首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A substantial literature exists characterizing transgene locus structure from plants transformed via Agrobacterium and direct DNA delivery. However, there is little comprehensive sequence analysis of transgene loci available, especially from plants transformed by direct delivery methods. The goal of this study was to completely sequence transgene loci from two oat lines transformed via microprojectile bombardment that were shown to have simple transgene loci by Southern analysis. In line 3830, transformed with a single plasmid, one major and one of two minor loci were completely sequenced. Both loci exhibited rearranged delivered DNA and flanking genomic sequences. The minor locus contained only 296 bp of two non-contiguous fragments of the delivered DNA flanked by genomic (filler) DNA that did not originate from the integration target site. Predicted recognition sites for topoisomerase II and a MAR region were observed in the transgene integration target site for this non-functional minor locus. Line 11929, co-transformed with two different plasmids, had a single relatively simple transgene locus composed of truncated and rearranged sequences from both delivered DNAs. The transgene loci in both lines exhibited multiple transgene and genomic DNA rearrangements and regions of scrambling characteristic of complex transgene loci. The similar characteristics of recombined fragments and junctions in both transgenic oat lines implicate similar mechanisms of transgene integration and rearrangement regardless of the number of co-transformed plasmids and the level of transgene locus complexity.  相似文献   

2.
S K Svitashev  D A Somers 《Génome》2001,44(4):691-697
The structure of transgene loci in six transgenic allohexaploid oat (Avena sativa L.) lines produced using microprojectile bombardment was characterized using fluorescence in situ hybridization (FISH) on extended DNA fibers (fiber-FISH). The transgene loci in five lines were composed of multiple copies of delivered DNA interspersed with genomic DNA fragments ranging in size from ca. 3 kb to at least several hundred kilobases, and in greater numbers than detected using Southern blot analysis. Although Southern analysis predicted that the transgene locus in one line consisted of long tandem repeats of the delivered DNA, fiber-FISH revealed that the locus actually contained multiple genomic interspersions. These observations indicated that transgene locus size and structure were determined by the number of transgene copies and, possibly to a greater extent, the number and the length of interspersing genomic DNA sequences within the locus. Large genomic interspersions detected in several lines were most likely the products of chromosomal breakage induced either by tissue culture conditions or, more likely, by DNA delivery into the nucleus using microprojectile bombardment. We propose that copies of transgene along with other extrachromosomal DNA fragments are used as patches to repair double-strand breaks (DSBs) in the plant genome resulting in the formation of transgene loci.  相似文献   

3.
转基因座位是指染色体上插入的转基因及相邻的特定DNA序列。大多数转基因座位是以转基因片段、基因组片段和填充DNA相间而存在,仅少数含有完整的单拷贝转基因,这是由于在转基因整合过程中,转基因及基因组DNA发生缺失、重复和染色体的重排。转基因整合主要通过双链DNA断裂修复中的异常重组所产生,而同源重组也发挥了一定的作用。异常重组主要由单链复性、合成依赖链复性和依赖Ku蛋白的非同源末端连接途径调节。  相似文献   

4.
Untargeted plasmid integration into mammalian cell genomes remains a poorly understood and inefficient process. The formation of plasmid concatemers and their genomic integration has been ascribed either to non‐homologous end‐joining (NHEJ) or homologous recombination (HR) DNA repair pathways. However, a direct involvement of these pathways has remained unclear. Here, we show that the silencing of many HR factors enhanced plasmid concatemer formation and stable expression of the gene of interest in Chinese hamster ovary (CHO) cells, while the inhibition of NHEJ had no effect. However, genomic integration was decreased by the silencing of specific HR components, such as Rad51, and DNA synthesis‐dependent microhomology‐mediated end‐joining (SD‐MMEJ) activities. Genome‐wide analysis of the integration loci and junction sequences validated the prevalent use of the SD‐MMEJ pathway for transgene integration close to cellular genes, an effect shared with matrix attachment region (MAR) DNA elements that stimulate plasmid integration and expression. Overall, we conclude that SD‐MMEJ is the main mechanism driving the illegitimate genomic integration of foreign DNA in CHO cells, and we provide a recombination engineering approach that increases transgene integration and recombinant protein expression in these cells. Biotechnol. Bioeng. 2017;114: 384–396. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.  相似文献   

5.
RNA silencing is a conserved eukaryotic pathway in which double-stranded RNA (dsRNA) triggers destruction of homologous target RNA via production of short-interfering RNA (siRNA). In plants, at least some cases of RNA silencing can spread systemically. The signal responsible for systemic spread is expected to include an RNA component to account for the sequence specificity of the process, and transient silencing assays have shown that the capacity for systemic silencing correlates with the accumulation of a particular class of small RNA. Here, we report the results of grafting experiments to study transmission of silencing from stably transformed tobacco lines in the presence or absence of helper component-proteinase (HC-Pro), a viral suppressor of silencing. The studied lines carry either a tail-to-tail inverted repeat, the T4-IR transgene locus, or one of two different amplicon transgene loci encoding replication-competent viral RNA. We find that the T4-IR locus, like many sense-transgene-silenced loci, can send a systemic silencing signal, and this ability is not detectably altered by HC-Pro. Paradoxically, neither amplicon locus effectively triggers systemic silencing except when suppressed for silencing by HC-Pro. In contrast to results from transient assays, these grafting experiments reveal no consistent correlation between capacity for systemic silencing and accumulation of any particular class of small RNA. In addition, although all transgenic lines used to transmit systemic silencing signals were methylated at specific sites within the transgene locus, silencing in grafted scions occurred without detectable methylation at those sites in the target locus of the scion.  相似文献   

6.
Transgene loci in 16 transgenic oat (Avena sativa L.) lines produced by microprojectile bombardment were characterized using phenotypic and genotypic segregation, Southern blot analysis, and fluorescence in situ hybridization (FISH). Twenty-five transgene loci were detected; 8 lines exhibited single transgene loci and 8 lines had 2 or 3 loci. Double FISH of the transgene and oat C- and A/D-genome-specific dispersed and clustered repeats showed no preferences in the distribution of transgene loci among the highly heterochromatic C genome and the A/D genomes of hexaploid oat, nor among chromosomes within the genomes. Transgene integration sites were detected at different locations along individual chromosomes, although the majority of transformants had transgenes integrated into subtelomeric and telomeric regions. Transgene integration sites exhibited different levels of structural complexity, ranging from simple integration structures of two apparently contiguous transgene copies to tightly linked clusters of multiple copies of transgenes interspersed with oat DNA. The size of the genomic interspersions observed in these transgene clusters was estimated from FISH results on prometaphase chromosomes to be megabases long, indicating that some transgene loci were significantly larger than previously determined by Southern blot analysis. Overall, 6 of the 25 transgene loci were associated with rearranged chromosomes. These results suggest that particle bombardment-mediated transgene integration may result from and cause chromosomal breakage and rearrangements. Received: 29 July 1999 / Accepted: 9 November 1999  相似文献   

7.
To study the influence of genomic context on transgene expression, we have determined the T-DNA structure, flanking DNA sequences, and chromosomal location of four independent transgene loci in tobacco. Two of these loci were stably expressed in the homozygous condition over many generations, whereas the other two loci became unstable after several generations of homozygosity. The stably expressed loci comprised relatively simple T-DNA arrangements that were flanked on at least one side by plant DNA containing AT-rich regions that bind to nuclear matrices in vitro. Of the unstably expressed loci, one consisted of multiple incomplete T-DNA copies, and the second contained a single intact T-DNA; in both cases, however, binary vector sequences were directly contiguous to a right T-DNA border. Fluorescence in situ hybridization demonstrated that the two stably expressed inserts were present in the vicinity of telomeres. The two unstably expressed inserts occupied intercalary and paracentromeric locations, respectively. Results on the stability of transgene expression in F1 progeny obtained by intercrossing the four lines and the sensitivity of the four transgene loci to inactivation in the presence of an unlinked "trans-silencing" locus are also presented. The findings are discussed in the context of repetitive DNA sequences and the allotetraploid nature of the tobacco genome.  相似文献   

8.
9.
Transgene integration in plants transformed by either Agrobacterium or direct DNA delivery methods occurs through illegitimate recombination (IR). The precise mechanism(s) for IR-mediated transgene integration and the role of host double-strand break repair enzymes remain unknown. A recent wealth of sequenced transgene loci and investigations aimed at genetically dissecting transgene integration mechanism(s) have provided new insights into the process.  相似文献   

10.
The characterization of the insertion sites of exogenous sequences in transgenic mice can identify loci that are potentially useful for the genetic analysis of the mammalian genome. We have found that the transgene insertion site in the transgenic line TG.EB is tightly linked with the Steel (Sl) locus on mouse chromosome 10. In a backcross between doubly heterozygous transgenic Sl (Tg.EB +/+ Sl) mice and wild-type mice, only one recombinant was found in 135 progeny (recombination percentage = 0.7 +/- 0.7). The recombination frequency of the transgene with marker loci known to flank Sl was consistent with a map position close to Sl. Genomic sequences that are adjacent to the transgene insertion site were cloned and found to be tightly linked with the Sl locus in interspecific crosses using nontransgenic mice. Recombination analysis utilizing the transgene insertion site locus was used to show that a recently identified hematopoietic growth factor is encoded at Sl. The cloned sequences from the transgene insertion site are polymorphic in inbred strains of mice and can be utilized to determine the genotype at Sl during early embryonic development. Further, they may be useful in characterizing the genomic region near Sl that is affected in Sl deletion mutants.  相似文献   

11.
12.
Southern hybridisation of genomic DNA extracted from a human primary colorectal carcinoma revealed amplification of a fragment containing the wild-type c-myc locus. Two additional rearranged DNA fragments, lying upstream of c-myc, fused to distant non-contiguous sequences from the same chromosome, with an opposite configuration (head to head vs. head to tail), were also found to be amplified. Sequences analysis suggested that these rearrangements resulted from illegitimate recombination at two distinct points within the DNA sequence just upstream of the c-myc ORF and further that these events triggered two different amplification mechanisms, only one of which, involving a strand invasion event following DNA double strand breaks, increased the copy number of the c-myc ORF.  相似文献   

13.
The Hardness (Ha) locus controls grain hardness in hexaploid wheat (Triticum aestivum) and its relatives (Triticum and Aegilops species) and represents a classical example of a trait whose variation arose from gene loss after polyploidization. In this study, we investigated the molecular basis of the evolutionary events observed at this locus by comparing corresponding sequences of diploid, tertraploid, and hexaploid wheat species (Triticum and Aegilops). Genomic rearrangements, such as transposable element insertions, genomic deletions, duplications, and inversions, were shown to constitute the major differences when the same genomes (i.e., the A, B, or D genomes) were compared between species of different ploidy levels. The comparative analysis allowed us to determine the extent and sequences of the rearranged regions as well as rearrangement breakpoints and sequence motifs at their boundaries, which suggest rearrangement by illegitimate recombination. Among these genomic rearrangements, the previously reported Pina and Pinb genes loss from the Ha locus of polyploid wheat species was caused by a large genomic deletion that probably occurred independently in the A and B genomes. Moreover, the Ha locus in the D genome of hexaploid wheat (T. aestivum) is 29 kb smaller than in the D genome of its diploid progenitor Ae. tauschii, principally because of transposable element insertions and two large deletions caused by illegitimate recombination. Our data suggest that illegitimate DNA recombination, leading to various genomic rearrangements, constitutes one of the major evolutionary mechanisms in wheat species.  相似文献   

14.
Co-syppression of host genes and 35S transgenes encoding nitrate reductase was previously reported in transgenic tobacco plants (Nicotiana tabacum cv. Paraguay or Burley) using either a full-length cDNA or fragments devoid of the 3 and/or 5 UTR. Co-suppression was previously shown to affect a limited fraction of the progeny of one transgenic tobacco line homozygous for a single transgene locus, and the phenomenon occurred at each generation. In this work, 38 combinations of transgene loci derived from 13 independent transgenic lines homozygous for a single transgene locus were field-tested under two different conditions in an attempt to determine the corresponding frequencies of co-suppression, i.e. the percentage of plants showing co-suppression.Each of the 13 homozygous lines exhibited a different frequency of co-suppression, ranging from 0% to 57%. High frequencies were found to be associated with transgene loci carrying a high number of copy of the transgene, suggesting a transgene dose effect. Combinations carrying 2 non-allelic transgene loci in a hemizygous state exhibited frequencies of co-suppression between those of each of the 2 transgene loci in a homozygous state, while combinations carrying 2 non-allelic transgene loci in a homozygous state exhibited frequencies of co-suppression higher than the sum of those of the 2 transgene loci alone in a homozygous state, clearly confirming a transgene dose effect.Co-suppression frequencies were increased when the plants were grown initially in vitro, suggesting some environmental effect. The roles of transgene copy number, number of transgene loci and environmental factors are discussed in the light of a threshold hypothesis.  相似文献   

15.
In order to elucidate the mechanisms of illegitimate recombination in eukaryotes, we have studied the structure of DNA fragments integrated by illegitimate recombination into the genome of fission yeast. Nonhomologous recombination was rarely identified when a long region of homology with the chromosomal leu1 + gene was present in the introduced leu1::ura4 + DNA fragment; but a decrease in length of homology leads to an increase in the ratio of nonhomologous to homologous recombination events. The introduced DNA fragments were integrated into different sites in the chromosomes by nonhomologous recombination. The results suggested that there are multiple modes of integration; most events simply involve both ends of the fragments, while in other cases, fragments were integrated in a more complicated manner, probably via circularization or multimerization. To analyze the mechanism of the major type of integration, DNA fragments containing the recombination junctions of three recombinants were amplified by inverted polymerase chain reaction (IPCR) and their nucleotide sequences were determined. There was no obvious homology between introduced DNA and chromosomal DNA at these recombination sites. Furthermore it was found that each terminal region of the introduced DNA was deleted, but that there were no or very small deletions in the target sites of chromosomal DNA. Two models are proposed to explain the mechanism of nonhomologous integration.  相似文献   

16.
Illegitimate recombination is the prevailing molecular mechanism for the integration of recombinant DNA into the genome of most eukaryotic systems and the generation of deletions by intrachromosomal recombination. We developed a ?selectable marker system to screen for intrachromosomal illegitimate recombination events in order to assess the sequence and structure-specific requirements for illegitimate recombination in tobacco. In 12 illegitimate recombination products analysed, we found that all deletion termini localise to sites of palindromic structures or to A+T-rich DNA elements. All deletion termini showed microhomologies of two to six nucleotides. In three plants, the recombination products contained filler-DNA or an inversion of an endogenous segment. Our data strongly suggest that illegitimate recombination in plants is mediated by a DNA synthesis-dependent process, and that this mechanism is promoted by DNA regions that can form palindromic structures or facilitate DNA unwinding.  相似文献   

17.
The site-specific integration of exogenous gene fragments by homologous recombination provides a convenient method for altering the immunoglobulin loci of B cells and specifically designing antibody molecules. To introduce a human isotype into the heavy chain locus of mouse hybridoma cells we compared the recombination frequencies of vectors that could be linearized either as integration or as replacement constructs in different cell lines. Integration as well as replacement recombination was observed, irrespective of the location of the site at which the vector was cleaved. Integration events involving the human IgG1 vectors were lost at high frequency due to secondary vector excision, so that all stable recombinations were found to be replacement events. Replacement recombination of an integration vector involves an illegitimate crossover at least at the 3′ side and sometimes gives rise to deletion of the CH1 domain. However, a homologous event at the 3′ side is more efficient than an illegitimate one, so that a homology that is distributed on both sides of the heterologous region promotes targeting at higher frequency than a contiguous sequence of the same total length. The position of the linearization site in the vector markedly influenced the targeting efficiency, but surprisingly, whether a double-strand break in the homology or in the heterology region more efficiently promoted integration was dependent on the cell line. In all cells, however, cleavage of the vector outside the homology region favoured stable replacements with a bias against CH1-truncated clones. We further show that the frequency of replacements induced by integration vectors is not correlated to the homology length and cannot be increased by irradiation of the cells. Our findings indicate that for targeting the IgH locus other mechanisms might be involved than at other loci.  相似文献   

18.
Illegitimate recombination is the dominant mechanism of recombination in mammalian somatic cells. It is responsible for most genome rearrangements such as translocations, deletions and integrations. Little is known as yet about the mechanism of illegitimate recombination and the enzymes involved. Recently, it has been shown that intrinsically bent DNA, also known as curved DNA, is present at chromosomal sites of illegitimate recombination events. Here we report that KIN17, a new mouse nuclear protein, binds to the curved DNA fragments found at illegitimate recombination sites.  相似文献   

19.
The site-specific integration of exogenous gene fragments by homologous recombination provides a convenient method for altering the immunoglobulin loci of B cells and specifically designing antibody molecules. To introduce a human isotype into the heavy chain locus of mouse hybridoma cells we compared the recombination frequencies of vectors that could be linearized either as integration or as replacement constructs in different cell lines. Integration as well as replacement recombination was observed, irrespective of the location of the site at which the vector was cleaved. Integration events involving the human IgG1 vectors were lost at high frequency due to secondary vector excision, so that all stable recombinations were found to be replacement events. Replacement recombination of an integration vector involves an illegitimate crossover at least at the 3′ side and sometimes gives rise to deletion of the CH1 domain. However, a homologous event at the 3′ side is more efficient than an illegitimate one, so that a homology that is distributed on both sides of the heterologous region promotes targeting at higher frequency than a contiguous sequence of the same total length. The position of the linearization site in the vector markedly influenced the targeting efficiency, but surprisingly, whether a double-strand break in the homology or in the heterology region more efficiently promoted integration was dependent on the cell line. In all cells, however, cleavage of the vector outside the homology region favoured stable replacements with a bias against CH1-truncated clones. We further show that the frequency of replacements induced by integration vectors is not correlated to the homology length and cannot be increased by irradiation of the cells. Our findings indicate that for targeting the IgH locus other mechanisms might be involved than at other loci. Received: 20 January 1997 / Accepted: 9 June 1997  相似文献   

20.
Intermolecular recombination events were monitored in Arabidopsis thaliana lines using specially designed recombination traps consisting of tandem disrupted beta-glucuronidase or luciferase reporter genes in direct repeat orientation. Recombination frequencies (RFs) varied between the different lines, indicating possible position effects influencing intermolecular recombination processes. The RFs between sister chromatids and between homologous chromosomes were measured in plants either hemizygous or homozygous for a transgene locus. The RFs in homozygous plants exceeded those of hemizygous plants by a factor of >2, implying that in somatic plant cells both sister chromatid recombination and recombination between homologous chromosomes exist for recombinational DNA repair. In addition, different DNA-damaging agents stimulated recombination in homozygous and hemizygous plants to different extents in a manner dependent on the type of DNA damage and on the genomic region. The genetic and molecular analysis of recombination events showed that most of the somatic recombination events result from gene conversion, although a pop-out event has also been characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号