首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cassava rootstocks of varieties UnB 201 and UnB 122 grafted with scions of Manihot fortalezensis were prepared for anatomic study. The roots were cut, stained with safranin and alcian blue, and examined microscopically, comparing them with sections taken from ungrafted roots. There was a significant decrease in number of pericyclic fibers, vascular vessels and tyloses in rootstocks. They exhibited significant larger vessels. These changes in anatomic structure are a consequence of genetic effects caused by transference of genetic material from scion to rootstock. The same ungrafted species was compared. This is the first report on anatomic changes due to grafting in cassava.  相似文献   

3.
The analysis of the anatomical characteristics of tree rings of the Pinus sibirica scions and Pinus sylvestris rootstocks is presented. The main anatomical features maintain the seasonal dynamics characteristic of the reference (ungrafted) trees of scion and rootstock, pointing to the stability of the genetic control of the xylem differentiation. However, various anatomical characteristics are reduced for rootstocks and increased for scions relative to the reference trees. A mechanism consistent with our results is that the graft union zone creates a barrier for the ascending and descending transport of substances, including phytohormones. The reaction of the scion and rootstock to climatic factors is weakened relative to the reaction of the reference trees. Thus, the presumed shift towards phytohormone disbalance reduces the influence of external factors on xylem differentiation. The interannual variation of the individual characteristics of the scions and rootstocks is increased relative to the reference trees, reflecting either the influence of the graft partners on each other or the non-uniform distribution of the growth regulators across the graft union. Thus, heterografts can be used to evaluate the interaction of the internal and external mechanisms of xylem differentiation.  相似文献   

4.
The objective of this study was to determine the roles of shoot and root in the regulation of premature leaf senescence induced by potassium (K) deficiency in cotton (Gossypium hirsutum L.). Two contrasting cultivars (CCRI41, more sensitive to K deficiency; and SCRC22, a less sensitive cultivar) were selected for self- and reciprocal-grafting, using standard grafting (one scion/one rootstock), Y grafting (two scions/one rootstock) and inverted Y grafting (one scion/two rootstocks) at the seedling stage. Standard grafting was studied in the field in 2007 and 2008. There were no obvious differences in senescence between CCRI41 and SCRC22 scions while supplied with sufficient K. However, SCRC22 scions showed significantly greater K content, SPAD values (chlorophyll content), soluble protein content and net photosynthetic rates than CCRI41 scions while grown in K deficient solution or soil, regardless of rootstock cultivars, grafting types, growth stage and growth conditions. Also, SCRC22 scions had greater yield and less variation in boll weight either between upper- and lower sympodials, or between proximal and distal fruit positions from the main stem in the field under K deficiency, probably owing to reduced leaf senescence. Although the effect of rootstocks on leaf senescence under K deficiency was significant in some cases, the scion cultivars explained the highest percentage of variations within grafting treatments. The shoot-to-root feedback signal(s), rather than high shoot demand for K nutrition, was involved in the shoot regulation of premature senescence in cotton plants, achieved possibly by altering root K uptake.  相似文献   

5.
Environmental stresses that perturb plant water relations influence abscisic acid (ABA) concentrations, but it is unclear whether long‐distance ABA transport contributes to changes in local ABA levels. To determine the physiological relevance of ABA transport, we made reciprocal‐ and self‐grafts of ABA‐deficient flacca mutant and wild‐type (WT) tomato plants, in which low phosphorus (P) conditions decreased ABA concentrations while salinity increased ABA concentrations. Whereas foliar ABA concentrations in the WT scions were rootstock independent under conditions, salinity resulted in long‐distance transport of ABA: flacca scions had approximately twice as much ABA when grafted on WT rootstocks compared to flacca rootstocks. Root ABA concentrations were scion dependent: both WT and flacca rootstocks had less ABA with the flacca mutant scion than with the WT scion under conditions. In WT scions, whereas rootstock genotype had limited effects on stomatal conductance under conditions, a flacca rootstock decreased leaf area of stressed plants, presumably due to attenuated root‐to‐shoot ABA transport. In flacca scions, a WT rootstock decreased stomatal conductance but increased leaf area of stressed plants, likely due to enhanced root‐to‐shoot ABA transport. Thus, long‐distance ABA transport can affect responses in distal tissues by changing local ABA concentrations.  相似文献   

6.
7.
Homografting of Arabidopsis thaliana scions on stocks of A. thaliana and heterografting on other species were used to study the compatibility and the ontogeny of graft union formation. Highly compatible homografting with scions of young leafy inflorescence stems was obtained on stocks of inflorescence stems growing from large 3-month-old A. thaliana plants. Histologic analysis revealed four developmental stages of graft union formation in Arabidopsis homografting: (1) development of a necrotic layer, (2) callus proliferation in the grafted scion, (3) differentiation of new vascular tissues within the scion, and (4) a full vascular graft union formation between the scion and the stock. Vascular connections were formed within the callus bridge between rootstocks and scions 15 days after grafting. Heterografts of Arabidopsis on two members of Brassicaceae, cabbage (Brassica) and radish (Raphanus), showed partial incompatible interaction with a lower level of vascular differentiation. Arabidopsis grafting on tomato (Solanaceae) rootstock showed complete incompatibility and limited noncontinuous differentiation of new vascular tissues that did not cross the scion/stock boundary. Although lacking scion/stock vascular connections, Arabidopsis scions grafted onto tomato rootstock flowered and produced seeds. This may indicate some nonvascular functional connections between the two plants, probably of parenchyma cells, further emphasizing the usefulness of Arabidopsis as a model plant for studying various levels of the complicated scion/stock relationships expressed in grafting biology. Experiments with dye transport in the xylem showed that although in general there was an agreement between the histologic study and dye transport, in Arabidopsis homografts water transport frequency was lower than functional and histologic compatability. We conclude that homografting and heterografting of Arabidopsis inflorescence stems is a convenient and reproducible method for studying the fundamental cellular genetic and molecular aspects of grafting biology.  相似文献   

8.
A mini‐dome bioassay was developed to study pathogenicity of Ascochyta rabiei and relative resistance of chickpea (Cicer arietanium). It was determined that the best condition for assaying pathogenicity of A. rabiei was to use 2 × 105 spores/ml as inoculum and to maintain a leaf wetness period of 24 h under mini‐domes at a temperature between 16 and 22°C. This mini‐dome pathogenicity assay was used to determine relative resistance of six chickpea cultivars (cvs) to isolates of two pathotypes of A. rabiei. Grafting was employed to detect any translocated factors produced in the chickpea plant that mediate disease response, which could help elucidate possible resistance mechanisms to Ascochyta blight. The six chickpea cv. were grafted in all possible scion–rootstock combinations, and then inoculated with isolates of two pathotypes of A. rabiei using the mini‐dome technique. Results showed that self‐grafted‐resistant plants remained resistant and self‐grafted‐susceptible plants stayed susceptible, indicating the grafting procedure did not alter host response to infection by A. rabiei. Susceptible scions always exhibited high and similar levels of disease severity regardless of rootstock genotypes, and resistant scions always showed low and similar levels of disease severity when they were grafted onto any of the six rootstock genotypes. Orthogonal contrasts showed that scion genotypes determined disease phenotype, and that rootstock genotypes had no contribution to disease phenotype of the scions. The pathogenicity assay did not detect any translocated disease‐mediating agents responsible for susceptibility or resistance in chickpea. Disease phenotypes of Ascochyta blight of chickpea were conditioned locally by scion genotypes.  相似文献   

9.
The anatomy of the graft tissue between a rootstock and its shoot (scion) can provide a mechanistic explanation of the way dwarfing Malus rootstocks reduce shoot growth. Considerable xylem tissue disorganization may result in graft tissue having a low hydraulic conductivity (k(h)), relative to the scion stem. The graft may influence the movement of substances in the xylem such as ions, water and plant-growth-regulating hormones. Measurements were made on 3-year-old apple trees with a low-pressure flow system to determine k(h) of root and scion stem sections incorporating the graft tissue. A range of rootstocks was examined, with different abilities of dwarfing; both ungrafted and grafted with the same scion shoot cultivar. The results showed that the hydraulic conductivity (k(hroot)) of roots from dwarfing rootstocks was lower compared with semi-vigorous rootstocks, at least for the size class of root measured (1.5 mm diameter). Scion hydraulic conductivity (k(hs)) was linked to leaf area and also to the rootstock on to which it was grafted, i.e. hydraulic conductivity was greater for the scion stem on the semi-vigorous rootstock. Expressing conductivities relative to xylem cross-sectional areas (k(s)) did not remove these differences suggesting that there were anatomical changes induced by the rootstock. The calculated hydraulic conductivity of the graft tissue was found to be lower for grafted trees on dwarfing rootstocks compared to invigorating rootstocks. These observations are discussed in relation to the mechanism(s) by which rootstock influences shoot growth in grafted trees.  相似文献   

10.
Small interfering RNAs (siRNAs) are silencing signals in plants. Virus‐resistant transgenic rootstocks developed through siRNA‐mediated gene silencing may enhance virus resistance of nontransgenic scions via siRNAs transported from the transgenic rootstocks. However, convincing evidence of rootstock‐to‐scion movement of siRNAs of exogenous genes in woody plants is still lacking. To determine whether exogenous siRNAs can be transferred, nontransgenic sweet cherry (scions) was grafted on transgenic cherry rootstocks (TRs), which was transformed with an RNA interference (RNAi) vector expressing short hairpin RNAs of the genomic RNA3 of Prunus necrotic ringspot virus (PNRSV‐hpRNA). Small RNA sequencing was conducted using bud tissues of TRs and those of grafted (rootstock/scion) trees, locating at about 1.2 m above the graft unions. Comparison of the siRNA profiles revealed that the PNRSV‐hpRNA was efficient in producing siRNAs and eliminating PNRSV in the TRs. Furthermore, our study confirmed, for the first time, the long‐distance (1.2 m) transfer of PNRSV‐hpRNA‐derived siRNAs from the transgenic rootstock to the nontransgenic scion in woody plants. Inoculation of nontransgenic scions with PNRSV revealed that the transferred siRNAs enhanced PNRSV resistance of the scions grafted on the TRs. Collectively, these findings provide the foundation for ‘using transgenic rootstocks to produce products of nontransgenic scions in fruit trees'.  相似文献   

11.
 采用盆栽方法研究了两种生态型东南景天(Sedum alfredii)对土壤中不同含量Cd(即对照, 12.5, 25, 50, 100, 200, 300, 400 mg&;#8226;kg-1)的生 长反应、吸收和积累Cd的差异性。结果表明,土壤添加重金属Cd后,矿山生态型东南景天生长正常,地上部和根系Cd含量随着土壤中Cd含量的 增加而增加,在400 mg&;#8226;kg-1 Cd处理下含量分别高达2 900和500 mg&;#8226;kg-1,其地上部显著大于根部;然而,土壤添加Cd后,非矿山生态型东 南景天的生长受到抑制,地上部和根部的生物量显著降低。当土壤Cd含量为50~100 mg&;#8226;kg-1 时,非矿山生态型东南景天的地上部和根系Cd含 量随着土壤中Cd含量的增加而增加,而且根系Cd含量则大于地上部。当土壤Cd≤50 mg&;#8226;kg-1时,矿山生态型东南景天根系Cd含量比非矿山生态 型高 ,但当土壤Cd≥100 mg&;#8226;kg-1,两者之间无显著差异;然而,但在同一Cd处理水平下,矿山生态型东南景天地上部Cd含量总是高于非矿山 生态型。这些结果表明,矿山生态型东南景天有很强的忍耐和吸收土壤Cd的能力,再次证明其为一种Cd超积累植物。  相似文献   

12.
13.
In field experiments with young trees great differences were found in the resistance to Phytophthora cactorum of Cox's Orange Pippin apple scions grafted on different clonal rootstocks. The rootstock effect on scion resistance was inversely related to the effect on tree vigour: the rootstocks inducing high resistance were dwarfing (M. 9) or semi-dwarfing (M. 7, M. 26, MM. 106), and those inducing low resistance were vigorous or very vigorous (M. 25, MM. 104, MM. 109). Mean lesion lengths in Cox on MM. 104 were five to eight times greater than those in Cox on M. 9. The rootstock influence on scion resistance was associated primarily with effects on the rate of lesion extension: during the early stages only of host colonization there appeared to be threshold extension rates below which host resistance factors effectively suppressed a large proportion of infections. The influence of the root-stock on scion resistance was apparently unrelated to inherent rootstock resistance. On all rootstocks Cox showed diminished resistance to infection during the period from the swelling of buds to the early stages of shoot growth. Although most susceptible during the ‘mouse-ear’ and ‘pink bud’ stages of development, suscpetibility was not associated with flowering per se. Rootstock type did not affect the resistance of Cox scions to P. syringae, for which the period of susceptibility to infection occurred in the dormant season.  相似文献   

14.
Fruits of citrus cultivars contain bioflavonoids and some other important secondary metabolites in pharmaceutical and nutritional industries. The present experiment was designed to investigate the correlation between the content of flavonoid components like naringin, hesperidin, and neohesperidin of the scions fruits and the same parameters in rootstocks fruits. Six-year-old trees including four citrus cultivars of ‘Moro’, ‘Mars’, ‘Salustiana’, and ‘Italian’ which were previously grafted on the four different rootstocks including ‘Yuzu’, ‘Shelmahalleh’, ‘Citromelo’, and ‘Sour orange’ were selected as experimental trees. The content of the mentioned flavonoids was investigated in the peel and pulp of the fruits of both scions and rootstocks. The results showed that the measured parameters were significantly influenced by scions, rootstocks, and tissues. Based on the obtained results, it can be suggested that the accumulation of chemicals in citrus fruit depends on genetic and inherent abilities of the scion, more than what was previously believed, while the rootstock can also play an important role in the accumulation of these substances.  相似文献   

15.
Development, histological process and Grapevine leafroll‐associated virus‐3 localisation were studied in micrografts of three scion/rootstock combinations: healthy/healthy, healthy/infected and infected/healthy. Earlier bud break and faster growth in scions of micrografts were obtained when the healthy shoot segments were used as scions, while earlier bud break in rootstocks and greater fresh weight of roots in micrografts were produced when the healthy shoot segments were used as rootstocks. All histological processes including callus initiation and formation in micrografting conjunctions, and initiation of new cambial cells followed by vascular bundle development connecting scions and rootstocks were similar in micrografts, regardless of the sanitary status of the scions and rootstocks used for micrografting. Virus infection in micrografting conjunctions and systematic infection in micrografts were much more efficient and faster in micrografting combination of the infected scions/healthy rootstocks than in the healthy scions/infected rootstocks. To the best of our knowledge, this is the first report addressing histological process of micrograft development and virus localisation in micrografts. In vitro culture system established in this study facilitates studies on the ‘pure’ impact of the viral infection on micrografting.  相似文献   

16.
17.
Tolerance of salt stress in potato (Solanum tuberosum L.) increased when the plants were pre-exposed to low concentrations of salt (salt acclimation). This acclimation was accompanied by increased levels of abscisic acid (ABA) in the shoot. To further study the role of roots and shoots in this acclimation process, reciprocal grafts were made between a salt-tolerant (9506) and salt-sensitive ABA(−) mutant and its ABA(+) normal sibling potato genotype. The grafted plants were acclimated with 75 or 100 mM NaCl for 3 weeks and then exposed to 150–180 mM NaCl, depending on the salt tolerance of the rootstock. After 2 weeks of exposure to the salt stress, the acclimated and unacclimated plants were compared for physiologic and morphologic parameters. The response to the salt stress was strongly influenced by the rootstock. The salt-tolerant 9506 rootstock increased the salt tolerance of scions of both the ABA-deficient mutant and its ABA(+) sibling. This salt tolerance induced by the rootstock was primarily modulated by salt acclimation and manifested in the scion via increased plant water content, stem diameter, dry matter accumulation, stomatal conductivity, and osmotic potential, and is associated with a reduction in leaf necrosis. There was also a pronounced scion effect on the rootstock. Using 9506 as a scion significantly increased root fresh and dry weights, stem diameter, and root water content of ABA(−) mutant rootstocks. Specific evidence was found of the role of exogenous ABA in the enhancement of water status in grafted plants under salt stress beyond that of grafting alone. This was verified by more positive stomatal conductivity and upward water flow in ABA-treated grafted and nongrafted plants and the absence of upward water flow in nontreated grafted plants through NMR imaging. Grafting using either salt-tolerant scions or rootstocks with inherently high ABA levels may positively modify subsequent responses of the plant under salt stress.  相似文献   

18.
Abstract

Vascular streak dieback (VSD) disease, caused by Ceratobasidium theobromae, is a significant cocoa diseases in Indonesia. Planting materials are often produced by top grafting raising the possibility that VSD may be spread through the use of infected grafting materials. When scions from VSD-infected stems were used in grafting, both the rootstock and new growth from the scion developed symptoms of VSD. Infected scions often failed to establish when used for top grafting. This finding proves that the use of infected scions when top grafting can result in infected planting material with potential for spreading VSD.  相似文献   

19.
Leaf gas exchange, water relations and ion content were measured on two-year-old Valencia orange (Citrus sinensis [L.] Osbeck), Washington Navel orange (C. sinensis) and Marsh grapefruit (C. parodisi Macfad) scions budded to either Trifoliata (Poncirus infoliata [L] Raf) or Cleopatra mandarin (C. reticuLua Blanco) rootstoeks. Trees were watered with dülute nutrient solution containing either 0 or 50 mM NaCl for 77 days. Leaf chloride concentrations (cell sap basis) were higher in all scions budded on “Trifoliata but sodium levels were lower than in equivalent foliage budded on Cleopatra mandarin rootstock. Foliar salt levels also varied according to scion. Leaves of Marsh grapefruit had higher levels of both sodium and chloride than leaves of either Valencia orange or Washington Navel orange on both rootstocks. Accumulation of sodium and chloride in salinised leaves caused a reduction in leaf osmotic potential of 0.2–1.4 MPa. and leaf water potential declined by as much as 0.5 MPa. Turgor pressure in salinised leaves was thus maintained at or above the control level. Osmotic potentials determined by psychrometry compared with pressure-volume curves were taken to imply that some accumulation of sodium or chloride in the apoplast of salinised leaves may have occurred. Despite turgor maintenance both co2 assimilation and stomatal conductance were reduced by salinity. Following onset of leaf response to salinisation, gas exchange was impaired to a greater extent in scions budded to Cleopatra mandarin compared to those on Trifoliata. Amongst those scions. leaves of salt-treated Marsh grapefruit showed greater reductions in gas exchange than Valencia orange or Washington Navel orange budded on either rootstock. Increased sensitivity of 1Marsh grapefruit was correlated with a higher foliar sodium and chloride content in this scion. Scion differences in sensitivity of leaf gas exchange to solute concentration were independent of rootstock and appeared unrelated to leaf prolinebetaine concentrations. This implies an inherent difference between scion species with respect to salt tolerance, rather than variation in their capacity to acquire that type of compatible solute. In terms of rootstock effects, all scions proved more sensitive to salinity when budded to Cleopatra mandarin compared with Trifoliata. That response was attributed to a disproportionately higher concentration of leaf sodium in scions on Cleopatra mandarin.  相似文献   

20.
Scions of a southern (59° 40'N Lat.) and a northern (69° 39'N Lat.) ecotype of Salix pentandra L. were grafted on clonal rootstocks of the same ecotypes. Effects of photoperiod on elongation growth of the 4 combinations (south/south, south/north, north/south and north/north) were studied in a phytotron at 18° and 15°C. The photoperiodic response was primarily dependent on the ecotype of the scion, but this response was significantly modified by the rootstock. Cessation of apical growth was advanced by a northern clone and delayed by a southern clone as a rootstock. The results indicate that the critical photoperiod for cessation of apical growth could be slightly decreased by a northern and increased by a southern rootstock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号