首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Very long chain fatty acids (VLCFAs) are essential components for eukaryotes. They are elongated by the elongase complex in the endoplasmic reticulum and are incorporated into four major lipid pools (triacylglycerols, waxes, phospholipids, complex sphingolipids). Functional analysis of several components of the elongase complex demonstrated the essential role of VLCFAs in plants, invertebrates and vertebrates. Although VLCFAs changes in the triacylglycerol pool has no consequence for plant development, modifications of the nature and levels of VLCFAs in waxes, phospholipids and complex sphingolipids have, collectively, profound effects on embryo, leaf, root and flower development. VLCFAs levels in epicuticular waxes are critical for the regulation of epidermal fusions during organogenesis. VLCFAs phospholipids and sphingolipids are involved in membrane structure and dynamics regulating cell size but also division and differentiation. This review summarizes the recent findings in plants but also in other organisms, highlighting the importance of very long acyl chain length during development.  相似文献   

2.
The Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene encodes a putative seed-specific condensing enzyme. It is the first of four enzyme activities that comprise the microsomal fatty acid elongase (FAE) involved in the biosynthesis of very-long-chain fatty acids (VLCFAs). FAE1 has been expressed in yeast and in tissues of Arabidopsis and tobacco, where significant quantities of VLCFAs are not found. The introduction of FAE1 alone in these systems is sufficient for the production of VLCFAs, for wherever FAE1 was expressed, VLCFAs accumulated. These results indicate that FAE1 is the rate-limiting enzyme for VLCFA biosynthesis in Arabidopsis seed, because introduction of extra copies of FAE1 resulted in higher levels of the VLCFAs. Furthermore, the condensing enzyme is the activity of the elongase that determines the acyl chain length of the VLCFAs produced. In contrast, it appears that the other three enzyme activities of the elongase are found ubiquitously throughout the plant, are not rate-limiting and play no role in the control of VLCFA synthesis. The ability of yeast containing FAE1 to synthesize VLCFAs suggests that the expression and the acyl chain length specificity of the condensing enzyme, along with the apparent broad specificities of the other three FAE activities, may be a universal eukaryotic mechanism for regulating the amounts and acyl chain length of VLCFAs synthesized.  相似文献   

3.
4.
VLCFAs are the main components of cuticular wax, which covers and protects plants from physical and biological stresses. However, the effect of fatty acid composition or the physiological role of VLCFAs on plant development under normal growth conditions is not well understood. We analyzed loss-of-function mutants of ONION1 (ONI1) which encodes fatty acid elongase (β-ketoacyl CoA synthase) catalyzing an elongation reaction of a carbon chain of VLCFAs. We showed that oni1 shoot contained a reduced amount of VLCFAs, and differentiation and functionality of an outermost cell layer (L1) were highly perturbed in oni1 shoot. In spite of the L1-specific expression of ONI1, the effects of the oni1 mutation were not restricted to L1, but expanded to inner cells, so that the entire shoot development was impaired including failure of the maintenance of the SAM and ectopic expression of SAM-specific KNOX genes in leaf. Thus, ONI1 function is cell non-autonomous, and signaling from L1 to inner cells may support proper development of inner cells. Here we report that expression of auxin-related genes was affected in oni1 shoot, and we speculate the existence of improper auxin distribution due to a lack of normal L1 in oni1 shoot.Key words: fatty acid elongase, very-long-chain fatty acid, auxin, shoot development, rice  相似文献   

5.
Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production.  相似文献   

6.
7.
Denic V  Weissman JS 《Cell》2007,130(4):663-677
Very long-chain fatty acids (VLCFAs) are essential lipids whose functional diversity is enabled by variation in their chain length. The full VLCFA biosynthetic machinery and how this machinery generates structural diversity remain elusive. Proteoliposomes reconstituted here from purified membrane components-an elongase protein (Elop), a novel dehydratase, and two reductases-catalyzed repeated rounds of two-carbon addition that elongated shorter FAs into VLCFAs whose length was dictated by the specific Elop homolog present. Mutational analysis revealed that the Elop active site faces the cytosol, whereas VLCFA length is determined by a lysine near the luminal end of an Elop transmembrane helix. By stepping the lysine residue along one face of the helix toward the cytosol, we engineered novel synthases with correspondingly shorter VLCFA outputs. Thus the distance between the active site and the lysine residue determines chain length. Our results uncover a mutationally adjustable, caliper-like mechanism that generates the repertoire of cellular VLCFAs.  相似文献   

8.
ROP GTPases are crucial for the establishment of cell polarity and for controlling responses to hormones and environmental signals in plants. In this work, we show that ROP3 plays important roles in embryo development and auxin-dependent plant growth. Loss-of-function and dominant-negative (DN) mutations in ROP3 induced a spectrum of similar defects starting with altered cell division patterning during early embryogenesis to postembryonic auxin-regulated growth and developmental responses. These resulted in distorted embryo development, defective organ formation, retarded root gravitropism, and reduced auxin-dependent hypocotyl elongation. Our results showed that the expression of AUXIN RESPONSE FACTOR5/MONOPTEROS and root master regulators PLETHORA1 (PLT1) and PLT2 was reduced in DN-rop3 mutant embryos, accounting for some of the observed patterning defects. ROP3 mutations also altered polar localization of auxin efflux proteins (PINs) at the plasma membrane (PM), thus disrupting auxin maxima in the root. Notably, ROP3 is induced by auxin and prominently detected in root stele cells, an expression pattern similar to those of several stele-enriched PINs. Our results demonstrate that ROP3 is important for maintaining the polarity of PIN proteins at the PM, which in turn ensures polar auxin transport and distribution, thereby controlling plant patterning and auxin-regulated responses.  相似文献   

9.
10.
Recent findings indicate that lipid signaling is essential for plant resistance to pathogens. Besides oxylipins and unsaturated fatty acids known to play important signaling functions during plant-pathogen interactions, the very long chain fatty acid (VLCFA) biosynthesis pathway has been recently associated to plant defense through different aspects. VLCFAs are indeed required for the biosynthesis of the plant cuticle and the generation of sphingolipids. Elucidation of the roles of these lipids in biotic stress responses is the result of the use of genetic approaches together with the identification of the genes/proteins involved in their biosynthesis. This review focuses on recent observations which revealed the complex function of the cuticle and cuticle-derived signals, and the key role of sphingolipids as bioactive molecules involved in signal transduction and cell death regulation during plant-pathogen interactions.Key words: very long chain fatty acids (VLCFAs), plant-pathogen interactions, lipid signaling, sphingolipids, epicuticular waxes, lipid rafts, cuticle, plant defense  相似文献   

11.
X-adrenoleukodystrophy (X-ALD) is a peroxisomal metabolic disorder caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). The consistent metabolic abnormality in all forms of X-ALD is an inherited defect in the peroxisomal β-oxidation of very long chain FAs (VLCFAs >C22:0) and the resultant pathognomic accumulation of VLCFA. The accumulation of VLCFA leads to a neuroinflammatory disease process associated with demyelination of the cerebral white matter. The present study underlines the importance of a potent histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA) in inducing the expression of ABCD2 [adrenoleukodystrophy-related protein (ALDRP)], and normalizing the peroxisomal β-oxidation, as well as the saturated and monounsaturated VLCFAs in cultured human skin fibroblasts of X-ALD patients. The expression of ELOVL1, the single elongase catalyzing the synthesis of both saturated VLCFA (C26:0) and monounsaturated VLCFA (C26:1), was also reduced by SAHA treatment. In addition, using Abcd1/Abcd2-silenced mouse primary astrocytes, we also examined the effects of SAHA in VLCFA-induced inflammatory response. SAHA treatment decreased the inflammatory response as expression of inducible nitric oxide synthase, inflammatory cytokine, and activation of NF-κB in Abcd1/Abcd2-silenced mouse primary astrocytes was reduced. These observations indicate that SAHA corrects both the metabolic disease of VLCFA as well as secondary inflammatory disease; therefore, it may be an ideal drug candidate to be tested for X-ALD therapy in humans.  相似文献   

12.
Literary data on very long-chain fatty acids (VLCFAs) that are present in polar lipids of the plant cell membranes are discussed. Large amounts of VLCFA are found in polar lipids of some cellular organelles as well as in nonextractable lipids from diverse plant objects, where the influence of surface lipids on the relative content of these FAs is excluded. In some plants, the VLCFA fraction in membrane lipids increases under several kinds of stress. Amounts and diversity of VLCFAs are lower in flowering plants as compared with the representatives of more ancient taxons—gymnosperms, ferns, and marine algae. Presence of VLCFAs in the composition of annular lipids of the cell membranes is assumed. Biosynthesis of VLCFAs, enzymes involved in the process, and encoding genes are discussed.  相似文献   

13.
14.
The phytohormone auxin is a key regulator of organogenesis in plants and is distributed asymmetrically via polar transport. However, the precise mechanisms underlying auxin-mediated organogenesis remain elusive. Here, we have analyzed the macchi-bou 2 (mab2) mutant identified in a pinoid (pid) enhancer mutant screen. Seedlings homozygous for either mab2 or pid showed only mild phenotypic effects on cotyledon positions and/or numbers. In contrast, mab2 pid double mutant seedlings completely lacked cotyledons, indicating a synergistic interaction. We found that mab2 homozygous embryos had defective patterns of cell division and showed aberrant cotyledon organogenesis. Further analysis revealed that the mab2 mutation affected auxin response but not auxin transport in the embryos, suggesting the involvement of MAB2 in auxin response during embryogenesis. MAB2 encodes an Arabidopsis ortholog of MED13, a putative regulatory module component of the Mediator complex. Mediator is a multicomponent complex that is evolutionarily conserved in eukaryotes and its regulatory module associates with Mediator to control the interaction of Mediator and RNA polymerase II. MAB2 interacts with a regulatory module component in yeast cells. Taken together, our data suggest that MAB2 plays a crucial role in embryo patterning and cotyledon organogenesis, possibly through modulating expression of specific genes such as auxin-responsive genes.  相似文献   

15.
Very long-chain fatty acids (VLCFAs), fatty acids with chain-length greater than 20 carbons, possess a wide range of biological functions. However, their roles at the molecular level remain largely unknown. In the present study, we screened for multicopy suppressors that rescued temperature-sensitive growth of VLCFA-limited yeast cells, and we identified the VPS21 gene, encoding a Rab GTPase, as such a suppressor. When the vps21Δ mutation was introduced into a deletion mutant of the SUR4 gene, which encodes a VLCFA elongase, a synthetic growth defect was observed. Endosome-mediated vesicular trafficking pathways, including endocytosis and the carboxypeptidase Y (CPY) pathway, were severely impaired in sur4Δ vps21Δ double mutants, while the AP-3 pathway that bypasses the endosome was unaffected. In addition, the sur4Δ mutant also exhibited a synthetic growth defect when combined with the deletion of VPS3, which encodes a subunit of the class C core vacuole/endosome tethering (CORVET) complex that tethers transport vesicles to the late endosome/multivesicular body (MVB). These results suggest that, of all the intracellular trafficking pathways, requirement of VLCFAs is especially high in the endosomal pathways.  相似文献   

16.
Endocytosis is a crucial mechanism by which eukaryotic cells internalize extracellular and plasma membrane material, and it is required for a multitude of cellular and developmental processes in unicellular and multicellular organisms. In animals and yeast, the best characterized pathway for endocytosis depends on the function of the vesicle coat protein clathrin. Clathrin-mediated endocytosis has recently been demonstrated also in plant cells, but its physiological and developmental roles remain unclear. Here, we assessed the roles of the clathrin-mediated mechanism of endocytosis in plants by genetic means. We interfered with clathrin heavy chain (CHC) function through mutants and dominant-negative approaches in Arabidopsis thaliana and established tools to manipulate clathrin function in a cell type-specific manner. The chc2 single mutants and dominant-negative CHC1 (HUB) transgenic lines were defective in bulk endocytosis as well as in internalization of prominent plasma membrane proteins. Interference with clathrin-mediated endocytosis led to defects in constitutive endocytic recycling of PIN auxin transporters and their polar distribution in embryos and roots. Consistent with this, these lines had altered auxin distribution patterns and associated auxin transport-related phenotypes, such as aberrant embryo patterning, imperfect cotyledon specification, agravitropic growth, and impaired lateral root organogenesis. Together, these data demonstrate a fundamental role for clathrin function in cell polarity, growth, patterning, and organogenesis in plants.  相似文献   

17.
Auxin transport at least correlates to the three gene families: efflux carriers PIN-formed (PIN), p-glycoprotein (PGP), and influx carrier auxin resistant 1/like aux1(AUX/LAX) in Arabidopsis thaliana. In monocotyledon Sorghum bicolor, the biological function of these genes retains unclear. Our previous study reported that the member analysis, organ-specific expression and expression profiles of the auxin transporter PIN, PGP and AUX/LAX gene families in Sorghum bicolor under IAA, brassinosteroid, polar auxin transport inhibitors and abiotic stresses. Here we further supply the prediction of subcellular localization of SbPIN, SbLAX and SbPGP proteins and discuss the potential relationship between the subcellular localization and stress response. The predicted results showed that the most of SbPIN, SbLAX and SbPGP proteins are localized to the plasma membrane, except few localized to vacuolar membrane and endoplasmic reticulum. This data set provides novel information for investigation of auxin transporters in Sorghum bicolor.  相似文献   

18.
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by mutations in the ABCD1 gene. Accumulation of very long chain fatty acids (VLCFA) that have been attributed to reduced peroxisomal VLCFA β-oxidation activity are the hallmark of the disease. Overexpression of ABCD2 gene, the closest homolog of ABCD1, has been shown to compensate for ABCD1, thus correcting the VLCFA derangement. The accumulation of VLCFA leads to a neuroinflammatory disease process associated with demyelination of the cerebral white matter. The present study underlines the importance of caffeic acid phenethyl ester (CAPE) in inducing the expression of ABCD2 (ALDRP), and normalizing the peroxisomal β-oxidation as well as the levels of saturated and monounsaturated VLCFAs in cultured human skin fibroblasts of X-ALD patients. The expression of ELOVL1, the single elongase catalyzing the synthesis of both saturated VLCFA (C26:0) and mono-unsaturated VLCFA (C26:1), was also reduced by CAPE treatment. Importantly, CAPE upregulated Abcd2 expression and peroxisomal β-oxidation and lowered the VLCFA levels in Abcd1-deficient U87 astrocytes and B12 oligodendrocytes. In addition, using Abcd1/Abcd2-silenced mouse primary astrocytes we examined the effects of CAPE in VLCFA-induced inflammatory response. CAPE treatment decreased the inflammatory response as the expression of inducible nitric oxide synthase, inflammatory cytokine, and activation of NF-κB in Abcd1/Abcd2-silenced mouse primary astrocytes was reduced. The observations indicate that CAPE corrects both the metabolic disease of VLCFA as well as secondary inflammatory disease; therefore, it may be a potential drug candidate to be tested for X-ALD therapy in humans.  相似文献   

19.
The TSC13/YDL015c gene was identified in a screen for suppressors of the calcium sensitivity of csg2Delta mutants that are defective in sphingolipid synthesis. The fatty acid moiety of sphingolipids in Saccharomyces cerevisiae is a very long chain fatty acid (VLCFA) that is synthesized by a microsomal enzyme system that lengthens the palmitate produced by cytosolic fatty acid synthase by two carbon units in each cycle of elongation. The TSC13 gene encodes a protein required for elongation, possibly the enoyl reductase that catalyzes the last step in each cycle of elongation. The tsc13 mutant accumulates high levels of long-chain bases as well as ceramides that harbor fatty acids with chain lengths shorter than 26 carbons. These phenotypes are exacerbated by the deletion of either the ELO2 or ELO3 gene, both of which have previously been shown to be required for VLCFA synthesis. Compromising the synthesis of malonyl coenzyme A (malonyl-CoA) by inactivating acetyl-CoA carboxylase in a tsc13 mutant is lethal, further supporting a role of Tsc13p in VLCFA synthesis. Tsc13p coimmunoprecipitates with Elo2p and Elo3p, suggesting that the elongating proteins are organized in a complex. Tsc13p localizes to the endoplasmic reticulum and is highly enriched in a novel structure marking nuclear-vacuolar junctions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号