首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary Experiments were done to test whether N fixation is more sensitive to high soil temperatures in common bean than in cowpea or soybean. Greenhouse experiments compared nodulation, nitrogenase activity, growth and nitrogen accumulation of several host/strain combinations of common bean with the other grain legumes and with N-fertilization, at various root temperatures. Field experiments compared relative N-accumulation (in symbiotic relative to N-fertilized plants) of common bean with cowpea under different soil thermal regimes. N-fertilized beans were unaffected by the higher temperatures, but nitrogen accumulation by symbiotic beans was always more sensitive to high root temperatures (33°C, 33/28°C, 34/28°C compared with 28°C) than were cowpea and soybean symbiosis. Healthy bean nodules that had developed at low temperatures functioned normally in acetylene reduction tests done at 35°C. High temperatures caused little or no suppression of nodule number. However, bean nodules produced at high temperatures were small and had low specific activity. ForP. vulgaris some tolerance to high temperature was observed among rhizobium strains (e.g., CIAT 899 was tolerant) but not among host cultivars. Heat tolerance ofP. acutifolius andP. lunatus symbioses was similar to that of cowpea and soybean. In the field, high surface soil temperatures did not reduce N accumulation in symbiotic beans more than in cowpea, probably because of compensatory nodulation in the deeper and cooler parts of the soil.  相似文献   

2.
Summary The relation of nitrogenase activity (ethylene evolution) to soil temperature or incubation temperature of roots was determined on two genera of swamp plants, namely rice (Oryza sativa) cultivated in tropical climate and reed (Phragmites communis) grown in temperate regions. For both intact rice plants and excised rice roots the optimum temperature was 35°C. On excised roots nitrogenase activity responded more sensitivity to changes in temperature. In contrast to intact rice plants no ethylene evolution occurred on excised roots at 17 and 44°C. On reed roots temperature optimum was between 26 and 30°C which is clearly lower than on rice (35°C). The temperature range in which nitrogen fixation occurred was, however, similar to that of rice, although on a lower level. The results suggest a higher potential of the tropics for associative N2 fixation, while in cooler climates the lower temperatures appear to be a major limiting factor.  相似文献   

3.
Summary Acetylene reduction and H2 evolution by legume root nodules from several plant species depended on incubation temperature; some nodules were active from 2 to 40°C. Acetylene reduction rates differed between plant species, with maximum activity at temperatures between 20 and 30°C forVicia faba, V. sativa, Trifolium pratense, T. subterraneum, Medicago truncatula and soybean, at 35°C forM. sativa and at 40°C for cowpea. OnlyM. sativa and cowpea reduced substantial amounts at 37.5°C. Temperatures from 2 to 10°C only slightly lessened activity ofT. subterraneum andV. sativa nodules. Nitrogenase functioned at temperatures which prevent establishment of other aspects of the symbiosis. The rate of acetylene reduction was constant for several hours at temperatures below 15°C, and activity continued for several days at 2°C for some species, but declined with time at warmer temperatures. Some nitrogenase was denatured at warmer temperatures, but the O2 tension in the assay vial also affected activity. In closed assay vessels nodule respiration decreased the pO2 and reduced nitrogenase activity. Activity was restored by adding O2 or regassing assay vials with air or Ar/O2. When the pO2 was maintained, acetylene reduction and H2 evolution by detached soybean nodules continued unchanged for 6 h.  相似文献   

4.
Summary Inoculated soybeans [Glycine max (L.) Merrill] were grown in controlled environments to evaluate the relationship between temperature and applied NO3−N on growth rates, N accumulation, and acetylene reduction activity during the vegetative growth stage. Soybeans were grown at day/night temperatures of 22/18 and 26/22°C in sand culture with daily applications of 21.4 mM (high) and 2.1 mM (low) NO3−N in a complete nutrient solution for durations of 14, 21, and 42 days after emergence and with an N-free solution. Dry matter and N accumulation were greater at 26/22 than 22/18°C. In general, both increased as the level and duration of applied NO3−N was increased. These increases were attributable to an abbreviation in the interval between emergence and onset of rapid growth. The presence and assimilation of NO3−N, even at the high level, did not inhibit development of functional nodules. Neither mass nor acetylene reduction activity of nodules was reduced by high NO3−N; however, the root mass was increased by NO3−N more than the nodule mass. There was an interaction between temperature and NO3−N on specific nodule activity as measured by acetylene reduction. The specific nodule activity was unaffected by NO3−N at 22/18°C, but at 26/22°C the specific activity was lower in the absence of NO3−N than when NO3−N was present. Apparently, rapid early growth at 26/22°C depleted cotyledonary reserves of N before nodules became active and, thereafter, the plants were unable to develop adequate leaf area to support nodule development and functioning. This result has implications in N fertilization of late-planted soybeans. Paper number 6637 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina, 27650. The research was supported in part by a grant from the North Carolina Soybean Producers Association and by USDA-SEA-CR grant 701-15-26.  相似文献   

5.
We acclimated adults of Takydromus septentrionalis (northern grass lizard) from four localities (populations) under identical thermal conditions to examine whether local thermal conditions have a fixed influence on thermal preference and thermal tolerance in the species. Selected body temperature (Tsel), critical thermal minimum (CTMin), and critical thermal maximum (CTMax) did not differ between sexes and among localities in lizards kept under identical laboratory conditions for ∼5 months, and the interaction effects between sex and locality on these measures were not significant. Lizards acclimated to the three constant temperatures (20, 25, and 35°C) differed in Tsel, CTMin, and CTMax. Tsel, CTMin, and CTMax all shifted upward as acclimation temperature increased, with Tsel shifting from 32.0 to 34.1°C, CTMin from 4.9 to 8.0°C, and CTMax from 42.0 to 44.5°C at the change-over of acclimation temperature from 20 to 35°C. Lizards acclimated to the three constant temperatures also differed in the range of viable body temperatures; the range was widest in the 25°C treatment (38.1°C) and narrowest in the 35°C treatment (36.5°C), with the 20°C treatment in between (37.2°C). The results of this study show that local thermal conditions do not have a fixed influence on thermal preference and thermal tolerance in T. septentrionalis.  相似文献   

6.
The effect of different temperatures on the shoot and root formation in isolated petiole segments of Begonia × cheimantha was determined after 10 weeks on a modified White medium containing 0.1 mg/1 NAA and 0.5 mg/1 BA. Temperature proved to be important for the induction of shoot and root formation. At a constant temperature the best plants were obtained at 18 to21°C. If the temperature was higher, fewer cultures survived and the number of roots and shoots were lower. Lower temperatures inhibited the development of plants. A pretreatment at 15 or 18°C for two to four weeks improved the number and size of the shoots developed during a following 24°C treatment. High temperatures throughout the growing period reduced the number of shoots severely. A pretreatment of three days at 24°C or one day at 28°C reduced the shoot number by 50 %. After seven days at 28°C there was not a single shoot in any of the cultures. However, after two weeks at 15 or 18°C it was no longer possible to inhibit the shoot formation by a 24°C treatment. It is concluded that the formation of shoots in petiole segments takes place during the first two weeks after excision, and that high temperature is detrimental to the shoot initiation process.  相似文献   

7.
Two pea (Pisum sativum L.) cultivars and a kidney bean (Phaseolus vulgaris L.) cultivars were grown in water cultures at different diurnal temperatures (15, 20, 24, 27, 30°C) or at 10°C night temperature combined with various day temperatures (20, 24, 27, 33 or 35°C) in the root medium. The inoculated plants were, more sensitive to the extreme temperatures than the plants supplied with combined nitrogen (KNO3). The middle-European pea cv. Violetta was adapted to somewhat higher root temperatures than the northern one cv. Torsdag II, the latter showing better growth at lower temperatures, when the plants were inoculated with the same Finnish Rhizobinm strain (HA1). Especially at optimum day temperatures the nitrogen fixation and consequently the dry weights of the inoculated plants were greatly increased when the night temperature was lowered. The optimum temperature for the growth of free-living Rhizobium strains (HA1 and H43) for peus was found to be 25°C and that of a strain (P103) for beans somewhat higher. Effective nitrogen fixation by nodulated legumes without a supply of combined nitrogen is achieved only when the optimum temperature range for root function is very close to the optimum for the rhizobia.  相似文献   

8.
The dwarf seagrass Zostera noltii is an important primary producer in Atlantic coastal ecosystems from Mauritania to southern Norway and the Mediterranean Sea. Sessile intertidal organisms existing at the interface between marine and terrestrial environments may be particularly vulnerable to environmental change. In this study, we asked how near to thermal tolerance limits natural populations of Z. noltii are in the Ria Formosa coastal lagoon system in southern Portugal. We recorded the maximum temperatures in the Ria Formosa during the 2007 summer, and conducted experiments to determine the sub-lethal temperature of Z. noltii shoots sampled at two sites located at different tidal heights. Mortality rates and photosynthetic performance were recorded within a range of heat shock temperatures between 35 and 41°C. Survival was recorded ≤37°C, while higher temperatures led to a sudden drop in photosynthetic capacity followed by mortality (shoot loss) that occurred more rapidly with increasing temperatures. At 39°C and above, the rate of shoot mortality in both sites was close to 100%, occurring between 5 and 13 days after the heat shock. Survival was ca. 95 and 90% at 35 and 37°C, respectively. From these results for Z. noltii populations in the Ria Formosa we estimated sub-lethal temperature to be approximately 38°C for Z. noltii, close to the maximum of 36°C recorded in the summer 2007. Considering predicted trajectories in the coming decades, these results raise concern as to the future viability of intertidal Z. noltii populations near the southernmost edge of their distribution. Handling editor: S. M. Thomaz  相似文献   

9.
Hylocereus undatus, which is native to tropical forests experiencing moderate temperatures, would not be expected to tolerate the extremely high temperatures that can be tolerated by cacti native to deserts. Nevertheless, total daily net CO2 uptake by this hemiepiphytic cactus, which is widely cultivated for its fruits, was optimal at day/night air temperatures of 30/20°C, temperatures that are higher than those optimal for daily net CO2 uptake by cacti native to arid and semiarid areas. Exposure to 35/25°C for 30 weeks led to lower net CO2 uptake than at 10 weeks; exposure to 40/30°C led to considerable necrosis visible on the stems at 6 weeks and nearly complete browning of the stems by 19 weeks. Dry mass gain over 31 weeks was greatest for plants at 30/20°C, with root growth being especially noteworthy and root dry mass gain representing an increasing percentage of plant dry mass gain as day/night air temperatures were increased. Viability of chlorenchyma cells, assayed by the uptake of the vital stain neutral red into the central vacuoles, was decreased 50 percent by a one‐hour treatment at 55°C compared with an average of 64°C for 18 species of cacti native to deserts. The lower high‐temperature tolerance for H. undatus reflected its low high‐temperature acclimation of only 1.4°C as growth temperatures were raised by 10°C compared with an average acclimation of 5.3°C for the other 18 species of cacti. Thus, this tropical hemiepiphytic cactus is not adapted to day/night air temperatures above ca 40/30°C, although its net CO2 uptake is optimal at the relatively high day/night air temperatures of 30/20°C.  相似文献   

10.
Abstract Previous studies suggest that high temperature stress on wheat (Triticum aestivum L.) involves root processes and acceleration of monocarpic senescence. Physiological changes in wheat roots and shoots were investigated to elucidate their relationship to injury from elevated temperatures after anthesis. Plants were grown under uniform conditions until 10 d after anthesis, when shoot/root regimes of 25°C/25°C, 25°C/35°C, 35°C/25°C and 35°C/35°C were imposed. Growth and senescence of shoots and grain were influenced more by root temperatures than by shoot temperatures. High root temperatures increased activities of protease and RNasc enzymes, and loss of chlorophyll, protein and RNA from shoots, whereas low root temperatures had opposite effects. High root temperatures appeared to induce shoot senescence directly. High shoot temperatures probably disrupted root processes, including export of cytokinins, and induced high leaf protease activity, senescence and cessation of grain development. The authors concluded that responses of wheat to high temperatures, whether of roots or shoots, are manifested as acceleration of senescence and may be mediated by roots during grain development.  相似文献   

11.
Summary Anther-derived rice (Oryza sativa L. ssp. japonica variety Yerua P.A.) plants were obtained after cryopreservation by an encapsulation/dehydration technique. Immature anthers, excised from spikelets pretreated at 8°C for 8d, were encapsulated in calcium alginate beads. The beads were cultured on N6 medium with 11.5 μM naphthalenaecetic acid (NAA) and 2.3 μM 6-furfurylaminopurine (KIN). Fifteen percent of the encapsulated anthers formed calluses when pretreated with sucrose for 3 d in liquid medium, desiccated on silica gel, slowly cooled to −30°C, immersed in liquid nitrogen (LN), thawed, and recultured. The cryopreserved encapsulated anthers produced 1.67 shoots/callus, in contrast to the control (non-cooled encapsulated anthers), which produced 6 shoots/callus. Eighty percent of the plantlets developed into normal plants after being transferred to greenhouse conditions. Histological observations showed that the origin of the plants was not modified by the cryopreservation process.  相似文献   

12.
Lolium perenne L. cv. 23 (perennial ryegrass) plants were grown in flowing solution culture and acclimatized over 49 d to low root temperature (5°C) prior to treatment at root temperatures of 3, 5, 7 and 9°C for 41 d with common air temperature of 20/15°C day/night and solution pH 5·0. The effects of root temperature on growth, uptake and assimilation of N were compared with N supplied as either NH4 or NO3 at 10 mmol m?3. At any given temperature, the relative growth rate (RGR) of roots exceeded that of shoots, thus the root fraction (Rf) increased with time. These effects were found in plants grown with the two N sources. Plants grown at 3 and 5°C had very high dry matter contents as reflected by the fresh weight: freeze-dried weight ratio. This ratio increased sharply, especially in roots at 7 and 9°C. Expressed on a fresh weight basis, there was no major effect of root temperature on the [N] of plants receiving NHJ but at any given temperature, the [N] in plants grown with NHJ was significantly greater than in those grown with NO3. The specific absorption rate (SAR) of NH+4 was greater at all temperatures than SAR-NO3. In plants grown with NH+, 3–5% of the total N was recovered as NH+4, whereas in those grown with NO?3 the unassimilated NO?3 rose sharply between 7 and 9°C to become 14 and 28% of the total N in shoots and roots, respectively. The greater assimilation of NH+4 lead to concentrations of insoluble reduced N (= protein) which were 125 and 20% greater, in roots and shoots, respectively, than in NO?3-grown plants. Plants grown with NH+4 had very much greater glutamine and asparagine concentrations in both roots and shoots, although other amino acids were more similar in Concentration to those in NO?3 grown plants. It is concluded that slow growth at low root temperature is not caused by restriction of the absorption or assimilation of either NH+4 or NO?3. The additional residual N (protein) in NH+4 grown plants may serve as a labile store of N which could support growth when external N supply becomes deficient.  相似文献   

13.
Physiological responses of Opuntia ficus-indica to growth temperature   总被引:2,自引:0,他引:2  
The influences of various day/night air temperatures on net CO2 uptake and nocturnal acid accumulation were determined for Opuntia ficus-indica, complementing previous studies on the water relations and responses to photosynthetically active radiation (PAR) for this widely cultivated cactus. As for other Crassulacean acid metabolism (CAM) plants, net nocturnal CO2 uptake had a relatively low optimal temperature, ranging from 11°C for plants grown at day/night air temperatures of 10°C/0°C to 23°C at 45°C/35°C. Stomatal opening, which occurred essentially only at night and was measured by changes in water vapor conductance, progressively decreased as the measurement temperature was raised. The CO2 residual conductance, which describes chlorenchyma properties, had a temperature optimum a few degrees higher than the optimum for net CO2 uptake at all growth temperatures. Nocturnal CO2 uptake and acid accumulation summed over the whole night were maximal for growth temperatures near 25°C/15°C, CO2 uptake decreasing more rapidly than acid accumulation as the growth temperature was raised. At day/night air temperatures that led to substantial nocturnal acid accumulation (25°C/15°C.). 90% saturation of acid accumulation required a higher total daily PAR than at non-optimal growth temperatures (10°C/0°C and 35°C/25°C). Also, the optimal temperature of net CO2 uptake shifted downward when the plants were under drought conditions at all three growth temperatures tested, possibly reflecting an increased fractional importance of respiration at the higher temperatures during drought. Thus, water status, ambient PAR, and growth temperatures must all be considered when predicting the temperature response of gas exchange for O. ficus-indica and presumably for other CAM plants.  相似文献   

14.
Laboratory, growth chamber and field experiments were conducted to select among 226 isolates of Rhizobium meliloti for the ability to grow, nodulate alfalfa (Medicago sativa L.) and support N2-dependent plant growth between 9° and 12°C. There was wide variation in the abilities of R. meliloti isolates to grow and form nodules at 10°C. Culture doubling times (td) varied from 1 to 155h, and the number of nodules formed on alfalfa in growth pouches in 2 weeks varied from 0 to 3.8 nodules per plant. Nodulation occurred at 9°C, but there was no significant N2-dependent plant growth at this temperature. However, several isolates of R. meliloti had the ability to nodulate alfalfa and produce N2-dependent growth at root temperatures between 10° and 12°C root temperature than did 14 other isolates tested. In field experiments, inoculation with strain NRG-34 resulted in greater nodule numbers, nodule weight, proportion of nodules occupied by the inoculant strain and plant weight than did inoculation with a commercial strain (NRG-185). These results permitted selection of a strain with better low-temperature competitive abilities than the currently available commercial strains.  相似文献   

15.
Indian citrus ringspot virus (ICRSV) is known to cause serious disease problem in Kinnow (Citrus nobilis Lour × C. deliciosa Tenora) plants. This work reports the elimination of ICRSV by using thermotherapy coupled with shoot tip grafting in vitro. Nodal segments from infected mother plants (indexed by indirect ELISA and RT-PCR) were treated both in water bath and moist hot air at different temperatures viz. 40, 45 and 50°C for 30, 60 and 120 min and cultured on MS medium containing 2-iP (1 mg/l) and malt extract (800 mg/l). Shoot tips were excised from the nodal sprouts and grafted on to rough lemon (C. jambhiri) rootstock under aseptic conditions. Water bath treatment was found to be more effective as compared to moist hot air treatment as maximum number of ICRSV free plants (36.84%) were obtained by grafting the tips (0.7 mm) taken from the nodal segments treated at 50°C in water bath for 2 h. In an alternate treatment regime, 1-year-old infected plants were kept at various temperatures viz.36, 38 and 40°C in a thermotherapy chamber. Maximum of 60% ICRSV free plants were obtained by grafting the tips (0.7 mm) from the plants placed at 40°C followed by the plants placed at 38°C (59.09%) and the least was observed in case of the plants placed at 36°C (40.74%). Only those plants/plantlets were considered virus free, which showed negative reaction both in Indirect ELISA and RT-PCR.  相似文献   

16.
Low root temperature effects on vegetative growth of soybean (Harosoy 63 × Rhizobium japonicum USDA 16) were examined in 35 day old plants exposed to temperatures of 15°C (shoots at 25°C) for an 11 day period. Duing this period various aspects of C and N assimilation and partitioning were monitored including shoot night and nodulated root respiration, C and N partitioning to six plant parts, C2H2 reduction, H2 evolution, leaf area, transpiration, net photosynthesis, and N2 fixation. The low temperature treatment resulted in a decrease in the net rate of N2 fixation but nitrogenase relative efficiency increased. In response, the plant retained N in the tissues of the nodulated root and decreased N partitioning to young shoot tissues, thereby inducing the remobilization of N from older leaves, and reducing leaf area development. The leaf area specific rate of net photosynthesis was not affected over the study period; however, shoot and nodulated root respiration declined. Consequently, C accumulated in mature leaves and stems, partly in the form of increased starch reserves. Three possibilities were considered for increasing low temperature tolerance in nodulated soybeans: (a) decrease in temperature optima for nitrogenase, (b) increased development of nodules and N2 fixation capacity at low temperature, and (c) alterations in the pattern of C and N partitioning in response to low temperature conditions.  相似文献   

17.
Soybean plants (Glycine max [L.] Merr) were grown in sand culture with 2 millimolar nitrate for 37 days and then supplied with 15 millimolar nitrate for 7 days. Control plants received 2 millimolar nitrate and 13 millimolar chloride and, after the 7-day treatment period, all plants were supplied with nil nitrate. The temporary treatment with high nitrate inhibited nitrogenase (acetylene reduction) activity by 80% whether or not Rhizobium japonicum bacteroids had nitrate reductase (NR) activity. The pattern of nitrite accumulation in nodules formed by NR+ rhizobia was inversely related to the decrease and recovery of nitrogenase activity. However, nitrite concentration in nodules formed by NR rhizobia appeared to be too low to explain the inhibition of nitrogenase. Carbohydrate composition was similar in control nodules and nodules receiving 15 millimolar nitrate suggesting that the inhibition of nitrogenase by nitrate was not related to the availability of carbohydrate.

Nodules on plants treated with 15 millimolar nitrate contained higher concentrations of amino N and, especially, ureide N than control nodules and, after withdrawal of nitrate, reduced N content of treated and control nodules returned to similar levels. The accumulation of N2 fixation products in nodules in response to high nitrate treatment was observed with three R. japonicum strains, two NR+ and one NR. The high nitrate treatment did not affect the allantoate/allantoin ratio or the proportion of amino N or ureide N in bacteroids (4%) and cytosol (96%).

  相似文献   

18.
Regulation of nitrogenase is not sufficiently understood to engineer symbioses that achieve a high N2 fixation rate under high levels of soil N. In the present hydroponic growth chamber study we evaluated the hypothesis that nitrogenase activity and the extent of its inhibition by NO3 may be related to both N and carbohydrate levels in plant tissues. A wide range of C:N ratios in various plant tissues (8.5 to 41.0, 1.9 to 3.7, and 0.8 to 1.8, respectively, in shoots, roots, and nodules) was generated through a combination of light and CO2 levels, using two soybean genotypes differing in C and N acquisition rates. For both genotypes, N concentration in shoots was negatively correlated to nitrogenase activity and positively correlated to the extent of nitrogenase inhibition by NO3. Furthermore, nitrogenase activity was positively correlated to total nonstructural carbohydrates (TNC) and C:N ratio in shoot and nodules for both genotypes. Nitrogenase inhibition by NO3 was negatively correlated to TNC and C:N ratio in shoots, but not in nodules for both genotypes. At the onset of nitrogenase inhibition by NO3, C:N ratio declined in shoots but not in nodules. These results indicate that both C and N levels in plant tissues are involved in regulation of nitrogenase activity. We suggest that the level of nitrogenase activity may be determined by (1) N needs (as determined by shoot C:N) and (2) availability of carbohydrates in nodules. Modulation of the nitrogenase activity may occur through sensing changes in plant N, i.e. changes in shoot C:N ratio, possibly through some phloem translocatable compound(s).  相似文献   

19.
Regulation of nitrogenase is not sufficiently understood to engineer symbioses that achieve a high N2 fixation rate under high levels of soil N. In the present hydroponic growth chamber study we evaluated the hypothesis that nitrogenase activity and the extent of its inhibition by NO3 may be related to both N and carbohydrate levels in plant tissues. A wide range of C:N ratios in various plant tissues (8.5 to 41.0, 1.9 to 3.7, and 0.8 to 1.8, respectively, in shoots, roots, and nodules) was generated through a combination of light and CO2 levels, using two soybean genotypes differing in C and N acquisition rates. For both genotypes, N concentration in shoots was negatively correlated to nitrogenase activity and positively correlated to the extent of nitrogenase inhibition by NO3. Furthermore, nitrogenase activity was positively correlated to total nonstructural carbohydrates (TNC) and C:N ratio in shoot and nodules for both genotypes. Nitrogenase inhibition by NO3 was negatively correlated to TNC and C:N ratio in shoots, but not in nodules for both genotypes. At the onset of nitrogenase inhibition by NO3, C:N ratio declined in shoots but not in nodules. These results indicate that both C and N levels in plant tissues are involved in regulation of nitrogenase activity. We suggest that the level of nitrogenase activity may be determined by (1) N needs (as determined by shoot C:N) and (2) availability of carbohydrates in nodules. Modulation of the nitrogenase activity may occur through sensing changes in plant N, i.e. changes in shoot C:N ratio, possibly through some phloem translocatable compound(s).  相似文献   

20.
Airborne limonene confers limited thermotolerance to Quercus ilex   总被引:1,自引:0,他引:1  
The purpose of the study was to test the possible and controversial thermotolerance role of monoterpene production and emission and the related responses of antioxidants. Quercus ilex seedlings were exposed to a ramp of temperatures of 5°C steps from 25 to 50°C growing with and without limonene fumigation (7.5 µl l−1). Net photosynthetic rates, maximal photochemical efficiency of PSII (Fv/Fm), oxidation state of ascorbic acid, and lipid peroxidation estimated by malondialdehyde concentrations of limonene-fumigated (LF) plants did not significantly differ from control (C) plants. No consistent changes in emissions of the other monoterpenes, α-pinene, β-phellandrene, β-pinene or β-myrcene were found. However, slight differences were found in the concentration of antioxidants. The amounts of α-tocopherol did not change or even tended to decrease at high temperatures in LF plants whereas they tended to increase by approximately 60% at 45 and 50°C relative to 25°C in C plants. Ascorbic acid reached its maximum concentration only at 45°C in LF plants whereas it reached its maximum at 35°C in C plants. β-Carotene did not decrease at high temperatures in LF plants whereas it decreased by approximately 15% at 45–50°C in C plants. Brown pigment index (BPI), an optical indicator of tissue oxidative processes, was lower in LF plants than in C plants. The photochemical reflectance index (PRI), an optical indicator of photosynthetic light use efficiency, was higher for LF plants than for C plants at elevated temperatures. Visual leaf damage (browning) tended to be less in LF plants than in C plans although not significantly (26.5 ± 8.5 versus 16.2 ± 4.8%). These results show that limonene does not confer clear and strong thermotolerance but might have some minor role. These results are in agreement with previous indications of weaker thermotolerance effect of monoterpenes than of isoprene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号