首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Postcranial pneumaticity has been reported in numerous extinct sauropsid groups including pterosaurs, birds, saurischian dinosaurs, and, most recently, both crurotarsan and basal archosauriform taxa. By comparison with extant birds, pneumatic features in fossils have formed the basis for anatomical inferences concerning pulmonary structure and function, in addition to higher-level inferences related to growth, metabolic rate, and thermoregulation. In this study, gross dissection, vascular and pulmonary injection, and serial sectioning were employed to assess the manner in which different soft tissues impart their signature on the axial skeleton in a sample of birds, crocodylians, and lizards. Results from this study indicate that only cortical foramina or communicating fossae connected with large internal chambers are reliable and consistent indicators of pneumatic invasion of bone. As both vasculature and pneumatic diverticula may produce foramina of similar sizes and shapes, cortical features alone do not necessarily indicate pneumaticity. Noncommunicating (blind) vertebral fossae prove least useful, as these structures are associated with many different soft-tissue systems. This Pneumaticity Profile (PP) was used to evaluate the major clades of extinct archosauriform taxa with purported postcranial pneumaticity. Unambiguous indicators of pneumaticity are present only in certain ornithodiran archosaurs (e.g., sauropod and theropod dinosaurs, pterosaurs). In contrast, the basal archosauriform Erythrosuchus africanus and other nonornithodiran archosaurs (e.g., parasuchians) fail to satisfy morphological criteria of the PP, namely, that internal cavities are absent within bone, even though blind fossae and/or cortical foramina are present on vertebral neural arches. An examination of regional pneumaticity in extant avians reveals remarkably consistent patterns of diverticular invasion of bone, and thus provides increased resolution for inferring specific components of the pulmonary air sac system in their nonavian theropod ancestors. By comparison with well-preserved exemplars from within Neotheropoda (e.g., Abelisauridae, Allosauroidea), the following pattern emerges: pneumaticity of cervical vertebrae and ribs suggests pneumatization by lateral vertebral diverticula of a cervical air sac system, with sacral pneumaticity indicating the presence of caudally expanding air sacs and/or diverticula. The identification of postcranial pneumaticity in extinct taxa minimally forms the basis for inferring a heterogeneous pulmonary system with distinct exchange and nonexchange (i.e., air sacs) regions. Combined with inferences supporting a rigid, dorsally fixed lung, osteological indicators of cervical and abdominal air sacs highlight the fundamental layout of a flow-through pulmonary apparatus in nonavian theropods.  相似文献   

2.
Among extant vertebrates, pneumatization of postcranial bones is unique to birds, with few known exceptions in other groups. Through reduction in bone mass, this feature is thought to benefit flight capacity in modern birds, but its prevalence in non-avian dinosaurs of variable sizes has generated competing hypotheses on the initial adaptive significance of postcranial pneumaticity. To better understand the evolutionary history of postcranial pneumaticity, studies have surveyed its distribution among non-avian dinosaurs. Nevertheless, the degree of pneumaticity in the basal coelurosaurian group Ornithomimosauria remains poorly known, despite their potential to greatly enhance our understanding of the early evolution of pneumatic bones along the lineage leading to birds. Historically, the identification of postcranial pneumaticity in non-avian dinosaurs has been based on examination of external morphology, and few studies thus far have focused on the internal architecture of pneumatic structures inside the bones. Here, we describe the vertebral pneumaticity of the ornithomimosaur Archaeornithomimus with the aid of X-ray computed tomography (CT) imaging. Complementary examination of external and internal osteology reveals (1) highly pneumatized cervical vertebrae with an elaborate configuration of interconnected chambers within the neural arch and the centrum; (2) anterior dorsal vertebrae with pneumatic chambers inside the neural arch; (3) apneumatic sacral vertebrae; and (4) a subset of proximal caudal vertebrae with limited pneumatic invasion into the neural arch. Comparisons with other theropod dinosaurs suggest that ornithomimosaurs primitively exhibited a plesiomorphic theropod condition for axial pneumaticity that was extended among later taxa, such as Archaeornithomimus and large bodied Deinocheirus. This finding corroborates the notion that evolutionary increases in vertebral pneumaticity occurred in parallel among independent lineages of bird-line archosaurs. Beyond providing a comprehensive view of vertebral pneumaticity in a non-avian coelurosaur, this study demonstrates the utility and need of CT imaging for further clarifying the early evolutionary history of postcranial pneumaticity.  相似文献   

3.
4.
Skeletal pneumaticity is found in the presacral vertebrae of most sauropod dinosaurs, but pneumaticity is much less common in the vertebrae of the tail. We describe previously unrecognized pneumatic fossae in the mid-caudal vertebrae of specimens of Giraffatitan and Apatosaurus. In both taxa, the most distal pneumatic vertebrae are separated from other pneumatic vertebrae by sequences of three to seven apneumatic vertebrae. Caudal pneumaticity is not prominent in most individuals of either of these taxa, and its unpredictable development means that it may be more widespread than previously recognised within Sauropoda and elsewhere in Saurischia. The erratic patterns of caudal pneumatization in Giraffatitan and Apatosaurus, including the pneumatic hiatuses, show that pneumatic diverticula were more broadly distributed in the bodies of the living animals than are their traces in the skeleton. Together with recently published evidence of cryptic diverticula—those that leave few or no skeletal traces—in basal sauropodomorphs and in pterosaurs, this is further evidence that pneumatic diverticula were widespread in ornithodirans, both across phylogeny and throughout anatomy.  相似文献   

5.
Birds are unique among living tetrapods in possessing pneumaticity of the postcranial skeleton, with invasion of bone by the lung and air-sac system. Postcranial skeletal pneumaticity (PSP) has been reported in numerous extinct archosaurs including pterosaurs and non-avian dinosaurs. Here we report a case of extreme PSP in a group of small-bodied, armored sauropod dinosaurs from the Upper Cretaceous of South America. Based on osteological data, we report an extensive invasion of pneumatic diverticula along the vertebral column, reaching the distal portion of the tail. Also, we provide evidence of pneumaticity in both pectoral and pelvic girdles. Our study reveals that the extreme PSP in archosaurs is not restricted to pterosaurs and theropod dinosaurs.  相似文献   

6.
Postcranial skeletal pneumaticity (PSP) is a condition most notably found in birds, but that is also present in other saurischian dinosaurs and pterosaurs. In birds, skeletal pneumatization occurs where bones are penetrated by pneumatic diverticula, membranous extensions that originate from air sacs that serve in the ventilation of the lung. Key questions that remain to be addressed include further characterizing (1) the skeletal features that can be used to infer the presence/absence and extent of PSP in birds and non-avian dinosaurs, and (2) the association between vertebral laminae and specific components of the avian respiratory system. Previous work has used vertebral features such as pneumatic foramina, fossae, and laminae to identify/infer the presence of air sacs and diverticula, and to discuss the range of possible functions of such features. Here, we tabulate pneumatic features in the vertebral column of 11 avian taxa, including the flightless ratites and selected members of semi-volant and semi-aquatic Neornithes. We investigate the associations of these osteological features with each other and, in the case of Struthio camelus, with the specific presence of pneumatic diverticula. We find that the mere presence of vertebral laminae does not indicate the presence of skeletal pneumaticity, since laminae are not always associated with pneumatic foramina or fossae. Nevertheless, laminae are more strongly developed when adjacent to foramina or fossae. In addition, membranous air sac extensions and adjacent musculature share the same attachment points on the vertebrae, rendering the use of such features for reconstructing respiratory soft tissue features ambiguous. Finally, pneumatic diverticula attach to the margins of laminae, foramina, and/or fossae prior to their intraosseous course. Similarities in PSP distribution among the examined taxa are concordant with their phylogenetic interrelationships. The possible functions of PSP are discussed in brief, based upon variation in the extent of PSP between taxa with differing ecologies.  相似文献   

7.
One of the diagnostic characters of dicraeosaurid sauropods is a reduction of pneumatization of dorsal and caudal vertebrae relative to their Flagellicaudata sister taxon, Diplodocidae. Here, we analyse pneumatic structures in the dicraeosaurid sauropod Pilmatueia faundezi, compare them to those of diplodocoids and report the first record of camerate chambers in a dicraeosaurid. The pneumatic structures are in a posterior cervical centrum (MLL-Pv-002) and consist of lateral pneumatic fossae on the centrum that communicate internally with large camerae. By contrast, Pilmatueia's dorsal and caudal vertebrae (MLL-Pv-005-016) lack pneumatic fossae on the centra, which is consistent with the previously reported reduced pneumaticity in dicraeosaurids. Nevertheless, the base of the neural arch and possibly the base of the bifid neural spines of a posterior dorsal vertebra (MLL-Pv-005) show pneumatic internal chambers. The pneumatic features of the Pilmatueia cervical centrum and dorsal neural arch we describe indicate that the degree of pneumatization is variable within dicraeosaurids.  相似文献   

8.
A nearly complete skeleton of a juvenile sauropod from the Lower Morrison Formation (Late Jurassic, Kimmeridgian) of the Howe Ranch in Bighorn County, Wyoming is described. The specimen consists of articulated mid-cervical to mid-caudal vertebrae and most appendicular bones, but cranial and mandibular elements are missing. The shoulder height is approximately 67 cm, and the total body length is estimated to be less than 200 cm. Besides the body size, the following morphological features indicate that this specimen is an early juvenile; (1) unfused centra and neural arches in presacral, sacral and first to ninth caudal vertebrae, (2) unfused coracoid and scapula, (3) open coracoid foramen, and (4) relatively smooth articular surfaces on the limb, wrist, and ankle bones. A large scapula, short neck and tail and elongate forelimb bones relative to overall body size demonstrate relative growth. A thin-section of the mid-shaft of a femur shows a lack of annual growth lines, indicating an early juvenile individual possibly younger than a few years old. Pneumatic structures in the vertebral column of the specimen SMA 0009 show that pneumatisation of the postcranial skeleton had already started in this individual, giving new insights in the early ontogenetic development of vertebral pneumaticity in sauropods.

The specimen exhibits a number of diplodocid features (e.g., very elongate slender scapular blade with a gradually dorsoventrally expanded distal end, a total of nine dorsal vertebrae, presence of the posterior centroparapophyseal lamina in the posterior dorsal vertebrae). Although a few diplodocid taxa, Diplodocus, cf. Apatosaurus, and cf. Barosaurus, are known from several fossil sites near the Howe Ranch, identification of this specimen, even at a generic level, is difficult due to a large degree of ontogenetic variation.  相似文献   

9.
Abstract:  Xenoposeidon proneneukos gen. et sp. nov. is a neosauropod represented by BMNH R2095, a well-preserved partial mid-to-posterior dorsal vertebra from the Berriasian–Valanginian Hastings Beds Group of Ecclesbourne Glen, East Sussex, England. It was briefly described by Lydekker in 1893, but it has subsequently been overlooked. This specimen's concave cotyle, large lateral pneumatic fossae, complex system of bony laminae and camerate internal structure show that it represents a neosauropod dinosaur. However, it differs from all other sauropods in the form of its neural arch, which is taller than the centrum, covers the entire dorsal surface of the centrum, has its posterior margin continuous with that of the cotyle, and slopes forward at 35 degrees relative to the vertical. Also unique is a broad, flat area of featureless bone on the lateral face of the arch; the accessory infraparapophyseal and postzygapophyseal laminae which meet in a V; and the asymmetric neural canal, small and round posteriorly but large and teardrop-shaped anteriorly, bounded by arched supporting laminae. The specimen cannot be referred to any known sauropod genus, and clearly represents a new genus and possibly a new 'family'. Other sauropod remains from the Hastings Beds Group represent basal Titanosauriformes, Titanosauria and Diplodocidae; X. proneneukos may bring to four the number of sauropod 'families' represented in this unit. Sauropods may in general have been much less morphologically conservative than is usually assumed. Since neurocentral fusion is complete in R2095, it is probably from a mature or nearly mature animal. Nevertheless, size comparisons of R2095 with corresponding vertebrae in the Brachiosaurus brancai holotype HMN SII and Diplodocus carnegii holotype CM 84 suggest a rather small sauropod: perhaps 15 m long and 7600 kg in mass if built like a brachiosaurid, or 20 m and 2800 kg if built like a diplodocid.  相似文献   

10.
Air Space Proportion (ASP) is a measure of how much air is present within a bone, which allows for a quantifiable comparison of pneumaticity between specimens and species. Measured from zero to one, higher ASP means more air and less bone. Conventionally, it is estimated from measurements of the internal and external bone diameter, or by analyzing cross-sections. To date, the only pterosaur ASP study has been carried out by visual inspection of sectioned bones within matrix. Here, computed tomography (CT) scans are used to calculate ASP in a small sample of pterosaur wing bones (mainly phalanges) and to assess how the values change throughout the bone. These results show higher ASPs than previous pterosaur pneumaticity studies, and more significantly, higher ASP values in the heads of wing bones than the shaft. This suggests that pneumaticity has been underestimated previously in pterosaurs, birds, and other archosaurs when shaft cross-sections are used to estimate ASP. Furthermore, ASP in pterosaurs is higher than those found in birds and most sauropod dinosaurs, giving them among the highest ASP values of animals studied so far, supporting the view that pterosaurs were some of the most pneumatized animals to have lived. The high degree of pneumaticity found in pterosaurs is proposed to be a response to the wing bone bending stiffness requirements of flight rather than a means to reduce mass, as is often suggested. Mass reduction may be a secondary result of pneumaticity that subsequently aids flight.  相似文献   

11.
Abstract:  Vertebrae of Suuwassea demonstrate an interesting combination of plesiomorphies and autapomorphies among known members of the Flagellicaudata. The cranial cervical vertebrae have proportions close to Diplodocus but resemble those of Apatosaurus except by having greatly reduced cranial and caudal spinozygapophyseal laminae. As a result, they have craniocaudally compressed, caudally positioned spinous processes excavated on all sides by fossae. The cranial thoracic vertebrae are again similarly proportioned as those of Diplodocus but are morphologically similar to those of Apatosaurus . The most distinguishing feature of Suuwassea caudal vertebrae are the short, amphiplatyan, distalmost 'whiplash' caudal vertebrae. These may be either a retention of or a reversal to the plesiomorphic sauropod condition because classic flagellicaudatan, biconvex distalmost caudals occur in the Middle Jurassic of England.  相似文献   

12.
Extensive skeletal pneumaticity (air-filled bone) is a distinguishing feature of birds. The proportion of the skeleton that is pneumatized varies considerably among the >10,000 living species, with notable patterns including increases in larger bodied forms, and reductions in birds employing underwater pursuit diving as a foraging strategy. I assess the relationship between skeletal pneumaticity and body mass and foraging ecology, using a dataset of the diverse "waterbird" clade that encompasses a broad range of trait variation. Inferred changes in pneumaticity and body mass are congruent across different estimates of phylogeny, whereas pursuit diving has evolved independently between two and five times. Phylogenetic regressions detected positive relationships between body mass and pneumaticity, and negative relationships between pursuit diving and pneumaticity, whether independent variables are considered in isolation or jointly. Results are generally consistent across different estimates of topology and branch lengths. "Predictive" analyses reveal that several pursuit divers (loons, penguins, cormorants, darters) are significantly apneumatic compared to their relatives, and provide an example of how phylogenetic information can increase the statistical power to detect taxa that depart from established trait correlations. These findings provide the strongest quantitative comparative support yet for classical hypotheses regarding the evolution of avian skeletal pneumaticity.  相似文献   

13.
Sauropods are often imagined to have held their heads high atop necks that ascended in a sweeping curve that was formed either intrinsically because of the shape of their vertebrae, or behaviorally by lifting the head, or both. Their necks are also popularly depicted in life with poses suggesting avian flexibility. The grounds for such interpretations are examined in terms of vertebral osteology, inferences about missing soft tissues, intervertebral flexibility, and behavior. Osteologically, the pronounced opisthocoely and conformal central and zygapophyseal articular surfaces strongly constrain the reconstruction of the cervical vertebral column. The sauropod cervico-dorsal vertebral column is essentially straight, in contrast to the curvature exhibited in those extant vertebrates that naturally hold their heads above rising necks. Regarding flexibility, extant vertebrates with homologous articular geometries preserve a degree of zygapophyseal overlap at the limits of deflection, a constraint that is further restricted by soft tissues. Sauropod necks, if similarly constrained, were capable of sweeping out large feeding surfaces, yet much less capable of retracting the head to explore the enclosed volume in an avian manner. Behaviorally, modern vertebrates generally assume characteristic neck postures which are close to the intrinsic curvature of the undeflected neck. With the exception of some vertebrates that can retract their heads to balance above their shoulders at rest (e.g., felids, lagomorphs, and some ratites), the undeflected neck generally predicts the default head height at rest and during locomotion.  相似文献   

14.
Stegosaurian dinosaurs have a quadrupedal stance, short forelimbs, short necks, and are generally considered to be low browsers. A new stegosaur, Miragaia longicollum gen. et sp. nov., from the Late Jurassic of Portugal, has a neck comprising at least 17 cervical vertebrae. This is eight additional cervical vertebrae when compared with the ancestral condition seen in basal ornithischians such as Scutellosaurus. Miragaia has a higher cervical count than most of the iconically long-necked sauropod dinosaurs. Long neck length has been achieved by ‘cervicalization’ of anterior dorsal vertebrae and probable lengthening of centra. All these anatomical features are evolutionarily convergent with those exhibited in the necks of sauropod dinosaurs. Miragaia longicollum is based upon a partial articulated skeleton, and includes the only known cranial remains from any European stegosaur. A well-resolved phylogeny supports a new clade that unites Miragaia and Dacentrurus as the sister group to Stegosaurus; this new topology challenges the common view of Dacentrurus as a basal stegosaur.  相似文献   

15.
Various terrestrial tetrapods convergently evolved to gigantism (large body sizes and masses), the most extreme case being sauropod dinosaurs. Heavy weight-bearing taxa often show external morphological features related to this condition, but also adequacy in their limb bone inner structure: a spongiosa filling the medullary area and a rather thick cortex varying greatly in thickness along the shaft. However, the microanatomical variation in such taxa remains poorly known, especially between different limb elements. We highlight for the first time the three-dimensional microstructure of the six limb long bone types of a sauropod dinosaur, Nigersaurus taqueti. Sampling several specimens of different sizes, we explored within-bone, between-bones, and size-related variations. If a spongiosa fills the medullary area of all bones, the cortex is rather thin and varies only slightly in thickness along the shaft. Zeugopod bones appear more compact than stylopod ones, whereas no particular differences between serially homologous bones are found. Nigersaurus' pattern appears much less extreme than that in heavy terrestrial taxa such as rhinoceroses, but is partly similar to observations in elephants and in two-dimensional sauropod data. Thus, microanatomy may have not been the predominant feature for weight-bearing in sauropods. External features, such as columnarity (shared with elephants) and postcranial pneumaticity, may have played a major role for this function, thus relaxing pressures on microanatomy. Also, sauropods may have been lighter than expected for a given size. Our study calls for further three-dimensional investigations, eventually yielding a framework characterizing more precisely how sauropod gigantism may have been possible.  相似文献   

16.
Abstract Why do all mammals, except for sloths and manatees, have exactly seven cervical vertebrae? In other vertebrates and other regions, the vertebral number varies considerably. We investigated whether natural selection constrains the number of cervical vertebrae in humans. To this end, we determined the incidence of cervical ribs and other homeotic vertebral changes in radiographs of deceased human fetuses and infants, and analyzed several existing datasets on the incidence in infants and adults. Our data show that homeotic transformations that change the number of cervical vertebrae are extremely common in humans, but are strongly selected against: almost all individuals die before reproduction. Selection is most probably indirect, caused by a strong coupling of such changes with major congenital abnormalities. Changes in the number of thoracic vertebrae appear to be subject to weaker selection, in good correspondence with the weaker evolutionary constraint on these numbers. Our analysis highlights the role of prenatal selection in the conservation of our common body plan.  相似文献   

17.
Uniquely among extant vertebrates, birds possess complex respiratory systems characterised by the combination of small, rigid lungs, extensive pulmonary air sacs that possess diverticula that invade (pneumatise) the postcranial skeleton, unidirectional ventilation of the lungs, and efficient crosscurrent gas exchange. Crocodilians, the only other living archosaurs, also possess unidirectional lung ventilation, but lack true air sacs and postcranial skeletal pneumaticity (PSP). PSP can be used to infer the presence of avian-like pulmonary air sacs in several extinct archosaur clades (non-avian theropod dinosaurs, sauropod dinosaurs and pterosaurs). However, the evolution of respiratory systems in other archosaurs, especially in the lineage leading to crocodilians, is poorly documented. Here, we use μCT-scanning to investigate the vertebral anatomy of Triassic archosaur taxa, from both the avian and crocodilian lineages as well as non-archosaurian diapsid outgroups. Our results confirm previous suggestions that unambiguous evidence of PSP (presence of internal pneumatic cavities linked to the exterior by foramina) is found only in bird-line (ornithodiran) archosaurs. We propose that pulmonary air sacs were present in the common ancestor of Ornithodira and may have been subsequently lost or reduced in some members of the clade (notably in ornithischian dinosaurs). The development of these avian-like respiratory features might have been linked to inferred increases in activity levels among ornithodirans. By contrast, no crocodile-line archosaur (pseudosuchian) exhibits evidence for unambiguous PSP, but many of these taxa possess the complex array of vertebral laminae and fossae that always accompany the presence of air sacs in ornithodirans. These laminae and fossae are likely homologous with those in ornithodirans, which suggests the need for further investigation of the hypothesis that a reduced, or non-invasive, system of pulmonary air sacs may be have been present in these taxa (and secondarily lost in extant crocodilians) and was potentially primitive for Archosauria as a whole.  相似文献   

18.
This study examines joint changes in the vertebral skeleton in human remains excavated in 1987 and 1988 at Bronze Age Harappa, an urban center of the Indus Valley civilization. The sample consists of 23 complete skeletons from primary burial context, the partial remains of more than 69 other individuals, and hundreds of skeletal elements from secondary context, totalling 3,084 vertebral joint margins and articular surfaces. Marginal bone proliferation, pitting of articular surfaces, eburnation, and ankylosis were scored macroscopically for vertebral body margins and surfaces and posterior apophyseal facet joints. Marginal lipping is far more prevalent on the vertebral bodies than on the apophyseal facets and surface pitting is also more frequent on vertebral bodies although its expression is relatively low overall. Cervical vertebrae in this sample exhibit the same amount of marginal new bone and much more surface pitting of the vertebral bodies than do either thoracic or lumbar vertebrae; the cervical segment also exhibits the most severe expressions of both types of lesions. In addition, although the frequencies of cervical and lumbar posterior facet involvement are similar, the cervical facets exhibit much more severe lipping as well as the only cases of eburnation and ankylosis. Pitting of the posterior facets is most common in the lumbar segment, but the cervical examples are the only severe cases. It is proposed that the severe joint changes in the cervical spine result from trauma, perhaps accumulated microtrauma from activity stresses. There are no age or sex associated patterns in the frequency of arthritis although this result may be influenced by the small proportions of the total sample for which age and sex could be determined. © 1994 Wiley-Liss, Inc.  相似文献   

19.
20.
Anseriform birds were surveyed to examine how the degree of postcranial pneumaticity varies in a behaviorally and size-diverse clade of living birds. This study attempts to extricate the relative effects of phylogeny, body size, and behavioral specializations (e.g., diving, soaring) that have been postulated to influence the extent of postcranial skeletal pneumaticity. One hundred anseriform species were examined as the focal study group. Methods included latex injection of the pulmonary apparatus followed by gross dissection or direct examination of osteological specimens. The Pneumaticity Index (PI) is introduced as a means of quantifying and comparing postcranial pneumaticity in a number of species simultaneously. Phylogenetically independent contrasts (PICs) were used to examine the relationship between body size and the degree of postcranial pneumaticity throughout the clade. There is a high degree of similarity (i.e., clade-specificity) within most anseriform subgroups. As a whole, Anseriformes demonstrate no significant relationship between relative pneumaticity and body size, as indicated by regression analysis of body mass on PI. It is apparent, however, that many clades of diving ducks do exhibit lower PIs than their nondiving relatives. By exclusion of diving taxa from analyses, a significant positive slope is observed and the hypothesis of relatively higher pneumaticity in larger-bodied birds is only weakly supported. However, low correlations indicate that factors other than body size account for much of the variation observed in relative pneumaticity. Pneumaticity profiles were mapped onto existing phylogenetic hypotheses. A reduction in the degree of postcranial pneumaticity occurred independently in at least three anseriform subclades specialized for diving. Finally, enigmatic pneumatic features located in distal forelimb elements of screamers (Anhimidae) result from invasion of bone by a network of subcutaneous air sac diverticula spreading distally along the wings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号