首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The recombinant plasmid pGEM4Z-ras DNA which was methylated on dam and dcm sites outside the PvuII recognition sequence was digested with restriction endonuclease PvuII, and one of the three PvuII sites was about 16-fold less efficient to cleave than either of the other two. On the contrary, the three PvuII sites were cleaved at about the same rate on the unmethylated DNA molecule. The results show that the cleavage inhibition of the methylated DNA on the certain PvuII site was caused by methylation outside the PvuII recognition sequence. Maybe a adjacent methylated dam site *A was responsible for the less efficient cleavage. This observation suggests that methylation outside the recognition sequence may be considered a new factor in the kinetic experiment of restriction endonuclease.  相似文献   

2.
The EcoRI restriction endonuclease was found by the filter binding technique to form stable complexes, in the absence of Mg2+, with the DNA from derivatives of bacteriophage lambda that either contain or lack EcoRI recognition sites. The amount of complex formed at different enzyme concentrations followed a hyperbolic equilibrium-binding curve with DNA molecules containing EcoRI recognition sites, but a sigmoidal equilibrium-binding curve was obtained with a DNA molecule lacking EcoRI recognition sites. The EcoRI enzyme displayed the same affinity for individual recognition sites on lambda DNA, even under conditions where it cleaves these sites at different rates. The binding of the enzyme to a DNA molecule lacking EcoRI sites was decreased by Mg2+. These observations indicate that (a) the EcoRI restriction enzyme binds preferentially to its recognition site on DNA, and that different reaction rates at different recognition sites are due to the rate of breakdown of this complex; (b) the enzyme also binds to other DNA sequences, but that two molecules of enzyme, in a different protein conformation, are involved in the formation of the complex at non-specific consequences; (c) the different affinities of the enzyme for the recognition site and for other sequences on DNA, coupled with the different protein conformations, account for the specificity of this enzyme for the cleavage of DNA at this recognition site; (d) the decrease in the affinity of the enzyme for DNA, caused by Mg2+, liberates binding energy from the DNA-protein complex that can be used in the catalytic reaction.  相似文献   

3.
The kinetics of the reactions of the EcoRI restriction endonuclease at individual recognition sites on the DNA from bacteriophage lambda were found to differ markedly from site to site. Under certain conditions of pH and ionic strength, the rates for the cleavage of the DNA were the same at each recognition site. But under altered experimental conditions, different reaction rates were observed at each recognition site. These results are consistent with a mechanism in which the kinetic stability of the complex between the enzyme and the recognition site on the DNA differs among the sites, due to the effect of interactions between the enzyme and DNA sequences surrounding each recognition site upon the transition state of the reaction. Reactions at individual sites on a DNA molecule containing more than one recognition site were found to be independent of each other, thus excluding the possibility of a processive mechanism for the EcoRI enzyme. The consequences of these observations are discussed with regard to both DNA-protein interactions and to the application of restriction enzymes in the study of the structure of DNA molecules.  相似文献   

4.
To investigate the potentials of DNA methylation and H1 histone in regulating the action of DNA binding proteins, well ordered complexes were formed by slow salt gradient dialysis of mixtures of H1 histone with either methylated or nonmethylated DNA. The sites methylated in the plasmids were CCGG. Methylation of cytosine in this site protects the DNA against HpaII endonuclease but not against MspI. However, when the methylated DNA was complexed to H1, it was protected against MspI. The protection was only effective for a subset of the MspI restriction sites. The protection of DNA afforded by the combination of H1 binding and DNA methylation did not apply to EcoRI, PstI, or BamHI sites and so did not seem to be due to aggregation of the DNA by H1 histone. Gel retardation assays indicated that the affinity of H1 for methylated DNA was not detectably different from its affinity for nonmethylated DNA. Probably methylated DNA when bound to H1 is in a conformation that is resistant to MspI endonuclease. Such conformational changes induced by DNA methylation and H1 binding might affect the action of other DNA binding proteins, perhaps in chromatin as well as in H1.DNA complexes.  相似文献   

5.
DNA methylation diminishes bleomycin-mediated strand scission   总被引:1,自引:0,他引:1  
Three DNA duplexes differing substantially in sequence were derived from pBR322 plasmid DNA and supercoiled SV40 DNA by digestion with appropriate restriction endonucleases. Following treatment with the restriction methylase HhaI (recognition sequence: GCGC) or HhaI and HpaII (CCGG), the unmethylated and methylated DNAs were compared as substrates for the antitumor agent bleomycin. Bleomycin-mediated strand scission was shown to diminish substantially at a number of sites in proximity to the methylated cytidine moieties, especially where multiple sites had been methylated within a DNA segment of limited size. Detailed analysis of the DNA substrates revealed that both strands of DNA within a methylated region became more refractory to cleavage by bleomycin and that the protective effect could extend as many as 14 base pairs in proximity to the 5-methylcytidine moieties. Among the methylated DNA segments that became more resistant to bleomycin cleavage was a HpaII site of SV40 DNA, methylation of which has previously been shown to diminish the synthesis of the major late viral capsid protein following microinjection into Xenopus laevis oocytes. Study of the cleavage reaction at varying salt levels suggested that diminished bleomycin strand scission may be due, at least in part, to local conformational changes of the DNA to Z form (or other non-B-form structures). The results are generally consistent with the hypothesis that one mechanism for the expression of selective therapeutic action by certain DNA damaging agents could involve the recognition of specific methylation patterns.  相似文献   

6.
The EcoRI adenine DNA methyltransferase forms part of a bacterial restriction/modification system; the methyltransferase modifies the second adenine within the canonical site GAATTC, thereby preventing the EcoRI endonuclease from cleaving this site. We show that five noncanonical EcoRI sites (TAATTC, CAATTC, GTATTC, GGATTC and GAGTTC) are not methylated in vivo under conditions when the canonical site is methylated. Only when the methyltransferase is overexpressed is partial in vivo methylation of the five sites detected. Our results suggest that the methyltransferase does not protect host DNA against potential endonuclease-mediated cleavage at noncanonical sites. Our related in vitro analysis of the methyltransferase reveals a low level of sequence-discrimination. We propose that the high in vivo specificity may be due to the active removal of methylated sequences by DNA repair enzymes (J. Bacteriology (1987), 169 3243-3250).  相似文献   

7.
The MunI restriction enzyme recognizes the palindromic hexanucleotide sequence C/AATTG (the '/' indicates the cleavage site). The crystal structure of its active site mutant D83A bound to cognate DNA has been determined at 1.7 A resolution. Base-specific contacts between MunI and DNA occur exclusively in the major groove. While DNA-binding sites of most other restriction enzymes are comprised of discontinuous sequence segments, MunI combines all residues involved in the base-specific contacts within one short stretch (residues R115-R121) located at the N-terminal region of the 3(10)4 helix. The outer CG base pair of the recognition sequence is recognized solely by R115 through hydrogen bonds made by backbone and side chain atoms to both bases. The mechanism of recognition of the central AATT nucleotides by MunI is similar to that of EcoRI, which recognizes the G/AATTC sequence. The local conformation of AATT deviates from the typical B-DNA form and is remarkably similar to EcoRI-DNA. It appears to be essential for specific hydrogen bonding and recognition by MunI and EcoRI.  相似文献   

8.
The reactions of the EcoRi and other restriction endonucleases.   总被引:6,自引:0,他引:6       下载免费PDF全文
The reaction of the EcoRI restriction endonuclease was studied with both the plasmid pMB9 and DNA from bacteriophage lambda as the substrates. With both circular and linear DNA molecules, the only reaction catalysed by the EcoRI restriction endonuclease was the hydrolysis of the phosphodiester bond within one strand of the recognition site on the DNA duplex. The cleavage of both strands of the duplex was achieved only after two independent reactions, each involving a single-strand scission. The reactivity of the enzyme for single-strand scissions was the same for both the first and the second cleavage within its recognition site. No differences were observed between the mechanism of action on supercoiled and linear DNA substrates. Other restriction endonucleases were tested against plasmid pMB9. The HindIII restriction endonuclease cleaved DNA in the same manner as the EcoRI enzyme. However, in contrast with EcoRI, the Sa/I and the BamHI restriction endonucleases appeared to cleave both strands of the DNA duplex almost simultaneously. The function of symmetrical DNA sequences and the conformation of the DNA involved in these DNA--protein interactions are discussed in the light of these observations. The fact that the same reactions were observed on both supercoiled and linear DNA substrates implies that these interactions do not involve the unwinding of the duplex before catalysis.  相似文献   

9.
BsoFI , ItaI and Fsp4HI are isoshizomers of Fnu4HI (5'-GC NGC-3'). Both Fnu4HI and BsoFI have previously been shown to be inhibited by cytosine-specific methylation within the recognition sequence. Fnu4HI is inhibited if either the internal cytosine at position 2 or the external cytosine at position 5 of the restriction sequence is methylated, but the precise nature of the methylation sensitivity of BsoFI is unclear from the literature. The methylation sensitivities of ItaI and Fsp4HI have not previously been reported. By methylating the plasmid pUC18 with M.SssI (a DNA cytosine-5'-methyltransferase with a specificity for CpG), we have determined that ItaI is sensitive only to methylation of internal CpG sites within the restriction sequence. The methylation sensitivity of Fsp4HI is identical to that of Fnu4HI, being inhibited by methylation of either internal CpG sites or overlapping CpG sites. BsoFI , like the other isoschizomers tested, is sensitive to a combination of internal and overlapping CpG methylation. BsoFI is also sensitive to overlapping CpG methylation (in the absence of internal CpG methylation) if CpG overlap with both sides of the recognition sequence. Sites containing one overlapping CpG (in the absence of internal CpG) are cut when methylated but show marked individual variation in their rates of cleavage. Considerable variation in the rate of cleavage by BsoFI is also observed at sites containing only internal methylated CpG. Some sites are cut slowly, whilst others fail to cut even after prolonged incubation with excess of enzyme.  相似文献   

10.
H Sagawa  A Ohshima    I Kato 《Nucleic acids research》1995,23(13):2367-2370
To develop restriction enzymes that are useful for genome analysis, we previously performed screening and isolated Sse8387I from Streptomyces sp. strain 8387. Sse8387I is a restriction enzyme that recognizes 5'-CCTGCA/GG-3' and cleaves DNA at the site shown by the diagonal (Nucleic Acid Res., 18, 5637-5640). The present study evaluated the effects of methylation that is important when Sse8387I is used for genome analysis. Sse8387I lost cleavage activity after methylation of adenine or methylation of cytosine at any site in the recognition sequence. However, the recognition sequence of Sse8387I contains no CG sequence, which is the mammalian methylation sequence. In addition, we evaluated the effects of methylation of CG at sites other than the recognition sequence. The cleavage activity of Sse8387I was maintained even when CG sequences were present immediately before or after, or near the recognition sequence, and cytosine was methylated. These results suggest that CG methylation does not affect the cleavage activity of Sse8387I. Therefore, Sse8387I seems to be very useful for mammalian genome analysis.  相似文献   

11.
ThaI (CGCG) sites which overlap HhaI (GCGC) sites in phi X174 and pBR322 DNA were methylated in vitro with HhaI methylase and S-adenosylmethionine to yield CGmCG, mCGCG or mCGmCG (5-methylcytosine, mC). Methylation of either cytosine in the ThaI recognition sequence rendered the DNA resistant to ThaI cleavage. Rat pituitary cell genomic DNA was digested with ThaI or 2 other known methylation-sensitive enzymes, AvaI or XhoI. After electrophoresis and ethidium bromide straining of the DNA, all 3 enzymes showed the infrequent DNA cleavage characteristic of methylation-sensitive enzymes. Comparison of pituitary growth hormone (GH) genes bearing strain-specific degrees of methylation showed the less methylated gene to be more frequently cut by either AvaI or ThaI. ThaI resistant sites in GH genes were cleaved by ThaI after exposing cells to 5-azacytidine, an inhibitor of DNA methylation. We conclude that ThaI is a useful restriction enzyme for the analysis of mC at CGCG sequences in eukaryotic DNA.  相似文献   

12.
DNA of Escherichia coli virus T1 is resistant to MboI cleavage and appears to be heavily methylated. Analysis of methylation by the isoschizomeric restriction enzymes Sau3AI and DpnI revealed that recognition sites for E. coli DNA adenine methylase (dam methylase) are methylated. The same methylation pattern was found for virus T1 DNA grown on an E. coli dam host, indicating a T1-specific DNA methyltransferase.  相似文献   

13.
DNA methylation affects the formation of active chromatin   总被引:88,自引:0,他引:88  
I Keshet  J Lieman-Hurwitz  H Cedar 《Cell》1986,44(4):535-543
  相似文献   

14.
Restriction enzyme cleavage of ultraviolet-damaged DNA   总被引:1,自引:0,他引:1  
SV40 and pBR322 DNAs damaged by ultraviolet light were cleaved abnormally by several restriction enzymes because of damage to pyrimidines in the recognition sequences. The use of a tandemly duplicated plasmid provided a particularly sensitive target molecule for detecting pyrimidine dimers and other possible photoproducts. The relative efficiency with which cleavage was blocked (HindIII greater than TaqI greater than EcoRI greater than BamI greater than SalI much greater than Hha I, Hae III) corresponds approximately to the relative frequency of pyrimidine dimer formation in the recognition sequences, but at a slightly higher frequency in potential sites for the non-cyclobutane T-C product. The pyrimidine dimers appear to have a range of influence that extends 1 to 3 basepairs along the DNA molecule. These effects provide clues to the way DNA damage from mutagens and carcinogens can interfere with specific enzyme-DNA interactions.  相似文献   

15.
J Heitman  P Model 《The EMBO journal》1990,9(10):3369-3378
The EcoRI restriction endonuclease cleaves DNA molecules at the sequence GAATTC. We devised a genetic screen to isolate EcoRI mutants with altered or broadened substrate specificity. In vitro, the purified mutant enzymes cleave both the wild-type substrate and sites which differ from this by one nucleotide (EcoRI star sites). These mutations identify four residues involved in substrate recognition and catalysis that are different from the amino acids proposed to recognize the substrate based on the EcoRI-DNA co-crystal structure. In fact, these mutations suppress EcoRI mutants altered at some of the proposed substrate binding residues (R145, R200). We argue that these mutations permit cleavage of additional DNA sequences either by perturbing or removing direct DNA-protein interactions or by facilitating conformational changes that allosterically couple substrate binding to DNA scission.  相似文献   

16.
Preferential cleavage by restriction endonuclease HinfIII   总被引:1,自引:0,他引:1  
The efficiency of endonucleolytic scission by restriction endonuclease HinfIII varies markedly for different recognition sites. The relative frequencies of cleavage at these sites have been determined on the basis of analysis of specific unit length linear molecules formed. The efficiency of restriction reaction depends also on the number of recognition sites in the DNA substrate. Cleavage by HinfIII in the absence or presence of S-adenosylmethionine is observed only when at least three recognition sites are present. HinfIII also shows preferential methylation of certain sites observable even for a substrate with one recognition site. The nucleotide sequences at sites cleaved or methylated at high frequency have been compared.  相似文献   

17.
The ability of oligopyrimidines to inhibit, through triple helix formation, the specific protein-DNA interactions of the EcoRI restriction and modification enzymes (EcoRI and MEcoRI) with their recognition sequence (GAATTC) was studied. The oligonucleotides (CTT)4 and (CTT)8 formed triplexes in plasmids at (GAA)n repeats containing EcoRI sites. Cleavage and methylation of EcoRI sites within these sequences were specifically inhibited by the oligonucleotides, whereas an EcoRI site adjacent to a (GAA)n sequence was inhibited much less. Also, other EcoRI sites within the plasmid, or in exogenously added lambda DNA, were not inhibited. These results demonstrate the potential of using triplex-forming oligonucleotides to block protein-DNA interactions at specific sites, and thus this technique may be useful in chromosome mapping and in the modulation of gene expression.  相似文献   

18.
Q Liu  X Chen  X Zhao  Y Chen  D Chen 《Gene》1992,113(1):89-93
This study is to extend our earlier observation that Dam and Dcm methylation outside the PvuII recognition sequence inhibited PvuII cleavage in one of the three PvuII sites of pGEM4Z-ras DNA. In this paper, a new recombinant plasmid DNA, pGEM4-SV40ori-anti-ras, was constructed which has only two PvuII sites, I and II. The Dam and Dcm-methylated and unmethylated DNAs were produced in Escherichia coli and linearized by ScaI. The DNA molecules were digested with different amounts of PvuII. The results show that by comparing the DNA fragment number and intensity of the partial and final products in agarose gel, PvuII site I on the methylated DNA molecule was digested four- to eight-fold more slowly than site II. In the unmethylated plasmid DNA, the two PvuII sites were cleaved at about the same rate. The difference was caused only by methylation of Dam and Dcm sites outside the PvuII recognition sequence. A methylated Dam site immediately adjacent to the less efficiently cut PvuII site I may be responsible for the inhibitory effect. We suggest that a new parameter, involving methylation of sites outside the recognition sequence, be considered in kinetic experiments on cleavage.  相似文献   

19.
Distamycin A (Dst) and its analogs protect the lambda phage DNA from cleavage with endoR. EcoRI and show selective affinity for different recognition sites of endoR. EcoRI on this DNA producing enlarged DNA fragments of various composition and length. The affinity of the antibiotic for DNA is influenced by the number of pyrrol carboxamide units in Dst molecule and does not strongly depend on the substitution of the N-methyl group by the N-propyl one. Since in the complex with DNA the antibiotics of the Dst type are localized in its minor groove a conclusion can be made that the minor groove of DNA is needed for the interaction of the restriction endonuclease with DNA.  相似文献   

20.
DNA adenine methylation controls DNA replication of plasmids containing the prototypic REPI replicon by affecting protein recognition and by altering the helical stability of the origin. Denaturing gradient gel electrophoresis shows that adenine methylated origin DNA is more easily melted than unmethylated. However, because an added DNA adenine methylation (dam) site at the origin, whether in or out of phase with other helically aligned dam sites, actually prevents replication, we conclude that destabilization of the helix is not the exclusive function of adenine methylation in REPI replication. We find that the conformation and degree of methylation at the origin, features which are important for protein recognition, are essential for replication. In fact, RepI, a protein required for replication initiation at REPI replicons, contains a region homologous with a domain in proteins which specifically recognize and bind 5'-GATC-3'. We propose that the dam sites in the origin play a dual role: one is destabilization of the helix, and the other is protein recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号