首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.

Background

The identification of transmission of variant Creutzfeldt-Jakob disease (vCJD) by blood transfusion has prompted investigation to establish whether there has been any alteration in the vCJD agent following this route of secondary transmission. Any increase in virulence or host adaptation would require a reassessment of the risk analyses relating to the possibility of a significant secondary outbreak of vCJD. Since there are likely to be carriers of the vCJD agent in the general population, there is a potential for further infection by routes such as blood transfusion or contaminated surgical instruments.

Methodology

We inoculated both wild-type and transgenic mice with material from the first case of transfusion associated vCJD infection.

Principal Findings

The strain transmission properties of blood transfusion associated vCJD infection show remarkable similarities to the strain of vCJD associated with transmission from bovine spongiform encephalopathy (BSE).

Conclusions

Although it has been hypothesized that adaptation of the BSE agent through secondary passage in humans may result in a greater risk of onward transmission due to an increased virulence of the agent for humans, our data presented here in two murine models suggest no significant alterations to transmission efficiency of the agent following human-to-human transmission of vCJD.  相似文献   

2.

Background  

The bovine spongiform encephalopathy (BSE) epidemic and the emergence of a new human variant of Creutzfeldt-Jakob Disease (vCJD) have led to profound changes in the production and trade of agricultural goods. The rapid tests currently approved for BSE monitoring in slaughtered cattle are all based on the detection of the disease related isoform of the prion protein, PrPd, in brain tissue and consequently are only suitable for post-mortem diagnosis. Objectives: In instances such as assessing the health of breeding stock for export purposes where post-mortem testing is not an option, there is a demand for an ante-mortem test based on a matrix or body fluid that would permit easy access and repeated sampling. Urine and urine based analyses would meet these requirements.  相似文献   

3.
Horiuchi M 《Uirusu》2005,55(1):45-53
Prion diseases such as bovine spongiform encephalopathy (BSE) have been recognized as zoonosis since the existence of variant Creutzfeldt-Jakob disease (vCJD) was reported in 1996. BSE became a serious social problem even in Japan after the first BSE case was found in 2001. The incidence of BSE in EU and UK appears declining, and the vCJD incidence also shows a tendency to decrease. On the contrary, fears for the spread of BSE became actual problems: BSE occurrence outside of EU, transmission of vCJD by blood transfusion, and the first vCJD case in Japan. To prevent further spread and to reduce the risk of BSE, it is important to continue BSE screening/surveillance, removal of specified risk materials from food and feed chains, and effective feed regulation. For the disclosure and elimination of prion-contaminated blood, materials for medical and pharmaceutical products and so on, it is required to improve the sensitivity of prion detection methods. Furthermore, it is also important to establish therapeutics of human prion diseases.  相似文献   

4.
Human CJD, endemic sheep scrapie, epidemic bovine spongiform encephalopathy (BSE), and other transmissible spongiform encephalopathies (TSEs), are caused by a group of related but molecularly uncharacterized infectious agents. The UK‐BSE agent infected many species, including humans where it causes variant CJD (vCJD). As in most viral infections, different TSE disease phenotypes are determined by both the agent strain and the host species. TSE strains are most reliably classified by incubation time and regional neuropathology in mice expressing wild‐type (wt) prion protein (PrP). We compared vCJD to other human and animal derived TSE strains in both mice and neuronal cultures expressing wt murine PrP. Primary and serial passages of the human vCJD agent, as well as the highly selected mutant 263K sheep scrapie agent, revealed profound strain‐specific characteristics were encoded by the agent, not by host PrP. Prion theory posits that PrP converts itself into the infectious agent, and thus short incubations require identical PrP sequences in the donor and recipient host. However, wt PrP mice injected with human vCJD brain homogenates showed dramatically shorter primary incubation times than mice expressing only human PrP, a finding not in accord with a PrP species barrier. All mouse passage brains showed the vCJD agent derived from a stable BSE strain. Additionally, both vCJD brain and monotypic neuronal cultures produced a diagnostic 19 kDa PrP fragment previously observed only in BSE and vCJD primate brains. Monotypic cultures can be used to identify the intrinsic, strain‐determining molecules of TSE infectious particles. J. Cell. Biochem. 106: 220–231, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

5.

Background  

The definite diagnosis of prion diseases such as Creutzfeldt-Jakob disease (CJD) in humans or bovine spongiform encephalopathy (BSE) in cattle currently relies on the post mortem detection of the pathological form of the prion protein (PrPSc) in brain tissue. Infectivity studies indicate that PrPSc may also be present in body fluids, even at presymptomatic stages of the disease, albeit at concentrations well below the detection limits of currently available analytical methods.  相似文献   

6.
Bovine spongiform encephalopathy (BSE) is a zoonotic transmissible spongiform encephalopathy (TSE) thought to be caused by the same prion strain as variant Creutzfeldt-Jakob disease (vCJD). Unlike scrapie and chronic wasting disease there is no cell culture model allowing the replication of proteinase K resistant BSE (PrPBSE) and the further in vitro study of this disease. We have generated a cell line based on the Madin-Darby Bovine Kidney (MDBK) cell line over-expressing the bovine prion protein. After exposure to naturally BSE-infected bovine brain homogenate this cell line has shown to replicate and accumulate PrPBSE and maintain infection up to passage 83 after initial challenge. Collectively, we demonstrate, for the first time, that the BSE agent can infect cell lines over-expressing the bovine prion protein similar to other prion diseases. These BSE infected cells will provide a useful tool to facilitate the study of potential therapeutic agents and the diagnosis of BSE.  相似文献   

7.
Variant Creutzfeldt-Jakob disease (vCJD) appears to be caused by infection with the bovine spongiform encephalopathy (BSE) agent. To date, all patients with vCJD are homozygous for methionine at codon 129 of the PrP gene. To investigate the relationship between polymorphism at codon 129 and susceptibility to BSE or vCJD prions, we performed splenic follicular dendritic cell assay with humanized knock-in mice through peripheral infection. All humanized knock-in mice showed little or no susceptibility to BSE prions. Only the subset of humanized knock-in mice with codon 129 Met/Met genotype showed weak susceptibility by Western blotting. Surprisingly, we succeeded in the transmission of vCJD prions to humanized knock-in mice not only with codon 129 Met/Met but also with codon 129 Met/Val. Humanized knock-in mice with codon 129 Val/Val were not susceptible. The results suggest that human heterozygotes at codon 129 are also at risk for secondary infection with vCJD.  相似文献   

8.

Background

Bovine spongiform encephalopathy (BSE) is a transmissible spongiform encephalopathy (TSE) of cattle. Classical BSE is associated with ingestion of BSE-contaminated feedstuffs. H- and L-type BSE, collectively known as atypical BSE, differ from classical BSE by displaying a different disease phenotype and they have not been linked to the consumption of contaminated feed. Interestingly, the 2006 US H-type atypical BSE animal had a polymorphism at codon 211 of the bovine prion gene resulting in a glutamic acid to lysine substitution (E211K). This substitution is analogous a human polymorphism associated with the most prevalent form of heritable TSE in humans, and it is considered to have caused BSE in the 2006 US atypical BSE animal. In order to determine if this amino acid change is a heritable trait in cattle, we sequenced the prion alleles of the only known offspring of this animal, a 2-year-old heifer.

Principal Findings

Sequence analysis revealed that both the 2006 US atypical BSE animal and its 2-year-old heifer were heterozygous at bovine prion gene nucleotides 631 through 633 for GAA (glutamic acid) and AAA (lysine). Both animals carry the E211K polymorphism, indicating that the allele is heritable and may persist within the cattle population.

Conclusions

This is the first evidence that the E211K polymorphism is a germline polymorphism, not a somatic mutation, suggesting BSE may be transmitted genetically in cattle. In the event that E211K proves to result in a genetic form of BSE, this would be the first indication that all 3 etiologic forms of TSEs (spontaneous, hereditary, and infectious) are present in a non-human species. Atypical BSE arising as both genetic and spontaneous disease, in the context of reports that at least some forms of atypical BSE can convert to classical BSE in mice, suggests a cattle origin for classical BSE.  相似文献   

9.
The risk of the transmission of ruminant transmissible spongiform encephalopathy (TSE) to humans was thought to be low due to the lack of association between sheep scrapie and the incidence of human TSE. However, a single TSE agent strain has been shown to cause both bovine spongiform encephalopathy (BSE) and human vCJD, indicating that some ruminant TSEs are transmissible to humans. While the transmission of cattle BSE to humans in transgenic mouse models has been inefficient, indicating the presence of a significant transmission barrier between cattle and humans, BSE has been transmitted to a number of other species. Here, we aimed to further investigate the human transmission barrier following the passage of BSE in a sheep. Following inoculation with cattle BSE, gene-targeted transgenic mice expressing human PrP showed no clinical or pathological signs of TSE disease. However, following inoculation with an isolate of BSE that had been passaged through a sheep, TSE-associated vacuolation and proteinase K-resistant PrP deposition were observed in mice homozygous for the codon 129-methionine PRNP gene. This observation may be due to higher titers of the BSE agent in sheep or an increased susceptibility of humans to BSE prions following passage through a sheep. However, these data confirm that, contrary to previous predictions, it is possible that a sheep prion is transmissible to humans and that BSE from other species is a public health risk.  相似文献   

10.
Feline spongiform encephalopathy (FSE) is considered to be related to bovine spongiform encephalopathy (BSE) and has been reported in domestic cats as well as in captive wild cats including cheetahs, first in the United Kingdom (UK) and then in other European countries. In France, several cases were described in cheetahs either imported from UK or born in France. Here we report details of two other FSE cases in captive cheetah including a 2nd case of FSE in a cheetah born in France, most likely due to maternal transmission. Complete prion protein immunohistochemical study on both brains and peripheral organs showed the close likeness between the two cases. In addition, transmission studies to the TgOvPrP4 mouse line were also performed, for comparison with the transmission of cattle BSE. The TgOvPrP4 mouse brains infected with cattle BSE and cheetah FSE revealed similar vacuolar lesion profiles, PrPd brain mapping with occurrence of typical florid plaques. Collectively, these data indicate that they harbor the same strain of agent as the cattle BSE agent. This new observation may have some impact on our knowledge of vertical transmission of BSE agent-linked TSEs such as in housecat FSE, or vCJD.  相似文献   

11.
Following the discovery of a causal link between bovine spongiform encephalopathy (BSE) in cattle and variant Creutzfeldt–Jakob disease (vCJD) in humans, several experimental approaches have been used to try to assess the potential risk of transmission of other animal transmissible spongiform encephalopathies (TSEs) to humans. Experimental challenge of non-human primates, humanised transgenic mice and cell-free conversion systems have all been used as models to explore the susceptibility of humans to animal TSEs. In this review we compare and contrast in vivo and in vitro evidence of the zoonotic risk to humans from sheep, cattle and deer prions, focusing primarily on chronic wasting disease and our own recent studies using protein misfolding cyclic amplification.  相似文献   

12.
Bovine spongiform encephalopathy (BSE) is a transmissible spongiform encephalopathy (TSE) identified twenty years ago in the British cattle herds. Creutzfeldt-Jakob disease (CJD) is a TSE that occurs in humans. In 1996, scientists found a possible link between BSE and a new variant of CJD (vCJD). The fact that the non conventional infectious agent of TSE, named prions, could cross the species barrier from cattle to human through meat consumption, raised a tremendous concern for public safety in Europe. This led to the development in the following two decades of substantial and expensive measures to contain BSE and prevent its transmission to humans. In parallel, scientific programs have been funded to progress through the comprehension of the physiopathology of these fatal disorders. In Europe, the BSE epidemics is now ending and the number of cases is decreasing thanks to the strict control of animal foodstuff that was the main source of prion contamination. Only a small number of vCJD have been detected, however, additional concerns have been raised recently for public safety as secondary transmission of CJD through medical procedure and blood transfusion is possible. In addition, the possibility that the BSE was transmitted to other animals including small ruminants is also worrisome. Research efforts are now focussing on decontamination and ante mortem diagnosis of TSE to prevent animal and human transmission. However, needs for fundamental research are still important as many questions remain to be addressed to understand the mechanism of prion transmission, as well as its pathogenesis.  相似文献   

13.
《朊病毒》2013,7(5):461-469
Classical bovine spongiform encephalopathy is a transmissible prion disease that is fatal to cattle and is a human health risk due to its association with a strain of Creutzfeldt-Jakob disease (vCJD). Mutations to the coding region of the prion gene (PRNP) have been associated with susceptibility to transmissible spongiform encephalopathies in mammals including bovines and humans. Additional loci such as the retinoic acid receptor beta (RARB) and stathmin like 2 (STMN2) have also been associated with disease risk. The objective of this study was to refine previously identified regions associated with BSE susceptibility and to identify positional candidate genes and genetic variation that may be involved with the progression of classical BSE. The samples included 739 samples of either BSE infected animals (522 animals) or non-infected controls (207 animals). These were tested using a custom SNP array designed to narrow previously identified regions of importance in bovine genome. Thirty one single nucleotide polymorphisms were identified at p < 0.05 and a minor allele frequency greater than 5%. The chromosomal regions identified and the positional and functional candidate genes and regulatory elements identified within these regions warrant further research.  相似文献   

14.
Classical bovine spongiform encephalopathy is a transmissible prion disease that is fatal to cattle and is a human health risk due to its association with a strain of Creutzfeldt-Jakob disease (vCJD). Mutations to the coding region of the prion gene (PRNP) have been associated with susceptibility to transmissible spongiform encephalopathies in mammals including bovines and humans. Additional loci such as the retinoic acid receptor beta (RARB) and stathmin like 2 (STMN2) have also been associated with disease risk. The objective of this study was to refine previously identified regions associated with BSE susceptibility and to identify positional candidate genes and genetic variation that may be involved with the progression of classical BSE. The samples included 739 samples of either BSE infected animals (522 animals) or non-infected controls (207 animals). These were tested using a custom SNP array designed to narrow previously identified regions of importance in bovine genome. Thirty one single nucleotide polymorphisms were identified at p < 0.05 and a minor allele frequency greater than 5%. The chromosomal regions identified and the positional and functional candidate genes and regulatory elements identified within these regions warrant further research.  相似文献   

15.

Background

Bovine spongiform encephalopathy (BSE), a member of the transmissible spongiform encephalopathies (TSE), primarily affects cattle. Transmission is via concentrate feed rations contaminated with infected meat and bone meal (MBM). In addition to cattle, other food animal species are susceptible to BSE and also pose a potential threat to human health as consumption of infected meat products is the cause of variant Creutzfeldt-Jakob disease in humans, which is invariably fatal. In the UK, farmed and free ranging deer were almost certainly exposed to BSE infected MBM in proprietary feeds prior to legislation banning its inclusion. Therefore, although BSE has never been diagnosed in any deer species, a possible risk to human health remains via ingestion of cervine products. Chronic wasting disease (CWD), also a TSE, naturally infects several cervid species in North America and is spreading rapidly in both captive and free-ranging populations.

Results

Here we show that European red deer (Cervus elaphus elaphus) are susceptible to intra-cerebral (i/c) challenge with BSE positive cattle brain pool material resulting in clinical neurological disease and weight loss by 794–1290 days and the clinical signs are indistinguishable to those reported in deer with CWD. Spongiform changes typical of TSE infections were present in brain and accumulation of the disease-associated abnormal prion protein (PrPd) was present in the central and peripheral nervous systems, but not in lymphoid or other tissues. Western immunoblot analysis of brain material showed a similar glycosylation pattern to that of BSE derived from infected cattle and experimentally infected sheep with respect to protease-resistant PrP isoforms. However, the di-, mono- and unglycosylated bands migrated significantly (p < 0.001) further in the samples from the clinically affected deer when compared to BSE infected brains of cattle and sheep.

Conclusion

This study shows that deer are susceptible to BSE by intra-cerebral inoculation and display clinical signs and vacuolar pathology that are similar to those of CWD. These findings highlight the importance of preventing the spread to Europe of CWD from North America as this may necessitate even more extensive testing of animal tissues destined for human consumption within the EU. Although the absence of PrPd in lymphoid and other non-neurological tissues potentially limits the risk of transmission to humans, the replication of TSE agents in peripheral tissues following intra-cerebral challenge is often limited. Thus the assessment of risk posed by cervine BSE as a human pathogen or for environmental contamination should await the outcome of ongoing oral challenge experiments.
  相似文献   

16.
The bovine spongiform encephalopathy (BSE) epidemic in cattle has had a huge economic impact on the agricultural industries across Europe. Furthermore, scientific evidence now strongly supporting a link between a new variant of Creutzfeldt-Jakob disease (vCJD) and consumption of BSE-infected animals has further heightened the need both to understand the transmission of these new diseases and to improve control measures to protect public health. In this paper we review work undertaken by our group using epidemiological models to understand the transmission dynamics of BSE and vCJD. We present new estimates of the future number of cases of BSE and the number of infected animals slaughtered for consumption for Great Britain, and summarise similar analyses undertaken for Northern Ireland, Ireland, Portugal and France. We also consider the epidemiological determinants of the future course of the vCJD epidemic, including the age and genetic characteristics of the confirmed cases, and present predictions of future case numbers.  相似文献   

17.

Background  

After bovine spongiform encephalopathy (BSE) emerged in European cattle livestock in 1986 a fundamental question was whether the agent established also in the small ruminants' population. In Switzerland transmissible spongiform encephalopathies (TSEs) in small ruminants have been monitored since 1990. While in the most recent TSE cases a BSE infection could be excluded, for historical cases techniques to discriminate scrapie from BSE had not been available at the time of diagnosis and thus their status remained unclear. We herein applied state-of-the-art techniques to retrospectively classify these animals and to re-analyze the affected flocks for secondary cases. These results were the basis for models, simulating the course of TSEs over a period of 70 years. The aim was to come to a statistically based overall assessment of the TSE situation in the domestic small ruminant population in Switzerland.  相似文献   

18.
19.
Variant Creutzfeldt-Jakob disease (vCJD) has been recognized to date only in individuals homozygous for methionine at PRNP codon 129. Here we show that transgenic mice expressing human PrP methionine 129, inoculated with either bovine spongiform encephalopathy (BSE) or variant CJD prions, may develop the neuropathological and molecular phenotype of vCJD, consistent with these diseases being caused by the same prion strain. Surprisingly, however, BSE transmission to these transgenic mice, in addition to producing a vCJD-like phenotype, can also result in a distinct molecular phenotype that is indistinguishable from that of sporadic CJD with PrP(Sc) type 2. These data suggest that more than one BSE-derived prion strain might infect humans; it is therefore possible that some patients with a phenotype consistent with sporadic CJD may have a disease arising from BSE exposure.  相似文献   

20.

Background  

The bovine spongiform encephalopathy (BSE) epidemic presented homogeneity of the phenotype. This classical BSE (called C-type) was probably due to the contamination of the food chain by a single prion strain. However, due to the active surveillance and better techniques, two rare variants of BSE have been recently reported in different continents without a clear correlation to the BSE epidemic. These emerging types behave as different strains of BSE and were named H-type and L-type according to the high and low molecular mass of the unglycosylated fragment of their proteinase K resistant prion protein (PrPres). In these types, the proportion of the un-, mono- and di-glycosylated fragments of PrP (glycoprofile) is also atypical and represents an effective diagnostic parameter. This study evaluated the presence of such types in bovine of 7 years and older in Belgium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号