首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An oat (Avena sativa L.) plant contains at least three phytochromes, which have monomeric masses of 125, 124, and 123 kilodaltons (kDa) (Wang et al., 1991, Planta 184, 96–104). The 124-kDa phytochrome is most abundant in dark-grown seedlings, while the other two phytochromes predominate in light-grown seedlings. Using three monoclonal antibodies, each specific to one of the three phytochromes, we have monitored by immunoblot assay the expression of these three phytochromes in the 5 d following onset of imbibition of seeds. On a per-organism basis, each of these three phytochromes increased in abundance for the first 3 d in the light, or for the first 4 d in darkness, after which they each began to decrease in quantity. When 3-d-old dark-grown seedlings were transferred to the light, the abundance of each of these three phytochromes decreased both in absolute amount and relative to the phytochrome levels in control seedlings kept in darkness. In contrast, when 3-d-old light-grown seedlings were transferred to darkness, the abundance of the 124-kDa and 125-kDa phytochromes increased while that of 123-kDa phytochrome remained unchanged. In each case, the level of phytochrome was greater than that of control seedlings maintained in the light. Thus, in addition to temporal regulation, all three phytochromes exhibit photoregulated expression at the protein level, although the magnitude of this photoregulation varies substantially. We thank Drs. Elizabeth Williams and Tammy Sage (Botany Department, University of Georgia, USA) for generously permitting us to use their image-analysis system. This research was supported by USDA NRICGP grant 91-37100-6490.  相似文献   

2.
Seven monoclonal antibodies (MAbs) have been prepared to phytochrome from green oat (Avena sativa L. cv. Garry) leaves. One of these MAbs (GO-1) cross-reacts with apoprotein of the phytochrome that is most abundant in etiolated oat shoots as assessed by immunoblot assay of fusion proteins expressed in Escherichia coli. The epitope for this MAb is located between amino acids 618 and 686 in the primary sequence of type 3 phytochrome (Hershey et al. 1985, Nucleic Acids Res. 13, 8543–8559), which is one of the predominant phytochromes in etiolated oats. Three other MAbs (GO-4, GO-5, GO-6) immunoprecipitate phytochrome isolated from green oat leaves, as evaluated by photoreversibility assay. GO-1, GO-4, GO-5 and GO-6 are therefore directed to phytochrome. While evidence obtained with the other three MAbs (GO-2, GO-7, GO-8) strongly indicates that they are also directed to phytochrome, this evidence is not as rigorous. Recognition of antigen by any of these seven MAbs is not significantly reduced by periodate oxidation, indicating that their epitopes probably do not include carbohydrate. All but GO-1 bind either very poorly or not at all the phytochrome that is abundant in etiolated oat shoots. These data reinforce earlier observations made with antibodies directed to phytochrome from etiolated oats, indicating (1) that the phytochromes that predominate in etiolated and green oats differ immunochemically and (2) that phytochrome preparations from green oat leaves contain very little of the phytochrome that is abundant in etiolated shoots. An hypothesis that these two immunochemically distinct phytochromes form heterodimers in vitroAbbreviations Da Dalton - DEAE diethylaminoethyl - ELISA enzyme-linked immunosorbent assay - HA hydroxyapatite - Ig immunoglobulin - MAb monoclonal antibody - SDS sodium dodecyl sulfate is supported by comparison of immunoblot data obtained with conventionally purified phytochrome from etiolated oats to that expressed as fusion protein in E. coli. This research was supported by the U.S. Department of Energy (contract DE-AC-09-81SR10925 to L.H.P.). We thank Dr. Lyle Crossland and Ms. Sue Kadwell for their assistance in the construction of the cDNA clones, and Dr. Gyorgy Bisztray for providing us with clone pCBP3712. Dr. Phillip Evans and Dr. Russell Malmberg kindly provided MAbs 4F3, 6F12 and 8C10, as well as a corresponding antigen preparation. The excellent technical assistance of Mrs. Donna Tucker and Mrs. Danielle Neal is gratefully acknowledged.  相似文献   

3.
The abundance and molecular mass of phytochrome in germinating embryos of A. sativa (oat) grown in light or darkness have been monitored using immunoblot and spectrophotometric assays. Immunoblot analysis shows that imbibed but quiescent embryos have two immunochemically distinct species of phytochrome with monomeric molecular masses of 124 and 118 kDa (kdalton). The 118-kDa species has the properties of the 118-kDa phytochrome extracted from fully green oat tissue (J.G. Tokuhisa, S.M. Daniels, P.H. Quail, 1985, Planta 164, 321–332), whereas the 124-kDa polypeptide appears similar to the well-characterized photoreceptor of etiolated tissue. The capacity of antibodies directed against etiolated-oat phytochrome to immunoprecipitate the 124-kDa species but not the 118-kDa species has been exploited to quantitate the levels of each separately over a 72-h time course of germination and seedling development. The abundance of the 124-kDa molecule increases at least 200-fold in etiolated seedlings over 72 h whereas in light-grown seedlings the level of this molecule is relatively constant. In contrast, the amount of the 118-kDa species increases only twofold in both dark- and light-grown seedlings over the same period of time. These data indicate that whereas the abundance of 124-kDa phytochrome is regulated at the protein level by the well-documented, differential stability of the red- and far-red-absorbing forms in vivo, the 118-kDa molecule is present at a low constitutive level, presumably reflecting no such difference in the stability of the two spectral forms.Abbreviations ELISA enzyme-linked immunosorbent assay - Ig immunoglobulin - kDa kilodalton - Pfr, Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

4.
Y. Shimazaki  L. H. Pratt 《Planta》1986,168(4):512-515
Thirty-nine antiserum preparations from eight rabbits were screened for their ability to precipitate the immunochemically distinct phytochrome that is obtained from green oat (Avena sativa L.) shoots. The antisera were obtained from rabbits immunized with either proteolytically degraded, but still photoreversible, 60-kDa (kilodalton) phytochrome, or approx. 120-kDa phytochrome, both of which were purified from etiolated oat shoots. The ability of these antisera to precipitate phytochrome from green oats was independent of the size of phytochrome used for immunization. While crude antisera immunoprecipitated as much as 80% of the phytochrome isolated from green oat shoots, antibodies immunopurified from these sera with a column of highly purified, approx. 120-kDa phytochrome from etiolated oats precipitated no more than about 5–10%.Abbreviations kDa kilodalton - mU milliunit  相似文献   

5.
Phytochrome from 10 or 11-d-old oat (Avena sativa L. cv. Garry) leaves, which were harvested just prior to sunset from plants grown in a greenhouse in the absence of supplemental illumination, was purified an estimated 250-fold by sequential poly(ethylenimine) and ammonium-sulfate fractionations, followed by linear-gradient hydroxyapatite chromatography. Compared to earlier protocols, the one presented here is substantially more rapid, provides improved yield and purity, can be used with larger quantities of tissue, and eliminates an apparently immunodominant contaminant with a molecular mass of about 115 kDa (kilodalton). Phytochrome obtained by this procedure has an apparent monomer size of 123 kDa as evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and is estimated to be 0.6% pure. This purity permitted spectral analysis at wavelengths below 500 nm, in which region phytochromes from green and etiolated oat shoots do not differ markedly, as they do at longer wavelengths.Abbreviations Da Dalton - HA hydroxyapatite - Pfr, Pr farredand red-absorbing form of phytochrome, respectively - SDS sodium dodecyl sulfate This research was supported by the U.S. Department of Energy (contract DE-AC-09-81SR10925 to L.H.P.). The excellent technical assistance of Mrs. Donna Tucker and Mrs. Danielle Neal is gratefully acknowledged.  相似文献   

6.
Polyclonal antibodies raised in rabbits to a mixture of sodium-dodecyl-sulphate-denatured C- and allo-phycocyanin, isolated from Anabaena cylindrica, cross-react with 124-kilodalton (kDa) phytochrome from etiolated oats, in enzyme-linked immunosorbent assays and on Western blots. The component(s) of the anti-phycocyanin serum that cross-reacts with phytochrome appears to be specific for the red-absorbing form of phytochrome (Pr). These antibodies can be detached from Pr by irradiation with red light, and thus show photoreversible binding. This property has been used to immunopurify the anti-phytochrome component from the antiserum using red light as the eluting agent. Competition assays and epitope-mapping studies indicate that the anti-phytochrome component may bind to a site located between 6 and 10 kDa from the amino-terminus of etiolated oat phytochrome.Abbreviations ELISA enzyme-linked immunosorbent assay - kDa kilodaton - FR far-red light - Pfr far-red-light-absorbing form of phytochrome - Pr red-light-absorbing form of phytochrome - R red light - SDS sodium dodecyl sulphate  相似文献   

7.
Expression of functional oat phytochrome A in transgenic rice.   总被引:6,自引:2,他引:4       下载免费PDF全文
To investigate the biological functions of phytochromes in monocots, we generated, by electric discharge particle bombardment, transgenic rice (Oryza sativa cv Gulfmont) that constitutively expresses the oat phytochrome A apoprotein. The introduced 124-kD polypeptide bound chromophore and assembled into a red- and far-red-light-photoreversible chromoprotein with absorbance spectra indistinguishable from those of phytochrome purified from etiolated oats. Transgenic lines expressed up to 3 and 4 times more spectrophotometrically detectable phytochrome than wild-type plants in etiolated and green seedlings, respectively. Upon photo-conversion to the far-red-absorbing form of phytochrome, oat phytochrome A was degraded in etiolated seedlings with kinetics similar to those of endogenous rice phytochromes (half-life approximately 20 min). Although plants overexpressing phytochrome A were phenotypically indistinguishable from wild-type plants when grown under high-fluence white light, they were more sensitive as etiolated seedlings to light pulses that established very low phytochrome equilibria. This indicates that the introduced oat phytochrome A was biologically active. Thus, rice ectopically expressing PHY genes may offer a useful model to help understand the physiological functions of the various phytochrome isoforms in monocotyledonous plants.  相似文献   

8.
Y. Shimazaki  L. H. Pratt 《Planta》1985,164(3):333-344
While two monoclonal antibodies directed to phytochrome from etiolated oat (Avena sativa L.) shoots can precipitate up to about 30% of the photoreversible phytochrome isolated from green oat shoots, most precipitate little or none at all. These results are consistent with a report by J.G. Tokuhisa and P.H. Quail (1983, Plant Physiol. 72, Suppl., 85), according to which polyclonal rabbit antibodies directed to phytochrome from etiolated oat shoots bind only a small fraction of the phytochrome obtained from green oat shoots. The immunoprecipitation data reported here indicate that essentially all phytochrome isolated from green oat shoots is distinct from that obtained from etiolated oat shoots. The data indicate further that phytochrome from green oat shoots might itself be composed of two or more immunochemically distinct populations, each of which is distinct from phytochrome from etiolated shoots. Phytochrome isolated from light-grown, but norflurazon-bleached oat shoots is like that isolated from green oat shoots. When light-grown, green oat seedlings are kept in darkness for 48 h, however, much, if not all, of the phytochrome that reaccumulates is like that from etiolated oat shoots. Neither modification during purification from green oat shoots of phytochrome like that from etiolated oat shoots, nor non-specific interference by substances in extracts of green oat shoots, can explain the inability of antibodies to recognize phytochrome isolated from green oat shoots. Immunopurified polyclonal rabbit antibodies to phytochrome from etiolated pea (Pisum sativum L.). shoots precipitate more than 95% of the photoreversible phytochrome obtained from etiolated pea shoots, while no more than 75% of the pigment is precipitated when phytochrome is isolated from green pea shoots. These data indicate in preliminary fashion that an immunochemically unique pool of phytochrome might also be present in extracts of green pea shoots.Abbreviation ELISA enzyme-linked immunosorbent assay - mU milliunit - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome  相似文献   

9.
Light-mediated conformational changes in highly purified 124-kDa phytochrome preparations from etiolated oat seedlings have been identified by steric exclusion high performance liquid chromatography and limited proteolytic studies. Steric exclusion high performance liquid chromatography studies of oat and rye phytochromes show photoreversible changes in retention times, with the red absorbing form of phytochrome (Pr form) eluting later than the far red absorbing form of phytochrome produced by saturating red light illumination of Pr (Pfr form) in a variety of different mobile phase buffers. Molecular mass calibration with globular protein standards in Tris-glycol buffers provides estimates of 318-349 and 363-366 kDa for the molecular sizes of the Pr and Pfr forms, respectively. These analyses support earlier studies that phytochrome is a nonglobular homodimer of 124-kDa subunits in vitro. Limited proteolytic dissection of phytochrome in nondenaturing buffers with seven different endoproteases provides evidence for two "operational" domains within the 124-kDa subunit with molecular mass values of 69-72 and 52-55 kDa. The larger 69-72-kDa domain contains the site for the chromophore attachment as shown by gel electrophoresis derived enzyme-linked immunosorbent assay utilizing site-directed rabbit antiserum to a synthetic undecapeptide which is homologous with the chromophore binding site on oat phytochrome. This chromophore domain exhibits a compact structure, resistant to further proteolysis except near its N terminus. By contrast, the 52-55-kDa nonchromophore domain contains multiple sites for further proteolytic cleavage as revealed by rapid cleavage to smaller polypeptide fragments. Detailed kinetic analyses of the limited proteolytic cleavage of phytochrome with four endoproteases, subtilisin BPN', thermolysin, trypsin, and clostripain, has mapped specific regions within the 124-kDa subunit that participate in light-induced conformational changes. These include a 4-10-kDa region near the N terminus of the chromophore binding domain and at least two regions within the nonchromophore domain. A comprehensive peptide map of the oat phytochrome subunit is presented, which incorporates the results of these proteolytic studies with the recent, yet unpublished sequence analyses of Avena phytochrome cDNA clones which show the N-terminal localization of the chromophore binding site (Hershey, H. P., Colbert, J. T., Lissemore, J. L., Barker, R. F., and Quail, P. H. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 2332-2336).  相似文献   

10.
Constitutive expression of a chimeric oat phytochrome gene in tobacco (Nicotiana tabacum) results in the accumulation of a functional 124-kilodalton photoreceptor that markedly alters the phenotype of light-grown tobacco (Keller et al. [1989] EMBO J 8: 1005-1012). Here, we provide a detailed phenotypic and biochemical characterization of homozygous tobacco expressing high levels of oat phytochrome. Phenotypic changes include a substantial inhibition of stem elongation, decreased apical dominance, increased leaf chlorophyll content, and delayed leaf senescence. Oat phytochrome synthesized in tobacco is indistinguishable from that present in etiolated oats, having photoreversible difference spectrum maxima at 665 and 730 nanometers, exhibiting negligible dark reversion of phytochrome—far red-absorbing form (Pfr) to phytochrome—red-absorbing form (Pr), and existing as a dimer with an apparent size of approximately 300 kilodaltons. Heterodimers between the oat and tobacco chromoproteins were detected. Endogenous tobacco phytochrome and transgenically expressed oat phytochrome are rapidly degraded in vivo upon photoconversion of Pr to Pfr. Breakdown of both oat and tobacco Pfr is associated with the accumulation of ubiquitin-phytochrome conjugates, suggesting that degradation occurs via the ubiquitin-dependent proteolytic pathway. This result indicates that the factors responsible for selective recognition of Pfr by the ubiquitin pathway are conserved between monocot and dicot phytochromes. More broadly, it demonstrates that the domain(s) within a plant protein responsible for its selective breakdown can be recognized by the degradation machinery of heterologous species.  相似文献   

11.
The effect of 15-minute end-of-day irradiations on photoreversible phytochrome levels in light-grown oat (Avena sativa L., cv Garry) seedlings was investigated. Oat seedlings were grown in a cycle of 8 hours of natural daylight and 16 hours of complete darkness, from sowing until harvest at day 10. The level of extractable, photoreversible phytochrome per unit fresh weight was 60% higher after end-of-day far-red irradiation than after either end-of-day red irradiation or end-of-day far-red followed by end-of-day red. Seedlings irradiated with end-of-day far-red also exhibited a small but significant increase in shoot height and fresh weight per seedling. Extracts of seedlings given each of these end-of-day treatments were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroblotted, and immunostained with monoclonal antibodies specific to different phytochromes. Regardless of end-of-day light treatment, phytochrome that is abundant in etiolated tissue was below the limit of detection, indicating that one or more of the phytochromes predominating in green tissue changes in abundance.  相似文献   

12.
Oat Phytochrome Is Biologically Active in Transgenic Tomatoes   总被引:26,自引:9,他引:17       下载免费PDF全文
To determine the functional homology between phytochromes from evolutionarily divergent species, we used the cauliflower mosaic virus 35S promoter to express a monocot (oat) phytochrome cDNA in a dicot plant (tomato). Immunoblot analysis shows that more than 50% of the transgenic tomato plants synthesize the full-length oat phytochrome polypeptide. Moreover, leaves of light-grown transgenic plants contain appreciably less oat phytochrome than leaves from dark-adapted plants, and etiolated R1 transgenic seedlings have higher levels of spectrally active phytochrome than wild-type tomato seedlings in direct proportion to the level of immunochemically detectable oat polypeptide present. These data suggest that the heterologous oat polypeptide carries a functional chromophore, allowing reversible photoconversion between the two forms of the molecule, and that the far-red absorbing form (Pfr) is recognized and selectively degraded by the Pfr-specific degradative machinery in the dicot cell. The overexpression of oat phytochrome has pleiotropic, phenotypic consequences at all major phases of the life cycle. Adult transgenic tomato plants expressing high levels of the oat protein tend to be dwarfed, with dark green foliage and fruits. R1 transgenic seedlings have short hypocotyls with elevated anthocyanin contents. We conclude that a monocot phytochrome can be synthesized and correctly processed to a biologically active form in a dicot cell, and that the transduction pathway components that interact with the photoreceptor are evolutionarily conserved.  相似文献   

13.
We have addressed two issues regarding the spatial distribution of three phytochromes in 3-d-old oat (Avena sativa L.) seedlings. Three monoclonal antibodies, GO-4, GO-7 and Oat-22, were used as probes. Each antibody detects only one of the phytochromes. The first issue is whether any of the phytochromes might be membrane-bound. To address this issue the abundance of each phytochrome in extracts prepared with either a detergent-free or a detergent-containing buffer was compared by immunoblot assay. The detergent-free buffer was formulated to extract only soluble protein, while the detergent-containing buffer was intended to extract both soluble and membrane proteins. None of the data indicate that any of these three phytochromes is membrane-bound in either a dark- or a light-grown seedling. The second issue is whether these three phytochromes are distributed differentially in 3-d-old dark- and light-grown seedlings. When seedlings were dissected into shoots, scutellums, and roots, all three phytochromes were detected in all three fractions from both dark- and light-grown seedlings. Each of the three phytochromes was most abundant in the shoot and least abundant in the root, except that in light-grown seedlings type I, etiolated-tissue phytochrome was more abundant in the root than in either the shoot or the scutellum. When the equivalent fractions dissected from different seedlings were compared, those dissected from dark-grown seedlings contained a higher quantity of each of the three phytochromes than did those dissected from light-grown seedlings, except that green-tissue, type II phytochromes did not differ significantly in the roots. At this level of resolution, no evidence was obtained to indicate a substantive difference among the three phytochromes in their spatial distribution. We thank Drs. Elizabeth Williams and Tammy Sage (Botany Department, University of Georgia, USA) for generously permitting us to use their image-analysis system. This research was supported by USDA NRICGP grant 91-37100-6490.  相似文献   

14.
The extraction and partial purification of phytochrome from light-grownAtrichum undulatum P. Beauv., a chlorophyllous moss, is described. Polyethyleneimine and salt fractionation followed by hydroxyapatite and Affi-gel-blue chromatography were used to separate phytochrome from chlorophyll, and to purify the pigment. All steps were performed in the presence of Triton X-100 which improved the yield by a factor of about three. The protein has a molecular weight some-what larger than that ofAvena phytochrome (124 kDa), as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis. It cross-reacts with a monoclonal antibody against phytochrome from etiolated corn (Zea) and a polyclonal antibody against phytochrome from etiolated oat (Avena), and its photoreversibility is similar to that of phytochrome from greenAvena.Abbreviations EDTA ethylenediaminetetraacetic acid - FMN flavinmononucleotide - PMSF phenylmethylsulfonylfluoride - Pr(Pfr) red(far-red)-absorbing form of phytochrome - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

15.
Phytochrome was studied spectrophotometrically in Avena sativa L. seedlings that had been grown for 6 d in continous white fluorescent light from lamps. Greening was prevented through the use of the herbicide San 9789. When placed in the light, phytochrome (Ptot) decreased with first order kinetics (1/2 2 h) but reached a stable low level (2.5% of the dark level) after 36 h. This concentration of phytochrome remained constant in the light and during the initial hours of a subsequent dark period, but increased significantly after a prolonged dark period. Evidence suggests that the constant pool of phytochrome in the light is achieved through an equilibrium between synthesis of the red absorbing (Pr) and destruction of the far-red absorbing form (Pfr) of phytochrome. It is concluded that the phytochrome system in light-grown oat seedlings is qualitatively the same as that known from etiolated monocotyledonous seedlings, but different than that described for cauliflower florets.Abbreviations Pfr the far-red light absorbing form of phytochroma - Pr the red light absorbing form of phytochrome - Ptot Pr+Pfr - ks rate constant of Pr synthesis - kd rate constant of Pfr destruction - MOPS N-morpholino-3-propane-sulfonic acid - IRIS Tris (hydroxymethyl) amino methane - San 9789 4-chloro-5-(methyl amino)-2-(,,-trifluoro-m-tolyl)-3(2H)pyridazinone  相似文献   

16.
The spectral properties of peptides generated from etiolated-Avana, 124-kDa (kilodalton) phytochrome by endogenous protease(s) have been studied to assess the role of the amino-terminal and the carboxyl-terminal domains in maintaining the proper interaction between protein and chromophore. The amino-terminal, 74-kDa chromopeptide, a degradation product of the far-red absorbing form of the pigment (Pfr), is shown to be spectrally similar to the 124-kDa, undegraded molecule. The minimum and maximum of the difference spectrum (Pr-Pfr) are 730 and 665 nm, respectively, and the spectral-change ratio is unity. Also, like undegraded, 124-kDa phytochrome, the 74-kDa peptide exhibits minimal dark reversion. These data indicate that the 55-kDa, carboxyl-terminal half of the polypeptide does not interact with the chromophore and may not have a role in the structureal integrity of the amino-terminal domain. The 64-kDa chromopeptide can be generated directly from the 74-kDa species by cleavage of 10 kDa from the amino terminus upon incubation of this species as Pr. Accompanying this conversion are changes in the spectral properties, namely, a shift in the difference spectrum minimum to 722–724 nm and a tenfold increase in the capacity for dark reversion. These data indicate that the 6–10 kDa, amino-terminal segment continues to function in its role of maintaining proper chromophore-protein interactions in the 74-kDa peptide as it does in the undegraded molecule. Conversely, removal of this segment upon proteolysis to the 63-kDa species leads to aberrant spectral properties analogous to those observed when this domain is lost from the full-length, 124-kDa molecule, resulting in the 118/114-kDa degradation products. The data also show that photoconversion of the 74-kDa chromopeptide from Pfr to Pr exposes proteolytically susceptible sites in the same way as in the 124-kDa molecule. Thus, the separated, 74-kDa amino-terminal domain undergoes a photoinducible conformational change comparable to that in the intact molecule.Abbreviations and symbols Da dalton - Pfr far-red-absorbing from of phytochrome - PMSF phenylmethylsulfonyl fluoride - Pr red-absorbing form of phytochrome - R red light - FR lar-red light - A r/A fr spectral change ratio - max FR peak maximum (nm) of Pfr absorbance  相似文献   

17.
Fluence-rate response curves for wavelengths from 640 nm to 730 nm were constructed for the day-extension promotion of flowering in green, light-grown, wheat (Triticum aestivum L., cv. Alexandria), a long-day plant. The resultant action spectrum had action maxima at 660 nm and 716 nm and resembles spectra for the high-irradiance reaction (HIR) seen in etiolated plants. Because, the HIR is thought to be controlled by type I pytochrome (that which is most abundant in etiolated tissue) our results indicate the involvement of type I phytochrome in the photomorphogenesis of a light-grown, green plant.Abbreviations Pr red-light-absorbing form of phytochrome - Pfr far-red-light-absorbing form of phytochrome - Ptot total phytochrome level (Pr+Pfr) - HIR high-irradiance reaction - SDP short-day plant(s) - LDP long-day plant(s)  相似文献   

18.
A comparison of the photoregulation of development has been made for etiolated and light-grown plants of wild-type (WT) tobacco (Nicotiana tabacun L.) and an isogenic transgenic line which expresses an introduced oat phytochrome gene (phyA) under the control of a constitutive viral promoter. Etiolated seedlings of both the WT and transgenic line showed irradiance-dependent inhibition of hypocotyl growth under continuous far-red (FR) light; transgenic seedlings showed a greater level of inhibition under a given fluence rate and this is considered to be the result of the heterologous phytochrome protein (PhyA) functioning in a compatible manner with the native etiolated phytochrome. Deetiolation of WT seedlings resulted in a loss of responsiveness to prolonged FR. Light-grown transgenic seedlings, however, continued to respond in an irradiance-dependent manner to prolonged FR and it is proposed that this is a specific function of the constitutive PhyA. Mature green plants of the WT and transgenic lines showed a qualitatively similar growth promotion to a brief end-of-day FR-treatment but this response was abolished in the transgenic plants under prolonged irradiation by this same FR source. Growth inhibition (McCormac et al. 1991, Planta 185, 162–170) and enhanced levels of nitrate-reductase activity under irradiance of low red:far-red ratio, as achieved by the FR-supplementation of white light, emphasised that the introduced PhyA was eliciting an aberrant mode of photoresponse compared with the normal phytochrome population of light-grown plants. Total levels of the oat-encoded phytochrome in the etiolated transgenic tobacco were shown to be influenced by the wavelength of continuous irradiation in a manner which was qualitatively similar to that seen for the native, etiolated tobacco phytochrome, and distinct from that seen in etiolated oat tissues. These results are discussed in terms of the proposal that the constitutive oat-PhyA pool in the transgenic plants leads to a persistence of a mode of response normally restricted to the situation in etiolated plants.Abbreviations FR far-red light - R red light - WL white light - WL + FR white light supplemented with FR - HIR high-irradiance response - PAR photosynthetically active radiation - Pr, Pfr R- and FR-absorbing forms of phytochrome - Ptot total phytochrome - phyA (PhyA) gene (encoded protein) for phytochrome - WT wild type This work was supported by an Agricultural and Food Research Council research grant to H.S. and A.M.; J.R. Cherry and R.D. Vierstra, (Department of Horticulture, University of Wisconsin-Madison, USA) are thanked for the provision of the transgenic tobacco line.  相似文献   

19.
A simplified procedure for the isolation and purification of 124-kDa phytochrome from etiolated Avena seedlings has been developed using the method of ammonium sulfate back-extraction. After hydroxyapatite chromatography of seedling tissue extracts, the pooled phytochrome was subjected to ammonium sulfate back-extraction instead of the usual application to an Affi-Gel Blue column. The resulting phytochrome had specific absorbance ratios (SAR = A666/A280) ranging from 0.85 to 0.95. Subsequent Bio-Gel filtration chromatography yielded highly pure 124-kDa phytochrome with SAR values ranging from 0.99 to 1.13. The absorption maxima of 124-kDa phytochrome were at 280, 379, and 666 nm for the red absorbing form of phytochrome (Pr) and at 280, 400 and 730 nm for the far-red absorbing form (Pfr). The A730/A673 ratio in Pfr was found to be 1.5 to 1.6. The mole fraction of Pfr under red light photoequilibrium was 0.88. No dark reversion was detected within 5 h at 3 degrees C. A photoreversible far-uv-circular dichroism was observable with all phytochrome preparations examined. Fluorescence and phosphorescence lifetimes were measured to further characterize the differences between the phytochromes prepared under different conditions. The Trp fluorescence and phosphorescence lifetimes of Pr and Pfr with the chromophore "X", probably polyphenolic in nature, were significantly shorter than those of phytochrome without the contaminant X. The short lifetime of the fluorescence of the Pr chromophore is attributable to X in the former.  相似文献   

20.
Using monoclonal antibodies specific for each apoprotein and full-length purified apoprotein standards, the levels of the five Arabidopsis phytochromes and their patterns of expression in seedlings and mature plants and under different light conditions have been characterized. Phytochrome levels are normalized to the DNA content of the various tissue extracts to approximate normalization to the number of cells in the tissue. One phytochrome, phytochrome A, is highly light labile. The other four phytochromes are much more light stable, although among these, phytochromes B and C are reduced 4- to 5-fold in red- or white-light-grown seedlings compared with dark-grown seedlings. The total amount of extractable phytochrome is 23-fold lower in light-grown than dark-grown tissues, and the percent ratios of the five phytochromes, A:B:C:D:E, are measured as 85:10:2:1.5:1.5 in etiolated seedlings and 5:40:15:15:25 in seedlings grown in continuous white light. The four light-stable phytochromes are present at nearly unchanging levels throughout the course of development of mature rosette and reproductive-stage plants and are present in leaves, stems, roots, and flowers. Phytochrome protein expression patterns over the course of seed germination and under diurnal and circadian light cycles are also characterized. Little cycling in response to photoperiod is observed, and this very low amplitude cycling of some phytochrome proteins is out of phase with previously reported cycling of PHY mRNA levels. These studies indicate that, with the exception of phytochrome A, the family of phytochrome photoreceptors in Arabidopsis constitutes a quite stable and very broadly distributed array of sensory molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号