首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
The classical receptive field in the primary visual cortex have been successfully explained by sparse activation of relatively independent units, whose tuning properties reflect the statistical dependencies in the natural environment. Robust surround modulation, emerging from stimulation beyond the classical receptive field, has been associated with increase of lifetime sparseness in the V1, but the system-wide modulation of response strength have currently no theoretical explanation. We measured fMRI responses from human visual cortex and quantified the contextual modulation with a decorrelation coefficient (d), derived from a subtractive normalization model. All active cortical areas demonstrated local non-linear summation of responses, which were in line with hypothesis of global decorrelation of voxels responses. In addition, we found sensitivity to surrounding stimulus structure across the ventral stream, and large-scale sensitivity to the number of simultaneous objects. Response sparseness across voxel population increased consistently with larger stimuli. These data suggest that contextual modulation for a stimulus event reflect optimization of the code and perhaps increase in energy efficiency throughout the ventral stream hierarchy. Our model provides a novel prediction that average suppression of response amplitude for simultaneous stimuli across the cortical network is a monotonic function of similarity of response strengths in the network when the stimuli are presented alone.  相似文献   

3.
The apparent receptive field characteristics of sensory neurons depend on the statistics of the stimulus ensemble—a nonlinear phenomenon often called contextual modulation. Since visual cortical receptive fields determined from simple stimuli typically do not predict responses to complex stimuli, understanding contextual modulation is crucial to understanding responses to natural scenes. To analyze contextual modulation, we examined how apparent receptive fields differ for two stimulus ensembles that are matched in first- and second-order statistics, but differ in their feature content: one ensemble is enriched in elongated contours. To identify systematic trends across the neural population, we used a multidimensional scaling method, the Procrustes transformation. We found that contextual modulation of receptive field components increases with their spatial extent. More surprisingly, we also found that odd-symmetric components change systematically, but even-symmetric components do not. This symmetry dependence suggests that contextual modulation is driven by oriented On/Off dyads, i.e., modulation of the strength of intracortically-generated signals. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
The visual topography within striate and lateral extrastriate visual cortices was studied in adult hamsters. The cortical areas 17 and 18a in the left hemisphere were electrophysiologically mapped upon stimulation of the right eye, correlating receptive field positions in the visual field with cortical recording sites. Reference lesions were placed at selected cortical sites. Like in rats and other mammals, the lateral extrastriate cortex contained multiple representations of the visual field. Rostral area 18a contained the rostrolateral maps, with medial and lateral divisions. More caudally and sharing a common border with V1, maps in lateromedial, posterolateral and posterior areas were found. More laterally and forming a "third tier" of visual maps, anterolateral, laterolateral-anterior, laterolateral and laterolateral-posterior areas were found. There was also an indication of a possible pararhinal map. The plan so defined is virtually identical to that of rats. The results may be useful to understand a basic mammalian plan in the organization of the visual cortex.  相似文献   

6.
In primates, the area of primary visual cortex representing a fixed area of visual space decreases with increasing eccentricity. We identify visual situations to which this inhomogeneous retino-cortical mapping is well adapted and study their relevance during natural vision and development. We assume that cortical activations caused by stationary objects during self-motion along the direction of gaze travel on average with constant speed across the cortical surface, independent of retinal eccentricity. This is the case if the distribution of objects corresponds to an ellipsoid with the observer in its center. We apply the resulting flow field to train a simple network of pulse coding neurons with Hebbian learning and demonstrate that the density of learned receptive field centers is in close agreement with primate retino-cortical magnification. In addition, the model reproduces the increase of receptive field size and the decrease of its peak sensitivity with increasing eccentricity. Our results suggest that self-motion may have played an important role in the evolution of the visual system and that cortical magnification can be refined and stabilized by Hebbian learning mechanisms in ontogenesis under natural viewing conditions.  相似文献   

7.
System identification techniques—projection pursuit regression models (PPRs) and convolutional neural networks (CNNs)—provide state-of-the-art performance in predicting visual cortical neurons’ responses to arbitrary input stimuli. However, the constituent kernels recovered by these methods are often noisy and lack coherent structure, making it difficult to understand the underlying component features of a neuron’s receptive field. In this paper, we show that using a dictionary of diverse kernels with complex shapes learned from natural scenes based on efficient coding theory, as the front-end for PPRs and CNNs can improve their performance in neuronal response prediction as well as algorithmic data efficiency and convergence speed. Extensive experimental results also indicate that these sparse-code kernels provide important information on the component features of a neuron’s receptive field. In addition, we find that models with the complex-shaped sparse code front-end are significantly better than models with a standard orientation-selective Gabor filter front-end for modeling V1 neurons that have been found to exhibit complex pattern selectivity. We show that the relative performance difference due to these two front-ends can be used to produce a sensitive metric for detecting complex selectivity in V1 neurons.  相似文献   

8.
NJ Priebe  D Ferster 《Neuron》2012,75(2):194-208
Orientation selectivity in the primary visual cortex (V1) is a receptive field property that is at once simple enough to make it amenable to experimental and theoretical approaches and yet complex enough to represent a significant transformation in the representation of the visual image. As a result, V1 has become an area of choice for studying cortical computation and its underlying mechanisms. Here we consider the receptive field properties of the simple cells in cat V1-the cells that receive direct input from thalamic relay cells-and explore how these properties, many of which are highly nonlinear, arise. We have found that many receptive field properties of V1 simple cells fall directly out of Hubel and Wiesel's feedforward model when the model incorporates realistic neuronal and synaptic mechanisms, including threshold, synaptic depression, response variability, and the membrane time constant.  相似文献   

9.
Visual neurons have spatial receptive fields that encode the positions of objects relative to the fovea. Because foveate animals execute frequent saccadic eye movements, this position information is constantly changing, even though the visual world is generally stationary. Interestingly, visual receptive fields in many brain regions have been found to exhibit changes in strength, size, or position around the time of each saccade, and these changes have often been suggested to be involved in the maintenance of perceptual stability. Crucial to the circuitry underlying perisaccadic changes in visual receptive fields is the superior colliculus (SC), a brainstem structure responsible for integrating visual and oculomotor signals. In this work we have studied the time-course of receptive field changes in the SC. We find that the distribution of the latencies of SC responses to stimuli placed outside the fixation receptive field is bimodal: The first mode is comprised of early responses that are temporally locked to the onset of the visual probe stimulus and stronger for probes placed closer to the classical receptive field. We suggest that such responses are therefore consistent with a perisaccadic rescaling, or enhancement, of weak visual responses within a fixed spatial receptive field. The second mode is more similar to the remapping that has been reported in the cortex, as responses are time-locked to saccade onset and stronger for stimuli placed in the postsaccadic receptive field location. We suggest that these two temporal phases of spatial updating may represent different sources of input to the SC.  相似文献   

10.
11.
Orientation tuning of 148 primary visual cortical neurons was studied in acute experiments on unanesthetized, curarized cats by analysis of their spike responses to flashes in a receptive field of a bar of light of optimal size. Orientation tuning of 88 neurons (59%) was found to be bimodal: Besides the principal preferred orientation there was a second, making an angle with the first. The second tuning maximum in some cases (64%) was exhibited only with a change in stimulus intensity or background brightness. Analysis of orientation tuning by the time-slice method, i.e., on the basis of individual cuts of the spike trace, showed double tuning to be present in 69% of cases only at certain moments after the beginning of stimulation. The results of analysis of the model showed that the double orientation tuning effect may be the result of the specific configuration of the receptive field, the use of a stimulus longer than the receptive field, the presence of a series of alternating excitatory and inhibitory zones in the receptive field, and also of end inhibitory zones on the narrow ends of the field. The unequal change in zones of the receptive fields in time explains the appearance of double orientation tuning in individual fragments of the spike trace. The functional role of double, "cross-wise" tuning in some primary visual cortical neurons and their role in the detection of the features of visual patterns are discussed.  相似文献   

12.
We review the evidence of long-range contextual modulation in V1. Populations of neurons in V1 are activated by a wide variety of stimuli outside of their classical receptive fields (RF), well beyond their surround region. These effects generally involve extra-RF features with an orientation component. The population mapping of orientation preferences to the upper layers of V1 is well understood, as far as the classical RF properties are concerned, and involves organization into pinwheel-like structures. We introduce a novel hypothesis regarding the organization of V1’s contextual response. We show that RF and extra-RF orientation preferences are mapped in related ways. Orientation pinwheels are the foci of both types of features. The mapping of contextual features onto the orientation pinwheel has a form that recapitulates the organization of the visual field: an iso-orientation patch within the pinwheel also responds to extra-RF stimuli of the same orientation. We hypothesize that the same form of mapping applies to other stimulus properties that are mapped out in V1, such as colour and contrast selectivity. A specific consequence is that fovea-like properties will be mapped in a systematic way to orientation pinwheels. We review the evidence that cytochrome oxidase blobs comprise the foci of this contextual remapping for colour and low contrasts. Neurodynamics and motion in the visual field are argued to play an important role in the shaping and maintenance of this type of mapping in V1.  相似文献   

13.
Ito M  Gilbert CD 《Neuron》1999,22(3):593-604
The response properties of cells in the primary visual cortex (V1) were measured while the animals directed their attention either to the position of the neuron's receptive field (RF), to a position away from the RF (focal attention), or to four locations in the visual field (distributed attention). Over the population, varying attentional state had no significant effect on the response to an isolated stimulus within the RF but had a large influence on the facilitatory effects of contextual lines. We propose that the attentional modulation of contextual effects represents a gating of long range horizontal connections within area V1 by feedback connections to V1 and that this gating provides a mechanism for shaping responses under attention to stimulus configuration.  相似文献   

14.
The sparse coding hypothesis has enjoyed much success in predicting response properties of simple cells in primary visual cortex (V1) based solely on the statistics of natural scenes. In typical sparse coding models, model neuron activities and receptive fields are optimized to accurately represent input stimuli using the least amount of neural activity. As these networks develop to represent a given class of stimulus, the receptive fields are refined so that they capture the most important stimulus features. Intuitively, this is expected to result in sparser network activity over time. Recent experiments, however, show that stimulus-evoked activity in ferret V1 becomes less sparse during development, presenting an apparent challenge to the sparse coding hypothesis. Here we demonstrate that some sparse coding models, such as those employing homeostatic mechanisms on neural firing rates, can exhibit decreasing sparseness during learning, while still achieving good agreement with mature V1 receptive field shapes and a reasonably sparse mature network state. We conclude that observed developmental trends do not rule out sparseness as a principle of neural coding per se: a mature network can perform sparse coding even if sparseness decreases somewhat during development. To make comparisons between model and physiological receptive fields, we introduce a new nonparametric method for comparing receptive field shapes using image registration techniques.  相似文献   

15.
16.
Defining the exact mechanisms by which the brain processes visual objects and scenes remains an unresolved challenge. Valuable clues to this process have emerged from the demonstration that clusters of neurons ("modules") in inferior temporal cortex apparently respond selectively to specific categories of visual stimuli, such as places/scenes. However, the higher-order "category-selective" response could also reflect specific lower-level spatial factors. Here we tested this idea in multiple functional MRI experiments, in humans and macaque monkeys, by systematically manipulating the spatial content of geometrical shapes and natural images. These tests revealed that visual spatial discontinuities (as reflected by an increased response to high spatial frequencies) selectively activate a well-known place-selective region of visual cortex (the "parahippocampal place area") in humans. In macaques, we demonstrate a homologous cortical area, and show that it also responds selectively to higher spatial frequencies. The parahippocampal place area may use such information for detecting object borders and scene details during spatial perception and navigation.  相似文献   

17.
Sparse coding algorithms trained on natural images can accurately predict the features that excite visual cortical neurons, but it is not known whether such codes can be learned using biologically realistic plasticity rules. We have developed a biophysically motivated spiking network, relying solely on synaptically local information, that can predict the full diversity of V1 simple cell receptive field shapes when trained on natural images. This represents the first demonstration that sparse coding principles, operating within the constraints imposed by cortical architecture, can successfully reproduce these receptive fields. We further prove, mathematically, that sparseness and decorrelation are the key ingredients that allow for synaptically local plasticity rules to optimize a cooperative, linear generative image model formed by the neural representation. Finally, we discuss several interesting emergent properties of our network, with the intent of bridging the gap between theoretical and experimental studies of visual cortex.  相似文献   

18.
Neural responses to visual stimuli are strongest in the classical receptive field, but they are also modulated by stimuli in a much wider region. In the primary visual cortex, physiological data and models suggest that such contextual modulation is mediated by recurrent interactions between cortical areas. Outside the primary visual cortex, imaging data has shown qualitatively similar interactions. However, whether the mechanisms underlying these effects are similar in different areas has remained unclear. Here, we found that the blood oxygenation level dependent (BOLD) signal spreads over considerable cortical distances in the primary visual cortex, further than the classical receptive field. This indicates that the synaptic activity induced by a given stimulus occurs in a surprisingly extensive network. Correspondingly, we found suppressive and facilitative interactions far from the maximum retinotopic response. Next, we characterized the relationship between contextual modulation and correlation between two spatial activation patterns. Regardless of the functional area or retinotopic eccentricity, higher correlation between the center and surround response patterns was associated with stronger suppressive interaction. In individual voxels, suppressive interaction was predominant when the center and surround stimuli produced BOLD signals with the same sign. Facilitative interaction dominated in the voxels with opposite BOLD signal signs. Our data was in unison with recently published cortical decorrelation model, and was validated against alternative models, separately in different eccentricities and functional areas. Our study provides evidence that spatial interactions among neural populations involve decorrelation of macroscopic neural activation patterns, and suggests that the basic design of the cerebral cortex houses a robust decorrelation mechanism for afferent synaptic input.  相似文献   

19.
Visual field maps in human cortex   总被引:7,自引:0,他引:7  
Wandell BA  Dumoulin SO  Brewer AA 《Neuron》2007,56(2):366-383
Much of the visual cortex is organized into visual field maps: nearby neurons have receptive fields at nearby locations in the image. Mammalian species generally have multiple visual field maps with each species having similar, but not identical, maps. The introduction of functional magnetic resonance imaging made it possible to identify visual field maps in human cortex, including several near (1) medial occipital (V1,V2,V3), (2) lateral occipital (LO-1,LO-2, hMT+), (3) ventral occipital (hV4, VO-1, VO-2), (4) dorsal occipital (V3A, V3B), and (5) posterior parietal cortex (IPS-0 to IPS-4). Evidence is accumulating for additional maps, including some in the frontal lobe. Cortical maps are arranged into clusters in which several maps have parallel eccentricity representations, while the angular representations within a cluster alternate in visual field sign. Visual field maps have been linked to functional and perceptual properties of the visual system at various spatial scales, ranging from the level of individual maps to map clusters to dorsal-ventral streams. We survey recent measurements of human visual field maps, describe hypotheses about the function and relationships between maps, and consider methods to improve map measurements and characterize the response properties of neurons comprising these maps.  相似文献   

20.
Siddiqui MS  Bhaumik B 《PloS one》2011,6(10):e24997
Decades of experimental studies are available on disparity selective cells in visual cortex of macaque and cat. Recently, local disparity map for iso-orientation sites for near-vertical edge preference is reported in area 18 of cat visual cortex. No experiment is yet reported on complete disparity map in V1. Disparity map for layer IV in V1 can provide insight into how disparity selective complex cell receptive field is organized from simple cell subunits. Though substantial amounts of experimental data on disparity selective cells is available, no model on receptive field development of such cells or disparity map development exists in literature. We model disparity selectivity in layer IV of cat V1 using a reaction-diffusion two-eye paradigm. In this model, the wiring between LGN and cortical layer IV is determined by resource an LGN cell has for supporting connections to cortical cells and competition for target space in layer IV. While competing for target space, the same type of LGN cells, irrespective of whether it belongs to left-eye-specific or right-eye-specific LGN layer, cooperate with each other while trying to push off the other type. Our model captures realistic 2D disparity selective simple cell receptive fields, their response properties and disparity map along with orientation and ocular dominance maps. There is lack of correlation between ocular dominance and disparity selectivity at the cell population level. At the map level, disparity selectivity topography is not random but weakly clustered for similar preferred disparities. This is similar to the experimental result reported for macaque. The details of weakly clustered disparity selectivity map in V1 indicate two types of complex cell receptive field organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号