首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.
Resource nutrient content and identity are common bottom–up controls on organismal growth and nutritional regulation. One framework to study these factors, ecological stoichiometry theory, predicts that elevated resource nitrogen (N) and phosphorus (P) contents enhance organism growth by alleviating constraints on N and P acquisition. However, the regulatory mechanisms underlying this response – including whether responses depend on resource identity – remain poorly understood. In this study, we tested roles of detrital N and P contents and identity (leaf species) in constraining growth of aquatic invertebrate detritivores. We synthesized results from seven detritivore species fed wide nutrient gradients of oak and maple detritus in the laboratory. Across detritivore taxa, we used a meta‐analytic approach quantifying effects of detrital leaf species and N and P contents on growth, consumption, and N‐ and P‐specific assimilation and growth efficiencies. Detritivore growth rates increased on higher‐N and P detritus and on oak compared to maple detritus. Notably, the mechanisms of improved growth differed between the responses to detrital nutrients versus leaf species, with the former driven by greater consumption rates despite lower assimilation efficiencies on higher‐nutrient detritus, and the latter driven by improved N and P assimilation and N growth efficiencies on oak detritus. These findings suggest animal nutrient acquisition changes flexibly in response to resource changes, altering the fate of detrital N and P throughout regulation. We affirm resource identity and nutrients as important bottom–up controls, but suggest these factors act through separate pathways to affect organism growth and thereby change detrital ecosystems under anthropogenic forest compositional change and nutrient enrichment.  相似文献   

2.
3.
Herbivores and detritus consumers (i.e. microbial decomposers and invertebrate and vertebrate detritivores) are pivotal components of trophic food webs and thus play a paramount role in the trophic transference and turnover of producer‐fixed carbon. Hence, elucidating patterns in carbon flux through these first‐order consumers is important to understand the nature and controls of carbon flow in ecosystems. Here, using the largest literature compilation to date, I show that, in contrast with the current belief, aquatic herbivores accumulate on average three times as much biomass as do terrestrial herbivores for a given level of primary production and, as a consequence, turn over the ingested carbon only slightly faster than do terrestrial herbivores. Conversely, aquatic detritus consumers generally accumulate a much lower biomass (i.e. over ten times lower) than their terrestrial counterparts for a given level of primary production and, thus, they turn over the ingested carbon much more quickly (i.e. over ten times faster). Because the detrital pathway generally dominates the trophic flow of carbon in both aquatic and terrestrial ecosystems, carbon also tends to flow through the total compartment of first order‐consumers (both herbivores and detritus consumers) at a much faster rate in aquatic than in terrestrial ecosystems. Thus, aquatic systems, because of faster carbon recycling rates through their basal and first‐order levels of the food chain, appear to have a lower capacity than do terrestrial systems for retaining carbon under natural or anthropogenic increases in photosynthetic fixation.  相似文献   

4.
Detritus, trophic dynamics and biodiversity   总被引:11,自引:1,他引:10  
Traditional approaches to the study of food webs emphasize the transfer of local primary productivity in the form of living plant organic matter across trophic levels. However, dead organic matter, or detritus, a common feature of most ecosystems plays a frequently overlooked role as a dynamic heterogeneous resource and habitat for many species. We develop an integrative framework for understanding the impact of detritus that emphasizes the ontogeny and heterogeneity of detritus and the various ways that explicit inclusion of detrital dynamics alters generalizations about the structure and functioning of food webs. Through its influences on food web composition and dynamics, detritus often increases system stability and persistence, having substantial effects on trophic structure and biodiversity. Inclusion of detrital heterogeneity in models of food web dynamics is an essential new direction for ecological research.  相似文献   

5.
Synthesis Metacommunity theory aims to elucidate the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity research has focused largely on assemblages of competing organisms within a single trophic level. Here, we test the ability of metacommunity models to predict the network structure of the aquatic food web found in the leaves of the northern pitcher plant Sarracenia purpurea. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions play an important role in structuring Sarracenia food webs. Our approach can be applied to any well‐resolved food web for which data are available from multiple locations. The metacommunity framework explores the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity models and empirical studies have focused mostly on assemblages of competing organisms within a single trophic level. Studies of multi‐trophic metacommunities are predominantly restricted to simplified trophic motifs and rarely consider entire food webs. We tested the ability of the patch‐dynamics, species‐sorting, mass‐effects, and neutral metacommunity models, as well as three hybrid models, to reproduce empirical patterns of food web structure and composition in the complex aquatic food web found in the northern pitcher plant Sarracenia purpurea. We used empirical data to determine regional species pools and estimate dispersal probabilities, simulated local food‐web dynamics, dispersed species from regional pools into local food webs at rates based on the assumptions of each metacommunity model, and tested their relative fits to empirical data on food‐web structure. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions were important in structuring Sarracenia food webs. However, differences in dispersal abilities were also important in models that accurately reproduced empirical food web properties. Although the models were tested using pitcher‐plant food webs, the approach we have developed can be applied to any well‐resolved food web for which data are available from multiple locations.  相似文献   

6.
Aim We investigated patterns of species richness and composition of the aquatic food web found in the liquid‐filled leaves of the North American purple pitcher plant, Sarracenia purpurea (Sarraceniaceae), from local to continental scales. Location We sampled 20 pitcher‐plant communities at each of 39 sites spanning the geographic range of S. purpurea– from northern Florida to Newfoundland and westward to eastern British Columbia. Methods Environmental predictors of variation in species composition and species richness were measured at two different spatial scales: among pitchers within sites and among sites. Hierarchical Bayesian models were used to examine correlates and similarities of species richness and abundance within and among sites. Results Ninety‐two taxa of arthropods, protozoa and bacteria were identified in the 780 pitcher samples. The variation in the species composition of this multi‐trophic level community across the broad geographic range of the host plant was lower than the variation among pitchers within host‐plant populations. Variation among food webs in richness and composition was related to climate, pore‐water chemistry, pitcher‐plant morphology and leaf age. Variation in the abundance of the five most common invertebrates was also strongly related to pitcher morphology and site‐specific climatic and other environmental variables. Main conclusions The surprising result that these communities are more variable within their host‐plant populations than across North America suggests that the food web in S. purpurea leaves consists of two groups of species: (1) a core group of mostly obligate pitcher‐plant residents that have evolved strong requirements for the host plant and that co‐occur consistently across North America, and (2) a larger set of relatively uncommon, generalist taxa that co‐occur patchily.  相似文献   

7.
Seagrass meadows are among the world's most productive ecosystems, and as in many other systems, genetic diversity is correlated with increased production. However, only a small fraction of seagrass production is directly consumed, and instead much of the secondary production is fueled by the detrital food web. Here, we study the roles of plant genetic diversity and grazer species diversity on detrital consumption in California eelgrass Zostera marina meadows. We used three common mesograzers—an amphipod, Ampithoe lacertosa, an isopod, Idotea resecata, and a polychaete, Platynereis bicanaliculata. Each grazer consumed eelgrass detritus at rates greater than live eelgrass or macroalgae. This detrital consumption, however, was not spread evenly over leaves shed from different eelgrass clones. Palatability and consumption varied because of genotype specific differences in leaf texture, secondary metabolites (phenolics), and nutritional quality (nitrogen). Further, detritus derived from some eelgrass genotypes was palatable to all grazers, while detritus from other genotypes was preferentially consumed by only one grazer species. Under monospecific grazer assemblages, plant genetic identity but not diversity influenced detritus consumption. However, more realistic, diverse mesoconsumer communities combined with high plant‐detrital genotypic diversity resulted in greater consumption and grazer survival. These results provide a mechanism for field observations of increased mesograzer density and diversity in genetically diverse seagrass assemblages and offer a potential explanation for variation in results of resource diversity– detrital processing experiments in the literature, which often exclude macroinvertebrate taxa. More broadly, our findings support the emerging principle that biodiversity effects are strongest when diversity in both consumer and resource taxa are present.  相似文献   

8.
Hysteresis, observed in many gene regulatory networks, has a pivotal impact on biological systems, which enhances the robustness of cell functions. In this paper, a general model is proposed to describe the hysteretic gene regulatory network by combining the hysteresis component and the transient dynamics. The Bouc-Wen hysteresis model is modified to describe the hysteresis component in the mammalian gene regulatory networks. Rigorous mathematical analysis on the dynamical properties of the model is presented to ensure the bounded-input-bounded-output (BIBO) stability and demonstrates that the original Bouc-Wen model can only generate a clockwise hysteresis loop while the modified model can describe both clockwise and counter clockwise hysteresis loops. Simulation studies have shown that the hysteresis loops from our model are consistent with the experimental observations in three mammalian gene regulatory networks and two E.coli gene regulatory networks, which demonstrate the ability and accuracy of the mathematical model to emulate natural gene expression behavior with hysteresis. A comparison study has also been conducted to show that this model fits the experiment data significantly better than previous ones in the literature. The successful modeling of the hysteresis in all the five hysteretic gene regulatory networks suggests that the new model has the potential to be a unified framework for modeling hysteresis in gene regulatory networks and provide better understanding of the general mechanism that drives the hysteretic function.  相似文献   

9.
10.
Accelerating rates of species extinction and invasion have sparked recent interest in how changes in plant community composition can be propagated through food webs. Research in this area has, however, been largely restricted to considerations of how detrital species mixing affects litter decay processes. The consequences of changing detrital resources for whole assemblages of sediment‐dwelling invertebrates remain largely unknown. We manipulated the availability of three detrital sources, Avicennia marina leaves, Posidonia australis blades and Sargassum sp. thalli, on an Australian mudflat to test hypotheses about how changes in the type and number of macrophytes contributing to detrital resources might impact benthic invertebrate assemblages of estuarine soft‐sediments. By controlling for changes in total detrital biomass and ensuring that each detrital source was present in two‐ and three‐species mixes as well as monocultures, our experimental design was able to distinguish among effects of mixing, identity and biomass. Three months after detrital manipulation, macroinvertebrate abundance and species richness differed among treatments according to the biomass of detritus added and non‐additive effects of detrital species mixing. Whereas the mixing of two detrital species generally had an antagonistic effect on macroinvertebrate abundance and richness, faunal assemblages did not appreciably differ between three‐species mixes and monocultures. Generally negative effects of two‐species mixes on macroinvertebrates were opposed by positive effects on microphytobenthos, an important food‐source for many of the animals. Non‐additive effects on sediment communities were particularly apparent when Sargassum sp., the most labile of the three detrital sources considered, was included in two‐species mixes. This demonstration of non‐additive and identity‐dependent effects of detrital species mixing on soft‐sediment communities suggests that predicted compositional changes to aquatic macrophyte communities, resulting from coastal development and climate change, will flow on to effect other components of the estuarine food‐web.  相似文献   

11.
Aim The network structure of food webs plays an important role in the maintenance of diversity and ecosystem functioning in ecological communities. Previous research has found that ecosystem size, resource availability, assembly history and biotic interactions can potentially drive food web structure. However, the relative influence of climatic variables that drive broad‐scale biogeographic patterns of species richness and composition has not been explored for food web structure. In this study, we assess the influence of broad‐scale climatic variables in addition to known drivers of food web structure on replicate observations of a single aquatic food web, sampled from the leaves of the pitcher plant (Sarracenia purpurea), at different geographic sites across a broad latitudinal and climatic range. Location Using standardized sampling methods, we conducted an extensive ‘snapshot’ survey of 780 replicated aquatic food webs collected from the leaves of the pitcher plant S. purpurea at 39 sites from northern Florida to Newfoundland and westward to eastern British Columbia. Methods We examined correlations of 15 measures of food web structure at the pitcher and site scales with geographic variation in temperature and precipitation, concentrations of nutrients from atmospheric nitrogen deposition, resource availability, ecosystem size and the abundance of the pitcher plant mosquito (Wyeomyia smithii), a potential keystone species. Results At the scale of a single pitcher plant leaf, linkage density, species richness, measures of chain length and the proportion of omnivores in a web all increased with pitcher volume. Linkage density and species richness were greater at high‐latitude sites, which experience low mean temperatures and precipitation and high annual variation in both of these variables. At the site scale, variation in 8 of the 15 food web metrics decreased at higher latitudes, and variation in measures of chain length increased with the abundance of mosquitoes. Main conclusions Ecosystem size and climatic variables related to latitude were most strongly correlated with network structure of the Sarracenia food web. However, in spite of large sample sizes, thorough standardized sampling and the large geographic extent of the survey, even the best‐fitting models explained less than 40% of the variation in food web structure. In contrast to biogeographic patterns of species richness, food web structure was largely independent of broad‐scale climatic variables. The large proportion of unexplained variance in our analyses suggests that stochastic assembly may be an important determinant of local food web structure.  相似文献   

12.
Trait‐based approaches are widely used in community ecology and invasion biology to unravel underlying mechanisms of vegetation dynamics. Although fundamental trade‐offs between specific traits and invasibility are well described among terrestrial plants, little is known about their role and function in aquatic plant species. In this study, we examine the functional differences of aquatic alien and native plants stating that alien and native species differ in selected leaf traits. Our investigation is based on 60 taxa (21 alien and 39 native) collected from 22 freshwater units of Hungarian and Italian lowlands and highlands. Linear mixed models were used to investigate the effects of nativeness on four fundamental traits (leaf area, leaf dry matter content, specific leaf area, and leaf nitrogen content), while the influence of growth‐form, altitude, and site were employed simultaneously. We found significantly higher values of leaf areas and significantly lower values of specific leaf areas for alien species if growth‐form was included in the model as an additional predictor.We showed that the trait‐based approach of autochthony can apply to aquatic environments similar to terrestrial ones, and leaf traits have relevance in explaining aquatic plant ecology whether traits are combined with growth‐forms as a fixed factor. Our results confirm the importance of traits related to competitive ability in the process of aquatic plant invasions. Alien aquatic plants can be characterized as species producing soft leaves faster. We argue that the functional traits of alien aquatic plants are strongly growth‐form dependent. Using the trait‐based approach, we found reliable characteristics of aquatic plants related to species invasions, which might be used, for example, in conservation management.  相似文献   

13.
Although nutrient enrichment frequently decreases biodiversity, it remains unclear whether such biodiversity losses are readily reversible, or are critical transitions between alternative low‐ and high‐diversity stable states that could be difficult to reverse. Our 30‐year grassland experiment shows that plant diversity decreased well below control levels after 10 years of chronic high rates (95–270 kg N ha−1 year−1) of nitrogen addition, and did not recover to control levels 20 years after nitrogen addition ceased. Furthermore, we found a hysteretic response of plant diversity to increases and subsequent decreases in soil nitrate concentrations. Our results suggest that chronic nutrient enrichment created an alternative low‐diversity state that persisted despite decreases in soil nitrate after cessation of nitrogen addition, and despite supply of propagules from nearby high‐diversity plots. Thus, the regime shifts between alternative stable states that have been reported for some nutrient‐enriched aquatic ecosystems may also occur in grasslands.  相似文献   

14.
Most nutrient enrichment studies in aquatic systems have focused on autotrophic food webs in systems where primary producers dominate the resource base. We tested the heterotrophic response to long-term nutrient enrichment in a forested, headwater stream. Our study design consisted of 2 years of pretreatment data in a reference and treatment stream and 2 years of continuous nitrogen (N) + phosphorus addition to the treatment stream. Studies were conducted with two leaf species that differed in initial C:N, Rhododendron maximum (rhododendron) and Acer rubrum (red maple). We determined the effects of nutrient addition on detrital resources (leaf breakdown rates, litter C:N and microbial activity) and tested whether nutrient enrichment affected macroinvertebrate consumers via increased biomass. Leaf breakdown rates were ca. 1.5 and 3× faster during the first and second years of enrichment, respectively, in the treatment stream for both leaf types. Microbial respiration rates of both leaf types were 3× higher with enrichment, and macroinvertebrate biomass associated with leaves increased ca. 2–3× with enrichment. The mass of N in macroinvertebrate biomass relative to leaves tended to increase with enrichment up to 6× for red maple and up to 44× for rhododendron leaves. Lower quality (higher C:N) rhododendron leaves exhibited greater changes in leaf nutrient content and macroinvertebrate response to nutrient enrichment than red maple leaves, suggesting a unique response by different leaf species to nutrient enrichment. Nutrient concentrations used in this study were moderate and equivalent to those in streams draining watersheds with altered land use. Thus, our results suggest that similarly moderate levels of enrichment may affect detrital resource quality and subsequently lead to altered energy and nutrient flow in detrital food webs. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

15.
Gotelli NJ  Smith AM  Ellison AM  Ballif BA 《Proteomics》2011,11(11):2354-2358
The array of biomolecules generated by a functioning ecosystem represents both a potential resource for sustainable harvest and a potential indicator of ecosystem health and function. The cupped leaves of the carnivorous pitcher plant, Sarracenia purpurea, harbor a dynamic food web of aquatic invertebrates in a fully functional miniature ecosystem. The energetic base of this food web consists of insect prey, which is shredded by aquatic invertebrates and decomposed by microbes. Biomolecules and metabolites produced by this food web are actively exchanged with the photosynthesizing plant. In this report, we provide the first proteomic characterization of the sacrophagid fly (Fletcherimyia fletcheri), the pitcher plant mosquito (Wyeomyia smithii), and the pitcher-plant midge (Metriocnemus knabi). These three arthropods act as predators, filter feeders, and shredders at distinct trophic levels within the S. purpurea food web. More than 50 proteins from each species were identified, ten of which were predominantly or uniquely found in one species. Furthermore, 19 peptides unique to one of the three species were identified using an assembled database of 100 metazoan myosin heavy chain orthologs. These molecular signatures may be useful in species monitoring within heterogeneous ecosystem biomass and may also serve as indicators of ecosystem state.  相似文献   

16.
17.
1. Leaf breakdown rates of Alnus glutinosa were determined and the structure of decomposer assemblages associated with leaves were analysed to assess the effect of pollution on the ecological condition of the Ave River (North‐west Portugal). 2. Increase in organic and inorganic nutrients was associated with an increase in density and a decrease in richness of macroinvertebrates, a dramatic decline in the conidial production of aquatic hyphomycetes, but no major change in the richness of aquatic hyphomycetes. 3. Downstream nutrient enrichment was correlated with accelerated leaf breakdown rates. 4. The degree of functional impairment assessed by the ratio of leaf breakdown rates in coarse‐mesh and fine‐mesh bags was in accordance with the gradient of pollution defined by two biotic indices. 5. This study supports the contention that leaf breakdown experiments are a valuable tool to assess the effect of pollution on the ecological condition of rivers.  相似文献   

18.
Biological invasions modify the quality and supply of detrital subsidies to aquatic and terrestrial ecosystems. Where the invader has very different traits to native species, major changes in associated consumer communities may result, as a consequence of differences in their nutritional value and effects on the sedimentary habitat. We assessed how the replacement of seagrasses with the invasive alga Caulerpa taxifolia in modified Australian estuaries influences invertebrate communities of mudflats that are subsidized by detritus from submerged aquatic vegetation. Two months after experimental enrichment of sediments with high (60?g dry weight per 0.25?m2 plot) or low (30?g dry weight) quantities of either non-native C. taxifolia or native Posidonia australis or Zostera capricorni detritus, there were positive effects of detrital addition on invertebrate abundance that occurred irrespective of the resource added. By 4?months after addition, however, detritus from invasive C. taxifolia had produced effects on benthic communities that could not be replicated by detritus from either of the native seagrasses. Plots receiving the high loading of C. taxifolia detritus contained fewer invertebrates than plots of the other treatments, perhaps due to the induction of sediment hypoxia. The pattern, however, reversed at low detrital loading, with the plots receiving 30?g of C. taxifolia containing more invertebrates and more taxa than the other plots, presumably due to the greater resource availability for detritivores. Our results demonstrate that replacement of native seagrass with invasive algal detritus can have large impacts on sediment-dwelling communities.  相似文献   

19.
On the nature and possible utility of epilithic detritus   总被引:2,自引:2,他引:0  
P. Calow 《Hydrobiologia》1975,46(2-3):181-188
Epilithic detritus is recognized as a rich and potentially useful form of detrital material in aquatic habitats. It forms an adherent cover to the light-shaded, under-sides of submerged stones. Compared with other aquatic detrital materials it was found to be rich in organic material, protein and total potential energy content. It probably represents a primary seral stage in community succession which is prevented from maturing further by the absence of light. The potential usefulness of epilithic detritus, as food to aquatic detrivores, is discussed.  相似文献   

20.
T. Sota  M. Mogi  K. Kato 《Biotropica》1998,30(1):82-91
Tropical Nepenthes pitcher plants provide small, isolated aquatic habitats. We examined inter-pitcher variation in the community structure of the inhabitants of Nepenthes alata Blanco in West Sumatra, focusing on the conditions of the pitchers, bacterial density in the pitcher fluid, density and biomass of metazoan inhabitants, and the frequencies of interspecific encounters. Older pitchers contained more insect carcasses. The bacterial density increased with the age of the pitchers, but decreased in withered pitchers that contained finely decomposed detritus. In live pitchers, the bacterial density, the density, mass and species richness of metazoa, and the number of trophic levels per pitcher were positively correlated with detrital mass, which was correlated with volume of pitcher fluid. The metazoan fauna from N. alata consisted of 4 predators and 12 saprophages, among the richest known for Nepenthes species. However, each individual pitcher harbored a limited numbers of species, owing to (1) the low incidence of many species, and (2) the aggregated distribution and different temporal colonization pattern of major species. Six dipteran taxa (one predator and five saprophages) accounted for the bulk of metazoan inhabitant biomass. Of 48 combinations of predator-prey encountered, only four occurred frequently (in > 30% of pitchers), which included two predators and three saprophages. Thus, individual pitchers harbored relatively simple communities despite the regional species richness, and only limited kinds of predator-prey encounters seemed to occur frequently in the regional food web. The local-scale properties of the subdivided communities presented here provide the basic information for understanding the maintenance of regional species richness and food web complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号