首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The genetic variations of 35 individuals of the Shimokita A1 troop of mainland Japanese macaques,Macaca fuscata fuscata, which live at the northern end of the habitat of the species, were investigated using 33 electrophoretically detectable blood protein loci. Among the loci examined, six were polymorphic. The average heterozygosity per individual was calculated as 0.0442. This was the highest value among all troops of Japanese macaques so far investigated. The mainland macaques of the Shimokita A1 troop were more differentiated genetically from other mainland macaque troops than were Yaku macaques, the subspeciesM. f. yakui.  相似文献   

2.
Genetic variability within and between the troops of toque macaque in Sri Lanka was studied from a population genetical perspective. Studies were made using electrophoretical blood protein variations as markers in order to clarify the genetic characteristics of the population of this species. A total of 256 samples from 20 troops which were collected in the field in 1981 to 1982 and 1983 to 1984 were examined for 32 blood protein loci. Eleven loci, that is, Tf, Alb, TBPA, Hb-α, PHI, PGM-II, CA-I, IDH, AK, ADA, and Ch-E showed the polymorphism in one or more troops. Of these 11 loci, 7 loci, that is, Tf, TBPA, Hb-α, PHI, PGM-II, CA-I, and IDH were highly polymorphic in most troops. The genetic variability within troops were quantified as H=0.0782 in average and this value was on higher level than other primates and comparable with that of continental macaques,Macaca fascicularis, in Thailand. The genetic differentiation between troops was quantified byG ST andF ST and these values were relatively smaller than those of other insular macaques.  相似文献   

3.
Several aspects of the population biology and the population genetic structure of Ctenomys porteousi were studied. Chromosomal and allozyme polymorphisms in two local populations separated by 10 km were used to infer genetic structure. Heterochromatic addition/deletion rearrangements for six autosomal pairs were employed as genetic markers. Allozyme variants were analysed by the study of thirty-one presumptive loci. Thirteen loci (43%) were polymorphic, average observed heterozygosity per locus was 10%, and mean number of alleles per locus was 1.57. Chromosomal and allozyme frequencies were homogeneous across populations. The estimated Fst values were very low, 0.009 and 0.022 for chromosomal and allozyme data respectively. Gene flow was indirectly estimated by the method of Wright, Nm values (mean number of migrants per generation per deme) was very high (27.2 and 11.3 for chromosomal and allozyme data respectively). The Fis values suggest a significant defect of heterozygotes that could be explained by the Wahlund effect. The ecological data indicate the occurrence of sharp changes in density and in distribution pattern in short time. The genetic and ecological data suggest that the population structure of C. porteousi differs from that found in other species of Ctenomys affected by chromosomal mechanisms of speciation.  相似文献   

4.
Genetic variability in local populations of the Japanese macaque (Macaca fuscata) was quantified by the proportion of polymorphic loci (Ppoly) and the average heterozygosity per individual ( ) from the starch- and polyacrylamide-gel electrophoreses of blood proteins controlled by 32 independent genetic loci. Ppoly averaged 13.6% and 2.1%, the values being at lower level compared with other mammalian species. Geographical distribution of the genetic variations was not uniform in the whole species but its local differentiation was remarkable. Genetic variability tended to be lower in the southern localities, especially in the southernmost island of Yaku, than in the central and northern localities. The genetic distance and the principal component analyses showed that the most divergent local populations were the population in the Shimokita peninsula at the northernmost distribution area of the species and the populations on the Yaku island at the southernmost. The most contributory loci to the genetic divergence were the PGM-II, Gc, and Hb-β, the variant allele at the first locus being concentrated in the Yaku island, in the Shimokita peninsula, and in the easternmost Boso peninsula, and the variant allele at the latter two loci having high frequencies in the Shimokita and the Izu peninsulas. The Hennigian cladistic analysis, for which the Chinese rhesus macaque (M. mulatta) was used as the outgroup, revealed that the number of presence of derived (apomorphic) alleles was conspicuously smaller in southern islet populations than in central and northern populations, whereas any areal tendency was not recognized in the number of loss of ancestral (plesiomorphic) alleles. The observed distribution pattern that the plesiomorphic variant allele at the PGM-II locus concentrated only in the peripheral (southernmost, northernmost, and easternmost) ranges of the species, would indicate, as a possibility, the occurrence of two or more waves of immigration of ancestors of the present-day Japanese macaque from the Asian continent.  相似文献   

5.
The genetic structure of nine Peromyscus maniculatus nebrascensis demes from southeastern Wyoming was determined by analyzing allozymes encoded by 23 genetic loci with polyacrylamide gel electrophoresis. Genetic variability is extremely high for two genetic parameters; the proportion of loci heterozygous per individual averaged 0.16, and the proportion of loci polymorphic per deme averaged 0.41. Previous estimates of genetic heterozygosity for species within the genus Peromyscus have a mean of 0.06. The results of the present study suggest that genetic heterozygosity is considerably higher within P. maniculatus demes than within demes of other species in the genus. Geographic range is correlated with heterozygosity among Peromyscus species, as is adaptive divergence into broad-niched species. These correlates suggest that high heterozygosity may reflect an adaptation to a variable environment.  相似文献   

6.
Rhesus macaque (Macaca mulatta) and long-tailed macaque (Macaca fascicularis) are the 2 most commonly used primate model species in biomedical sciences. Although morphological studies have revealed a weak hybridization at the interspecific contact zone, in the north of Indochina, a molecular study has suggested an ancient introgression from rhesus to long-tailed macaque into the Indo-Chinese peninsula. However, the gene flow between these 2 taxa has never been quantified using genetic data and theoretical models. In this study, we have examined genetic variation within and between the parapatric Chinese rhesus macaque and Indo-Chinese long-tailed macaque populations, using 13 autosomal, 5 sex-linked microsatellite loci and mitochondrial DNA sequence data. From these data, we assessed genetic structure and estimated gene flow using a Bayesian clustering approach and the "Isolation with Migration" model. Our results reveal a weak interspecific genetic differentiation at both autosomal and sex-linked loci, suggesting large population sizes and/or gene flow between populations. According to the Bayesian clustering, Chinese rhesus macaque is a highly homogeneous gene pool that contributes strongly to the current Indo-Chinese long-tailed macaque genetic makeup, whether or not current admixture is assumed. Coalescent simulations, which integrated the characteristics of the loci, pointed out 1) a higher effective population size in rhesus macaque, 2) no mitochondrial gene flow, and 3) unilateral and male-mediated nuclear gene flow of approximately 10 migrants per generation from rhesus to long-tailed macaque. These patterns of genetic structure and gene flow suggest extensive ancient introgression from Chinese rhesus macaque into the Indo-Chinese long-tailed macaque population.  相似文献   

7.
Limonium dufourii is an endemic plant from the eastern Mediterranean coast of Spain with a triploid chromosome number and apomictic reproduction. We have isolated and characterized 13 polymorphic microsatellite loci from an enriched library in order to investigate its population genetic structure. Simple sequence repeat (SSR) loci were screened in 120 individuals from the six extant populations of this species. They show an average of 5.76 alleles per locus, ranging from 2 to 18, with seven loci exhibiting heterozygosities larger than 0.60. Three loci present one single allele in each individual, whereas one locus presents three alleles in every individual analysed.  相似文献   

8.
We calculated the probability of paternity exclusion (P) in 6 troops of rhesus and Japanese macaques housed in open enclosures and 68 wild troops of Japanese, crab-eating, and toque macaques using 33 genetic loci which encoded the blood protein variations detected by electrophoretic techniques. In the open enclosures, especially of rhesus troops, we obtained a fairly high probability of paternity exclusion and succeeded in determining the fathers of offspring. However, we found significant differences between the observed and calculated probabilities in most of the troops. These differences were ascribed to a situation whereby the Hardy-Weinberg equilibrium had not been attained in the troops and/or the numbers of variable loci were too small. In the wild troops of Japanese, crab-eating, and toque macaques, the means ofP were 0.2274 (0.0192–0.5017), 0.4635 (0.1676–0.7151), and 0.7382 (0.6266–0.7954), respectively. We also estimated the number of loci needed to determine the fathers of offspring with a probability of 0.8 assuming that ten males were present in the troop. The estimated number was about 13.5 times, 5 times and 1.8 times the number of loci examined on average in the troops of Japanese, crab-eating and toque macaques, respectively. This means that determination of most of the fathers of offspring in wild troops of these macaques, even of toque macaques which have a rather high probability of paternity exclusion, is difficult so long as we employ only electrophoretic techniques.  相似文献   

9.
Microsatellite loci for the buff-throated partridge (Tetraophasis szechenyii), an endemic pheasant species of China, are here described for the first time. Twenty-five microsatellite markers from chicken and Japanese quail were tested on buff-throated partridge DNA by means of cross-amplification. Twenty (80%) primers yielded specific products and polymorphisms were tested in a wild population of buff-throated partridge. Twelve (48%) proved to be polymorphic with an average of two alleles per locus. Current results of buff-throated partridge microsatellites loci could be employed in population genetic studies and on other endangered pheasant species.  相似文献   

10.
Radiation and phylogeography in the Japanese macaque, Macaca fuscata   总被引:5,自引:0,他引:5  
The Japanese macaque (Macaca fuscata) presumably differentiated from eastern rhesus macaque (Macaca mulatta) populations during the Pleistocene and the two species are closely related. In order to analyse speciation and subspeciation events in the Japanese macaque and to describe historical and current relationships among their populations, we sequenced and analysed a fragment of 392bp of mitochondrial DNA (mtDNA) control region in 50 individuals belonging to six populations of Japanese macaque and compared these sequences with 89 eastern rhesus macaque control region sequences from GenBank/EMBL database. There were high genetic similarities between both species and only two positions were fixed within each species, which supports the inclusion of the Japanese macaque in a single species with eastern populations of rhesus macaques. Japanese macaque ancestors colonised Japan after the separation of the two species, estimated at between 0.31 and 0.88 million years ago (Mya). The star-like phylogeny, multimodal mismatch distribution, and lack of correlation between geographic and genetic distances are in accordance with a rapid dispersion of macaques throughout the archipelago after the arrival into Japan. The species shows low genetic variation within populations and high levels of genetic differentiation among populations with no mtDNA haplotype shared across populations. Genetic distances between Yakushima macaques (Macaca fuscata yakui) and any other population of Macaca fuscata fuscata subspecies are comparable to the distances between populations of Honshu, Awajishima, and Kyushu, not supporting the classification of Yakushima macaques as a different subspecies.  相似文献   

11.
Twenty-one microsatellite loci were isolated from AC-enriched library of Tibetan macaque (Macaca thibetana). The number of alleles at the 21 microsatellite loci ranged from 8 to 15, with an average of 12.2 per locus. Polymorphism information content (PIC) ranged from 0.805 to 0.910 with an average of 0.873. The observed and expected heterozygosities ranged from 0.208 to 0.792 and from 0.843 to 0.938, respectively. These microsatellite loci will be useful for future studies that relate to the genetic diversity and population structure of Tibetan macaque.  相似文献   

12.
As the serum transferrin polymorphism was observed in several macaque species, we considered it as one of the best markers for the study of population genetics of Japanese macaques,Macaca fuscata. In this work the genetic variants of transferrin (Tf) of 1,451 blood samples from 37 troops of this species were tested. The troops showing the variation of Tf were Fukushima, Yugawara T, Ihama, Ryozenyama, Mikata I and II, Takahama, Takahama (Otomi), Arashiyama A, Minoh A and B, Kohchi, Mihara, Shimane, and Tomogashima. The wild-type allele of this species was Tf F, and the variant alleles detected in these troops were E, G, G, and H′. The alleles E, G and H′ were probably identical with those reported in several macaque species byIshimoto (1972), but the identification of allele G could not be done.  相似文献   

13.
We introduced a technique based on ground-based track counts in snow for simultaneously estimating the abundance and distribution of Japanese macaques Macaca fuscata (Blyth, 1875) and evaluated its efficiency by conducting a field trial in northern Japan. Within the 50-km2 area, we selected five transects with consideration of the spatial distribution of vegetation, local climate, and geographical conditions contained in the entire area. Five trained researchers recorded the track counts three times in those geolocations that intersected with each transect. We estimated the macaque abundance by the line-intercept sampling (LIS) technique using the number of tracks and predicted its distribution by ecological-niche factor analysis (ENFA) using the tracks as a proof of macaques’ presence. We confirmed that the LIS-based technique could yield reasonably accurate estimates of the number of individuals and troops, compared with the population estimates of macaques based on the home-range method. We successfully used ENFA in constructing a macaque distribution model that had a high predictive performance; this was verified by comparing the predicted macaque distribution with the actual use of habitat obtained by tracking radio-tagged troops in the study area.  相似文献   

14.
Genetic variations within and between troops of the Indonesian crab-eating macaque (Macaca fascicularis) were studied. A total of 456 blood samples were collected from 29 free-ranging troops in 19 different localities on Sumatra, Java, Bali, Lombok and Sumbawa. Blood protein polymorphisms were examined electrophoretically. Mean genetic variability within troops was estimated to be Ppoly=12.22% and =3.84%. Troops inhabiting small islands showed lower variability. Genetic differences were more marked between troops on different islands than between troops on the same island. Additionally, clinal variations of allelic frequencies at some loci were detected. The genetic features and socio-ecological and evolutionary implications are discussed.  相似文献   

15.
Chinese alligator (Alligator sinensis) is a critically endangered species endemic to China. In this study, the extent of genetic variation in the captive alligators of the Changxing Reserve Center was investigated using microsatellite markers derived from American alligators. Out of 22 loci employed, 21 were successfully amplified in the Chinese alligator. Sequence analysis showed loci in American alligators had a bigger average size than that of the Chinese alligators and the longest allele of an individual locus almost always existed in the species with longer stretch of repeat units. Eight of the 22 loci were found to be polymorphic with a total of 26 alleles present among 32 animals scored, yielding an average of 3.25 alleles per polymorphic locus. The expected heterozygosity (H E) ranged at a moderate level from 0.4385 to 0.7163 in this population. Compared to that in the American alligators, a lower level of microsatellite diversity existed in the Changxing population as revealed by about 46% fewer alleles per locus and smaller H E at the homologous loci. The average exclusion power and the ability to detect shared genotypes and multiple paternity were evaluated for those markers. Results suggested that when the polymorphic loci were combined, they could be sensitive markers in genetic diversity study and relatedness inference within the Chinese alligator populations. The level of genetic diversity present in the current Changxing population indicated an important resource to complement reintroductions based on the individuals from the other population. In addition, the microsatellite markers and their associated diversity characterized in this population could be utilized to further investigate the genetic status of this species.  相似文献   

16.
Microsatellite loci known to be polymorphic in baboons (Papio hamadryas) and/or humans were tested in pigtailed macaques (Macaca nemestrina) from the Washington Regional Primate Research Center. Nineteen polymorphisms were identified in the macaques, with an average of 9.2 alleles per locus and an average heterozygosity of 0.76. Seven loci were analyzed using radiolabelled PCR primers and standard gel electrophoresis. Twelve loci were studied using fluorescently labelled primers and the Perkin-Elmer ABI 377 genotyping system. Of these 19 pigtailed macaque polymorphisms, 12 were used to perform paternity testing among captive animals. In a set of 15 infants, this panel of 12 genetic polymorphisms was sufficient to establish paternity in all cases. The number of alleles per locus in pigtailed macaques was compared with the number of alleles in a sample of baboons, and no significant correlation was observed. This indicates that population genetic processes such as genetic drift and recurrent mutation act rapidly enough on these loci to eliminate any relationship in levels of polymorphism across those two species. These 19 loci will be valuable for a range of genetic studies in pigtailed macaques, including paternity testing, analysis of population structure and differentiation among wild populations, and genetic linkage mapping.  相似文献   

17.
We have studied genetic variation at 30-32 loci coding for enzymes in natural populations of five species of Drosophila. The average proportion of heterozygous loci per individual is 17.7 +/- 0.4%. The average proportion of polymorphic loci per population is 69.2 +/- 2.6% or 49.8 +/- 2.2%, depending on what criterion of polymorphism is used. The following generalizations are advanced: (1) The amount of genetic polymorphism varies considerably from locus to locus. (2) At a given locus, populations of the same species are very similar in the amount and pattern of genetic variation. (3) However, at some loci large differences sometimes occur between local populations of the same species. (4) The amount of variation at a given locus is approximately the same in all five species. (5) When different species are compared, the pattern of the variation is either essentially identical or totally different at a majority of loci. We have tested the hypothesis that protein polymorphisms are selectively neutral by examining four predictions derived from the hypothesis. Our results are at variance with every one of the predictions. We have measured the amount of genetic differentiation, D, between taxa of various degrees of evolutionary divergence. The average value of D is 0.033 for local populations, 0.228 for subspecies, 0.226 for semispecies, 0.538 for sibling species, and 1.214 for morphologically distinguishable species. Our results indicate that a substantial degree of genetic differentiation (22.8 allelic substitutions for every 100 loci) occurs between allopatric populations that have diverged to the point where they might become different species if they were to become sympatric. However, very little additional genetic change is required for the development of complete reproductive isolation. After the speciation process is completed, species continue to diverge genetically from each other.  相似文献   

18.
Although many studies have shown that animal-associated bacterial species exhibit linkage disequilibrium at chromosomal loci, recent studies indicate that both animal-associated and soil-borne bacterial species can display a nonclonal genetic structure in which alleles at chromosomal loci are in linkage equilibrium. To examine the situation in soil-borne species further, we compared genetic structure in two soil populations of Rhizobium leguminosarum bv. trifolii and two populations of R. leguminosarum bv. viciae from two sites in Oregon, with genetic structure in R. leguminosarum bv. viciae populations recovered from peas grown at a site in Washington, USA, and at a site in Norfolk, UK. A total of 234 chromosomal types (ET) were identified among 682 strains analysed for allelic variation at 13 enzyme-encoding chromosomal loci by multilocus enzyme electrophoresis (MLEE). Chi-square tests for heterogeneity of allele frequencies showed that the populations were not genetically uniform. A comparison of the genetic diversity within combined and individual populations confirmed that the Washington population was the primary cause of genetic differentiation between the populations. Each individual population exhibited linkage disequilibrium, with the magnitude of the disequilibrium being greatest in the Washington population and least in the UK population of R. leguminosarum bv. viciae. Linkage disequilibrium in the UK population was created between two clusters of 9 and 23 ETs, which, individually, were in linkage equilibrium. Strong linkage disequilibrium between the two major clusters of 8 and 12 ETs in the Washington population was caused by the low genetic diversity of the ETs within each cluster relative to the inter-cluster genetic distance. Because neither the magnitude of genetic diversity nor of linkage disequilibrium increased as hierarchical combinations of the six local populations were analysed, we conclude that the populations have not been isolated from each other for sufficient time, nor have they been exposed to enough selective pressure to develop unique multilocus genetic structure.  相似文献   

19.
Allozyme genetic variability in three chestnut (Castanea) species was investigated using 19 loci from ten enzyme systems. G-tests of heterogeneity of isozymic allele distribution showed significant differences between the three species at 15 of the 19 loci, and between the 13 C. mollissima populations at 13 of the 19 loci examined. C. mollissima was found to possess a significantly-higher value of mean gene heterozygosity (H=0.3050±0.0419), the percentage of polymorphic loci (P=84.21%) and the average number of alleles per locus (A=2.05), than any other species in the Castanea section Eucastanon. When the genetic variability of populations of C. mollissima from four regions in China was investigated, the population from the Changjiang river region showed a markedly higher mean gene heterozygosity (H=0.3480±0.0436) than populations from the other regions. Genetic relationships among the four regions were assessed by Nei's genetic identity I and standard genetic distance D. An approximately-identical distance between the population from the Changjiang river region and populations from the three other regions was observed, while populations from the latter regions showed almost the same genetic distance from each other. These data, when considered with information existing prior to this study, contribute to an understanding of the possible origin and progenitor of the chestnut species.  相似文献   

20.
Nuclear microsatellite markers were developed for the two Tsuga species native to the Japanese Archipelago, Tsuga diversifolia and T. sieboldii, and a population with genetic affinities to T. diversifolia on Ulleung Island, Korea. Tsuga diversifolia and T. sieboldii are widespread dominant trees of temperate and subalpine forests in Japan but to date no genetic markers have been developed for these species. Fifteen polymorphic loci were developed and characterized, of which 14 are reliably amplified in each taxon. Across both species and the Ulleung Island population, the number of alleles per locus ranged from 3 to 26 (average = 13.93) and observed heterozygosity ranged from 0.005 to 0.935 (average = 0.535). In addition, all 15 loci were successfully amplified in a single accession of the Chinese species, T. chinensis. These markers will be useful for investigating the species’ biogeography, range‐wide genetic diversity, conservation genetic issues and potential for hybridisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号