. However, the mechanism involved in pHi regulation from alkalinization is yet to be established. In conclusion, in cultured chick heart cells the Na(+)-dependent Cl-/HCO3- exchange regulates pHi response to acidification and is involved in the steady-state maintenance of pHi.  相似文献   

12.
The changes of the intracellular pH (pHi) of cultured bovine aortic endothelial cells were fluorometrically monitored using 2',7'-bis(carboxyethyl)carboxyfluorescein (BCECF). A biphasic pHi change was observed by addition of ATP: an initial acidification followed by an alkalinization of about 0.2 pH unit above the resting level of pHi 7.23. The alkalinization was dependent on [Na+]o and [H+]o, and was inhibited by 5-(N,N-hexamethylene)amiloride, indicating that the alkalinization is mediated by the Na+/H+ exchanger. The 50% effective concentration of ATP was about 1.4 microM. ADP similarly induced pHi changes, whereas AMP and adenosine were inactive. The pHi changes induced by ATP were dependent on the extracellular Ca2+, and the addition of calcium ionophore A23187 induced similar pHi changes. The results indicate that ATP activates the Na+/H+ exchanger in cultured bovine aortic endothelial cells and the activation is mediated by the P2-purinergic receptor and is dependent on the extracellular Ca2+.  相似文献   

13.
Angiotensin II stimulation of vascular smooth muscle cells results in initial, rapid diacylglycerol (DG) formation from the polyphosphoinositides accompanied by intracellular acidification, as well as a more sustained DG accumulation which is accompanied by a prolonged intracellular alkalinization. To determine whether intracellular pH (pHi) modulates DG accumulation, NH4Cl and potassium acetate were used to alter pHi and DG formation was measured. NH4Cl (10 mM) increased pHi from 7.15 +/- 0.05 to 7.34 +/- 0.02 pH units and markedly enhanced the sustained (5 min), but not the initial (15 s), phase of DG formation in response to 100 nM angiotensin II (65 +/- 13% increase). Conversely, intracellular acidification with Na+-free buffer and potassium acetate (20 mM) decreased pHi to 6.93 +/- 0.08 and reduced subsequent angiotensin II-induced sustained DG formation by 82 +/- 9%. In intact cells, inhibition of angiotensin II-stimulated alkalinization by incubation in Na+-free buffer or by addition of the Na+/H+ exchange inhibitor dimethylamiloride (10 microM) decreased the ability of the cell to sustain DG formation, suggesting that active Na+/H+ exchange is necessary for continued DG formation. Thus, it seems that sustained, angiotensin II-induced diacylglycerol accumulation is regulated by intracellular alkalinization secondary to Na+/H+ exchange in cultured vascular smooth muscle cells.  相似文献   

14.
Na+/H+ exchange in vertebrates is thought to be electroneutral and insensitive to the membrane voltage. This basic concept has been challenged by recent reports of antiport-associated currents in the turtle colon epithelium (Post and Dawson, 1992, 1994). To determine the electrogenicity of mammalian antiporters, we used the whole-cell patch clamp technique combined with microfluorimetric measurements of intracellular pH (pHi). In murine macrophages, which were found by RT- PCR to express the NHE-1 isoform of the antiporter, reverse (intracellular Na(+)-driven) Na+/H+ exchange caused a cytosolic acidification and activated an outward current, whereas forward (extracellular Na(+)-driven) exchange produced a cytosolic alkalinization and reduced a basal outward current. The currents mirrored the changes in pHi, were strictly dependent on the presence of a Na+ gradient and were reversibly blocked by amiloride. However, the currents were seemingly not carried by the Na+/H+ exchanger itself, but were instead due to a shift in the voltage dependence of a preexisting H+ conductance. This was supported by measurements of the reversal potential (Erev) of tail currents, which identified H+ (equivalents) as the charge carrier. During Na+/H+ exchange, Erev changed along with the measured changes in pHi (by 60-69 mV/pH). Moreover, the current and Na+/H+ exchange could be dissociated. Zn2+, which inhibits the H+ conductance, reversibly blocked the currents without altering Na+/H+ exchange. In Chinese hamster ovary (CHO) cells, which lack the H+ conductance, Na+/H+ exchange produced pHi changes that were not accompanied by transmembrane currents. Similar results were obtained in CHO cells transfected with either the NHE-1, NHE-2, or NHE-3 isoforms of the antiporter, indicating that exchange through these isoforms is electroneutral. In all the isoforms tested, the amplitude and time- course of the antiport-induced pHi changes were independent of the holding voltage. We conclude that mammalian NHE-1, NHE-2, and NHE-3 are electroneutral and voltage independent. In cells endowed with a pH- sensitive H+ conductance, such as macrophages, activation of Na(+)-H+ exchange can modulate a transmembrane H+ current. The currents reported in turtle colon might be due to a similar "cross-talk" between the antiporter and a H+ conductance.  相似文献   

15.
The mechanisms underlying cytoplasmic pH (pHi) regulation in rat thymic lymphocytes were studied using trapped fluorescein derivatives as pHi indicators. Cells that were acid-loaded with nigericin in choline+ media recovered normal pHi upon addition of extracellular Na+ (Nao+). The cytoplasmic alkalinization was accompanied by medium acidification and an increase in cellular Na+ content and was probably mediated by a Nao+/Hi+ antiport. At normal [Na+]i, Nao+/Hi+ exchange was undetectable at pHi greater than or equal to 6.9 but was markedly stimulated by internal acidification. Absolute rates of H+ efflux could be calculated from the Nao+-induced delta pHi using a buffering capacity of 25 mmol X liter-1 X pH-1, measured by titration of intact cells with NH4+. At pHi = 6.3, pHo = 7.2, and [Na+]o = 140 mM, H+ extrusion reached 10 mmol X liter-1 X min-1. Nao+/Hi+ exchange was stimulated by internal Na+ depletion and inhibited by lowering pHo and by addition of amiloride (apparent Ki = 2.5 microM). Inhibition by amiloride was competitive with respect to Nao+. Hi+ could also exchange for Lio+, but not for K+, Rb+, Cs+, or choline+. Nao+/Hi+ countertransport has an apparent 1:1 stoichiometry and is electrically silent. However, a small secondary hyperpolarization follows recovery from acid-loading in Na+ media. This hyperpolarization is amiloride- and ouabain-sensitive and probably reflects activation of the electrogenic Na+-K+ pump. At normal Nai+ values, the Nao+/Hi+ antiport of thymocytes is ideally suited for the regulation of pHi. The system can also restore [Na+]i in Na+-depleted cells. In this instance the exchanger, in combination with the considerable cytoplasmic buffering power, will operate as a [Na+]i- regulatory mechanism.  相似文献   

16.
Na+/H+ exchange activity was investigated in cultured rat thyroid follicular FRTL-5 cells using the pH sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Basal intracellular pH (pHi) was 7.13 +/- 0.10 in cells incubated in Hepes-buffered saline solution. The intracellular buffering capacity beta i was determined using the NH4Cl-pulse method, yielding a beta i value of 85 +/- 12 mM/pH unit. The relationship between extracellular Na+ and the initial rate of alkalinization of acid-loaded cells showed simple saturation kinetics, with an apparent Km value of 44 +/- 26 mM, and an Vmax value of 0.3 +/- 0.01 pH unit/min. The agonist-induced activation of Na+/H+ exchange was investigated in cells acidified with nigericin. Addition of 12-O-tetradecanoylphorbol 13-acetate (TPA) or ATP induced rapid cytosolic alkalinization in acid-loaded cells. The action of both TPA and ATP was abolished by preincubating the cells with 100 microM amiloride, by substituting extracellular Na+ with equimolar concentrations of choline+, and by pretreating the cells with TPA for 24 h. Chelating extracellular Ca2+, or depleating intracellular Ca2+ pools did not affect the ATP-induced alkalinization. The results indicate, that FRTL-5 cells have a functional Na+/H+ exchange mechanism. Furthermore, stimulation of protein kinase C activity is of importance in activating the antiport.  相似文献   

17.
Mouse embryos at the two-cell stage, like other cells, can recover from an intracellular acid-load. Our previous work has shown, surprisingly, that there is no contribution to this recovery by Na+/H+ antiport activity. Here we show that the recovery similarly is not affected by inhibition of other known intracellular pH (pHi) regulatory mechanisms. Specifically, the recovery is unaffected by lack of external Na+, inhibition of anion exchange, or lack of bicarbonate, which eliminates the Na(+)-dependent HCO3-/Cl- exchanger as a possible mechanisms. These conditions also eliminate any possible Na+,HCO3- cotransporter operating to relieve acid-loading. Recovery is unaffected similarly by nonspecific inhibitors of H(+)-ATPase activity. These observations lead to the conclusion that recovery from acid-load is a passive process in the two-cell mouse embryo. Similarly, the mean base-line pHi (6.84) is not dependent on known pHi regulatory mechanisms. The embryos exhibit a marked intracellular alkalinization when exposed to Cl(-)-free medium in the presence of bicarbonate. This response is eliminated by an inhibitor of anion exchange and by lack of bicarbonate, but is independent of Na+. These results indicate that there is probably a Na(+)-independent HCO3-/Cl- exchanger active in these cells, presumably functioning to alleviate alkaline loads.  相似文献   

18.
Intracellular free Ca2+ [( Ca2+]i) and pH (pHi) were measured simultaneously by dual wavelength excitation in thrombin-stimulated human platelets double-labeled with the fluorescent probes fura2 and 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein to determine the relationship between changes in [Ca2+]i and pHi, respectively. At 37 degrees C, thrombin (0.5 or 0.1 units/ml) increased [Ca2+]i with no detectable lag period to maximum levels within 13 s followed by a slow return to resting levels. There was a transient decrease in pHi within 9 s that was immediately followed by an alkalinization response, attributable to activation of Na+/H+ exchange, that raised pHi above resting levels within 22 s. At 10-15 degrees C, thrombin-induced changes in [Ca2+]i and pHi were delayed and therefore better resolved, although no differences in the magnitude of changes in [Ca2+]i and pHi were observed. However, the increase in [Ca2+]i had peaked or was declining before the alkalinization response was detected, suggesting that Ca2+ mobilization occurs before activation of Na+/H+ exchange. In platelets preincubated with 5-(N-ethyl-N-isopropyl)amiloride or gel-filtered in Na+-free buffer (Na+ replaced with N-methyl-D-glutamine) to inhibit Na+/H+ exchange, thrombin stimulation caused a rapid, sustained decrease in pHi. Under these conditions there was complete inhibition of the alkalinization response, whereas Ca2+ mobilization was only partially inhibited. Nigericin (a K+/H+ ionophore) caused a rapid acidification of more than 0.3 pH unit that was sustained in the presence of 5-(N-ethyl-N-isopropyl)amiloride. Subsequent stimulation with thrombin resulted in slight inhibition of Ca2+ mobilization. These data show that, in human platelets stimulated with high or low concentrations of thrombin, Ca2+ mobilization can occur without a functional Na+/H+ exchanger and in an acidified cytoplasm. We conclude that Ca2+ mobilization does not require activation of Na+/H+ exchange or preliminary cytoplasmic alkalinization.  相似文献   

19.
The Na+/H+ exchange system is not the major mechanism that regulates the internal pH value (pHi) of chick cardiac cells in culture under normal physiological conditions in the absence of carbonate. In cardiac cells in which the internal pH has been lowered to 6.6-6.7, the Na+/H+ exchanger becomes the major mechanism to bring back pHi to normal values (pHi = 7.3). The blockade of the Na+/H+ exchange activity with an active amiloride derivative, ethylisopropylamiloride, prevents internal pH recovery. The internal pH dependence of the Na+/H+ exchanger activity has been carefully studied. The [H+]i-dependence is very cooperative. For an external pH of 7.4, the system is nearly completely inactive at pHi 7.8 and nearly completely active at pHi 6.9-7.0 with half-maximum activation at pHi = 7.35. The increased activity of the Na+/H+ exchange system which follows the acidification of the internal medium produces an activation of the (Na+,K+)-ATPase.  相似文献   

20.
The Na+/H+ exchange time-course of BCECF-loaded human platelets, suspended in isotonic media containing NaCl and sodium propionate and activated by intracellular acidification, was measured spectrofluorimetrically. Sequential alkalinization rates decline exponentially as a function of the changing intracellular pH (pHi) and its linear expression (log rate vs. pHi) extrapolates reproducibly to the pHi set point for the Na+/H+ exchange activation. The set point of control platelets (7.28 +/- 0.01) is shifted rapidly (discernibly less than or equal to 30 s) and markedly to alkaline pHi (7.62 +/- 0.03) by PMA, that activates protein kinase C and is shifted to acidic pHi (7.05 +/- 0.01) by staurosporine, which inhibits protein kinases. The addition of 5-N-(3-aminophenyl)amiloride reveals that the alkalinization measured is predominantly Na+/H+ exchange with only a minute contribution (delta pHi = 0.012 +/- 0.002 in 1 min) of an acid loading component, at pHi greater than 7.2. The results support recent studies concluding that the set point indeed reflects the phosphorylation state of the Na+/H+ exchanger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号