首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 409 毫秒
1.
The tobacco cultivar Nicotiana tabacum is a natural amphidiploid that is thought to be derived from ancestors of Nicotiana sylvestris and Nicotiana tomentosiformis. To compare these chloroplast genomes, DNA was prepared from isolated chloroplasts from green leaves of N. sylvestris and N. tomentosiformis, and subjected to whole-genome shotgun sequencing. The N. sylvestris chloroplast genome comprises of 155,941 bp and shows identical gene organization with that of N. tabacum, except one ORF. Detailed comparison revealed only seven different sites between N. tabacum and N. sylvestris; three in introns, two in spacer regions and two in coding regions. The chloroplast DNA of N. tomentosiformis is 155,745 bp long and possesses also identical gene organization with that of N. tabacum, except four ORFs and one pseudogene. However, 1,194 sites differ between these two species. Compared with N. tabacum, the nucleotide substitution in the inverted repeat was much lower than that in the single-copy region. The present work confirms that the chloroplast genome from N. tabacum was derived from an ancestor of N. sylvestris, and suggests that the rate of nucleotide substitution of the chloroplast genomes from N. tabacum and N. sylvestris is very low. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

2.
In order to investigate possible interactions between parental genomes in the composite genome of Nicotiana tabacum we have analyzed the organization of telomeric (TTTAGGG)n and ribosomal gene (rDNA) repeats in the progenitor genomes Nicotiana sylvestris and Nicotiana tomentosiformis or Nicotiana otophora. Telomeric arrays in the Nicotiana species tested are heterogeneous in length ranging from 20 to 200 kb in N. sylvestris, from 20 to 50 kb in N. tomentosiformis, from 15 to 100kb in N. otophora, and from 40 to 160kb in N. tabacum. The patterns of rDNA repeats (18S, 5.8S, 25S RNA) appeared to be highly homogeneous and speciesspecific; no parental rDNA units corresponding to N. sylvestris, N. tomentosiformis or N. otophora were found in the genome of N. tabacum by Southern hybridization. The results provide evidence for a species-specific evolution of telomeric and ribosomal repeats in the tobacco composite genome.  相似文献   

3.
Summary We compared the single-copy DNA sequences of the tetraploid tobacco plant, Nicotiana tabacum, with those of its diploid progenitors N. sylvestris and N. tomentosiformis. We observed that 65% of N. sylvestris and N. tomentosiformis single-copy DNA fragments reacted with each other using moderately stringent hybridization conditions (60° C, 0.18 M Na+). An additional 10% sequence homology was detected when the hybridization temperature was reduced by 10° C. The thermal stability of interspecific single-copy DNA duplexes indicated that they were approximately 6% more mispaired than homologous single-copy DNA duplexes. In contrast, we observed almost no single-copy DNA divergence between N. tabacum and its diploid progenitors. Greater than 99% of N. sylvestris and N. tomentosiformis single-copy DNAs reacted with N. tabacum DNA using moderately stringent hybridization conditions. The thermal stability of these duplexes indicated that they contained no more sequence mismatch than homologous single-copy duplexes. Together, our results show that significant single-copy DNA sequence divergence has occurred between the diploid N. sylvestris and N. tomentosiformis genomes. However, by applying our experimental criteria these single-copy DNAs are indistinguishable from their counterparts in the hybrid N. tabacum nucleus.  相似文献   

4.
We examined the structure, intranuclear distribution and activity of ribosomal DNA (rDNA) in Nico-tiana sylvestris (2n=2x=24) and N. tomentosiformis (2n=2x=24) and compared these with patterns in N. tabacum (tobacco, 2n=4x=48). We also examined a long-established N. tabacum culture, TBY-2. Nicotiana tabacum is an allotetraploid thought to be derived from ancestors of N. sylvestris (S-genome donor) and N. tomentosiformis (T-genome donor). Nicotiana sylvestris has three rDNA loci, one locus each on chromosomes 10, 11, and 12. In root-tip meristematic interphase cells, the site on chromosome 12 remains condensed and inactive, while the sites on chromosomes 10 and 11 show activity at the proximal end of the locus only. Nicotiana tomentosiformis has one major locus on chromosome 3 showing activity and a minor, inactive locus on chromosome 11. In N. tabacum cv. 095-55, there are four rDNA loci on T3, S10, S11/t and S12 (S11/t carries a small T-genome translocation). The locus on S12 remains condensed and inactive in root-tip meristematic cells while the others show activity, including decondensation at interphase and secondary constrictions at metaphase. Nicotiana tabacum DNA digested with methylcytosine-sensitive enzymes revealed a hybridisation pattern for rDNA that resembled that of N. tomentosiformis and not N. sylvestris. The data indicate that active, undermethylated genes are of the N. tomentosiformis type. Since S-genome chromosomes of N. tabacum show rDNA expression, the result indicates rDNA gene conversion of the active rDNA units on these chromosomes. Gene conversion in N. tabacum is consistent with the results of previous work. However, using primers specific for the S-genome rDNA intergenic sequences (IGS) in the polymerase chain reaction (PCR) show that rDNA gene conversion has not gone to completion in N. tabacum. Furthermore, using methylation-insensitive restriction enzymes we demonstrate that about 8% of the rDNA units remain of the N. sylvestris type (from ca. 75% based on the sum of the rDNA copy numbers in the parents). Since the active genes are likely to be of an N. tomentosiformis type, the N. sylvestris type units are presumably contained within inactive loci (i.e. on chromosome S12). Nicotiana sylvestris has approximately three times as much rDNA as the other two species, resulting in much condensed rDNA at interphase. This species also has three classes of IGS, indicating gene conversion has not homogenised repeat length in this species. The results suggest that methylation and/or DNA condensation has reduced or prevented gene conversion from occurring at inactive genes at rDNA loci. Alternatively, active undermethylated units may be vulnerable to gene conversion, perhaps because they are decondensed and located in close proximity within the nucleolus at interphase. In TBY-2, restriction enzymes showed hybridisation patterns that were similar to, but different from, those of N. tabacum. In addition, TBY-2 has elevated rDNA copy number and variable numbers of rDNA loci, all indicating rDNA evolution in culture. Received: 17 November 1999; in revised form: 3 February 2000 / Accepted: 3 February 2000  相似文献   

5.
Tezuka T  Kuboyama T  Matsuda T  Marubashi W 《Planta》2007,226(3):753-764
Hybrid seedlings from the cross between Nicotiana tabacum, an allotetraploid composed of S and T subgenomes, and N. debneyi die at the cotyledonary stage. This lethality involves programmed cell death (PCD). We carried out reciprocal crosses between the two progenitors of N. tabacum, N. sylvestris and N. tomentosiformis, and N. debneyi to reveal whether only the S subgenome in N. tabacum is related to hybrid lethality. Hybrid seedlings from reciprocal crosses between N. sylvestris and N. debneyi showed lethal characteristics identical to those from the cross between N. tabacum and N. debneyi. Conversely, hybrid seedlings from reciprocal crosses between N. tomentosiformis and N. debneyi were viable. Furthermore, hallmarks of PCD were observed in hybrid seedlings from the cross N. debneyi × N. sylvestris, but not in hybrid seedlings from the cross N. debneyi × N. tomentosiformis. We also carried out crosses between monosomic lines of N. tabacum lacking the Q chromosome and N. debneyi. Using Q-chromosome-specific DNA markers, hybrid seedlings were divided into two groups, hybrids possessing the Q chromosome and hybrids lacking the Q chromosome. Hybrids possessing the Q chromosome died with characteristics of PCD. However, hybrids lacking the Q chromosome were viable and PCD did not occur. From these results, we concluded that the Q chromosome belonging to the S subgenome of N. tabacum encodes gene(s) leading to hybrid lethality in the cross N. tabacum × N. debneyi.  相似文献   

6.
ABamHI family of highly repeated DNA sequences of theNicotiana tabacum nuclear genome, denoted as a HRS60-family, was recently isolated. It comprises about 2% of the tobacco nuclear genome. Monomeric units are 182–184 bp long. Members of the HRS60-family isolated till now are closely related. DNA-DNA hybridization experiments with DNA of the two tobacco progenitors,N. tomentosiformis andN. sylvestris, revealed that the HRS60-family was present in many copies inN. sylvestris, the amount being about 1.7 times that inN. tabacum. InN. tomentosiformis as well as in some other species of the genusNicotiana, the HRS60-family is present in a small amount. Sequences related to the HRS60-family were revealed using DNA-DNA hybridization at low stringency. With respect to quantity, the HRS60-family could be considered as a species-specific DNA repeat which may be a useful genetic marker in genetic manipulations withN. tabacum.  相似文献   

7.
Nicotiana tabacum (2n=48) is a natural amphidiploid with component genomes S and T. We used non-radioactive in situ hybridization to provide physical chromosome markers for N. tabacum, and to determine the extant species most similar to the S and T genomes. Chromosomes of the S genome hybridized strongly to biotinylated total DNA from N. sylvestris, and showed the same physical localization of a tandemly repeated DNA sequence, HRS 60.1, confirming the close relationship between the S genome and N. sylvesfris. Results of dot blot and in situ hybridizations of N. tabacum DNA to biotinylated total genomic DNA from N. tomentosiformis and N. otophora suggested that the T genome may derive from an introgressive hybrid between these two species. Moreover, a comparison of nucleolus-organizing chromosomes revealed that the nucleolus organizer region (NOR) most strongly expressed in N. tabacum had a very similar counterpart in N. otophora. Three different N. tabacum genotypes each had up to 9 homozygous translocations between chromosomes of the S and T genomes. Such translocations, which were either unilateral or reciprocal, demonstrate that intergenomic transfer of DNA has occurred in the amphidiploid, possibly accounting for some results of previous genetic and molecular analyses. Molecular cytogenetics of N. tabacum has identified new chromosome markers, providing a basis for physical gene mapping and showing that the amphidiploid genome has diverged structurally from its ancestral components.  相似文献   

8.
Summary The mitochondrial genomes of cybrids of Nicotiana tabacum containing chloroplasts of Petunia hybrida were characterized by restriction endonuclease digestion and agarose gel electrophoresis. Cybrids that displayed normal growth and development contained mitochondrial DNA indistinguishable from N. tabacum mitochondrial DNA. Cybrids that displayed abnormal growth and development contained mitochondrial DNA that differed from N. tabacum either by possessing a few additional fragments, by lacking a few fragments, or both. In spite of these differences, the mitochondrial DNA of cybrids showing abnormal growth and development was much more similar to N. tabacum than to P. hybrida mitochondrial DNA. In those cybrids that contained P. hybrida chloroplasts and N. tabacum mitochondria, cotransfer of cytoplasmic organelles did not occur. Although P. hybrida chloroplasts can interact compatibly with the N. tabacum nucleus, no cybrids were found in which P. hybrida mitochondria coexisted with the N. tabacum nucleus.  相似文献   

9.
Summary Fusion of two cytoplasmic male-sterile cultivars of Nicotiana tabacum, one with N. bigelovii cytoplasm and one with N. undulata cytoplasm, resulted in the restoration of male fertility in cybrid plants. All male-fertile cybrids exhibited fused corollas, which is characteristic for the cultivar with N. undulata cytoplasm, while their stamen structures varied from cybrid to cybrid, some producing stamens with anthers fused to petal-like appendages and one producing stamens of a normal appearance for N. tabacum. Restriction enzyme digestion and agarose gel electrophoresis of mitochondrial DNA showed that mitochondrial DNA of the fertile cybrids was more similar to the male-sterile cultivar with the cytoplasm of N. undulata than to the cultivar with N. bigelovii cytoplasm. Some restriction fragments were unique to the male-fertile cybrids. Comparisons between stamen structure and mitochondrial DNA for eight fertile progeny from one cybrid plant led to the identification of several restriction fragments that appeared at enhanced levels in connection with normal stamen development.  相似文献   

10.
Summary We studied the chondriomes (the mitochondrial genomes) of sexual-progeny plants derived from eleven Nicotiana cybrids which resulted from donor-recipient protoplast fusions. The recipients were either N. tabacum or N. sylvestris and the donor (of the cytoplasm) was N. bigelovii. The chondriomes were characterized by the mitochondrial DNA (mtDNA) restriction-patterns. The differences in mtDNA restriction patterns were revealed after Sal I digestions and probing the respective Southern-blots with three mtDNA fragments. The hybridization patterns of mtDNAs from 35 second-generation plants (i.e. the sexual progeny derived from the cybrid plants) indicated only minor variations between plants derived from the same cybrid but pronounced variations among sibs derived from different cybrids. The mtDNA of 32 second-generation plants varied from both original fusion partners but the mtDNA of one (male-sterile) plant was apparently identical with the mtDNA of one of the original donor (N. bigelovii) and the mtDNA of two other (male-fertile) plants was apparently identical to the mtDNA of an original recipient (N. sylvestris). Generally, the mtDNAs of male-fertile, second-generation plants were similar to the mtDNAs of the original recipients while the mtDNAs of the male-sterile second-generation plants were similar to the mtDNA of the donor (N. begelovii). The analyses of mtDNAs from the thirdgeneration plants indicated stabilization of the chondriomes; no variations were detected between the mtDNAs of plants derived from a given second-generation plant.  相似文献   

11.
Patterns of organelle inheritance were examined among fertile somatic hybrids between allotetraploid Nicotiana tabacum L. (2n=4x=48) and a diploid wild relative N. glutinosa L. (2n=2x=24). Seventy somatic hybrids resistant to methotrexate and kanamycin were recovered following fusion of leaf mesophyll protoplasts of transgenic methotrexate-resistant N. tabacum and kanamycin-resistant N. glutinosa. Evidence for hybridization of nuclear genomes was obtained by analysis of glutamate oxaloacetate transaminase and peroxidase isoenzymes and by restriction fragment length polymorphism (RFLP) analysis using a heterologous nuclear ribosomal DNA probe. Analysis of chloroplast genomes in a population of 41 hybrids revealed a random segregation of chloroplasts since 25 possessed N. glutinosa chloroplasts and 16 possessed N. tabacum chloroplasts. This contrasts with the markedly non-random segregation of plastids in N. tabacum (+)N. rustica and N. tabacum (+) N. debneyi somatic hybrids which we described previously and which were recovered using the same conditions for fusion and selection. The organization of the mitochondrial DNA (mtDNA) in 40 individuals was examined by RFLP analysis with a heterologous cytochrome B gene. Thirty-eight somatic hybrids possessed mitochondrial genomes which were rearranged with respect to the parental genomes, two carried mtDNA similar to N. tabacum, while none had mtDNA identical to N. glutinosa. The somatic hybrids were self-fertile and fertile in backcrosses with the tobacco parent.Contribution No. 1487 Plant Research Centre  相似文献   

12.
Summary The restriction profiles of chloroplast DNA (cpDNA) from Nicotiana tabacum, N. sylvestris, N. plumbaginifolia, and N. otophora were obtained with respect to AvaI, BamHI, BglI, HindIII, PstI, PvuII, SalI, and XhoI. An efficient mapping method for the construction of cpDNA physical maps in Nicotiana was established via a computer-aided analysis of the complete cpDNA sequence of N. tabacum for probe selection. The efficiency of this approach is demonstrated by the determination of cpDNA maps from N. sylvestris, N. plumbaginifolia, and N. otophora with respect to all of the above restriction endonucleases. The size and basic structure of the cpDNA from the three species are almost identical, with an addition of approximately 80 bp in N. plumbaginifolia. The restriction patterns and hence the physical maps between N. tabacum and N. sylvestris cpDNA are identical and there is no difference in the Pvull digests of cpDNA from all four species. Restriction site variations in cpDNA from different species probably result from point mutations, which create or eliminate a particular cutting site, and they were observed spanning the whole chloroplast molecule but highly concentrated in both ends of the large, single-copy region. The results presented here will be used for the forthcoming characterization of chloroplast genomes in the interspecies somatic hybrids of Nicotiana, and will be of great value in completing the exploration of the phylogenetic relationships within this already extensively studied genus.  相似文献   

13.
Phylogenetic schemes based on changing DNA sequence have made a major impact on our understanding of evolutionary relationships and significantly built on knowledge gained by morphological and anatomical studies. Here we present another approach to phylogeny, using fluorescent in situ hybridisation. The phylogenetic scheme presented is likely to be robust since it is derived from the chromosomal distribution of ten repetitive sequences with different functions and evolutionary constraints [GRS, HRS60, NTRS, the Arabidopsis-type telomere repeat (TTTAGGG)n, 18S-5.8S-26S ribosomal DNA (rDNA), 5S rDNA, and four classes of geminiviral-related DNA (GRD)]. The basic karyotypes of all the plant species investigated Nicotiana tomentosiformis, N. kawakamii, N. tomentosa, N. otophora, N. setchellii, N. glutinosa (all section Tomentosae), and N. tabacum (tobacco, section Genuinae) are similar (x=12) but the distribution of genic and non-genic repeats is quite variable, making the karyotypes distinct. We found sequence dispersal, and locus gain, amplification and loss, all within the regular framework of the basic genomic structure. We predict that the GRD classes of sequence integrated into an ancestral genome only once in the evolution of section Tomentosae and thereafter spread by vertical transmission and speciation into four species. Since GRD is similar to a transgenic construct that was inserted into the N. tabacum genome, its fate over evolutionary time is interesting in the context of the debate on genetically modified organisms and the escape of genes into the wild. Nicotiana tabacum is thought to be an allotetraploid between presumed progenitors of N. sylvestris (maternal, S-genome donor) and a member of section Tomentosae (T-genome donor). Of section Tomentosae, N. tomentosiformis has the most similar genome to the T genome of tobacco and is therefore the most likely paternal genome donor. It is known for N. tabacum that gene conversion has converted most 18S-5.8S-26S rDNA units of N. sylvestris origin into units of an N. tomentosiformis type. Clearly if such a phenomenon were widespread across the genome, genomic in situ hybridisation (GISH) to distinguish the S and T genomes would probably not work since conversion would tend to homogenise the genomes. The fact that GISH does work suggests a limited role for gene conversion in the evolution of N. tabacum. Received: 8 November 1999; in revised form: 23 February 2000 / Accepted: 1 March 2000  相似文献   

14.
Summary Somatic hybrid/cybrid plants were obtained by microfusion of defined protoplast pairs from malefertile, streptomycin-resistant Nicotiana tabacum and cytoplasmic male-sterile (cms), streptomycin-sensitive N. tabacum cms (N. bigelovii) after microculture of recovered fusants. Genetic and molecular characterization of the organelle composition of 30 somatic hybrid/cybrid plants was performed. The fate of chloroplasts was assessed by an in vivo assay for streptomycin resistance/ sensitivity using leaf explants (R0 generation and R1 seedlings). For the analysis of the mitochondrial (mt) DNA, species-specific patterns were generated by Southern hybridization of restriction endonuclease digests of total DNA and mtDNA, with three DNA probes of N. sylvestris mitochondrial origin. In addition, detailed histological and scanning electron microscopy studies on flower ontogeny were performed for representative somatic hybrids/cybrids showing interesting flower morphology. The present study demonstrates that electrofusion of individually selected pairs of protoplasts (microfusion) can be used for the controlled somatic hybridization of higher plants.Abbreviations ac alternate current - BAP benzyl aminopurine - cms cytoplasmic male sterile - dc direct current - NAA naphthalenacetic acid - SEM scanning electron microscopy  相似文献   

15.
Polymorphism of a photosystem I subunit caused by alloploidy in Nicotiana   总被引:3,自引:2,他引:1  
The photosystem I complex from Nicotiana tabacum, which has an alloploid genome, contains subunits of 17.5 and 18.5 kilodaltons whose N-terminal amino acid sequences are highly homologous. Comparative analysis of photosystem I subunits among N. tabacum and its ancestral plants, N. tomentosiformis and N. sylvestris, revealed that the 17.5 kilodalton subunit of N. tabacum derives from N. sylvestris, and the 18.5 kilodalton subunit from N. tomentosiformis.  相似文献   

16.
There are significant differences in nuclear DNA amount between both diploid and amphidiploid species of Nicotiana. Owing to the higher DNA density in the interphase nuclei of the amphidiploids DNA amounts tend to be underestimated by microdensitometry. After applying necessary corrections to amphidiploid readings it was found that: (1) The nuclear DNA amount in the tetraploid N. rustica is not significantly different from the sum of nuclear DNA amounts in reputed diploid parents, N. undulata and N. paniculata. (2) It is well established that N. sylvestris is one of the diploid progenitors of N. tabacum. The sum of the nuclear DNA amounts in N. sylvestris and N. tomentosiformis is not significantly different from that of the amphidiploid N. tabacum. In contrast the sum of the DNA amounts in N. sylvestris and N. otophora is significantly higher than that in N. tabacum. Observations and measurements of the amount and distribution of heterochromatin in interphase nuclei of the diploid and tetraploid species give further support to the conclusion that N. tomentosiformis rather than N. otophora is the second diploid progenitor of N. tabacum.  相似文献   

17.
LTR-retrotransposons contribute substantially to the structural diversity of plant genomes. Recent models of genome evolution suggest that retrotransposon amplification is offset by removal of retrotransposon sequences, leading to a turnover of retrotransposon populations. While bursts of amplification have been documented, it is not known whether removal of retrotransposon sequences occurs continuously, or is triggered by specific stimuli over short evolutionary periods. In this work, we have characterized the evolutionary dynamics of four populations of copia-type retrotransposons in allotetraploid tobacco (Nicotiana tabacum) and its two diploid progenitors Nicotiana sylvestris and Nicotiana tomentosiformis. We have used SSAP (Sequence-Specific Amplification Polymorphism) to evaluate the contribution retrotransposons have made to the diversity of tobacco and its diploid progenitor species, to quantify the contribution each diploid progenitor has made to tobacco's retrotransposon populations, and to estimate losses or amplifications of retrotransposon sequences subsequent to tobacco's formation. Our results show that the tobacco genome derives from a turnover of retrotransposon sequences with removals concomitant with new insertions. We have detected unique behaviour specific to each retrotransposon population, with differences likely reflecting distinct evolutionary histories and activities of particular elements. Our results indicate that the retrotransposon content of a given plant species is strongly influenced by the host evolutionary history, with periods of rapid turnover of retrotransposon sequences stimulated by allopolyploidy.  相似文献   

18.
Summary Two flue-cured varieties of N. tabacum were crossed to putative progenitor species and to distantly related species. Heterosis for yield, plant height, and number of leaves was largest for crosses to progenitor species, particularly to N. otophora and N. tomentosiformis. The magnitude of this heterosis appeared to be greater than estimates presented in the literature for crosses among varieties of N. tabacum. An additional study presented some evidence for the genomic basis of heterosis in crosses of N. tabacum with N. tomentosiformis and N. sylvestris.
Zusammenfassung Zwei für R?hrentrocknung geeignete Sorten von N. tabacum wurden mit vermutlichen Ausgangs- und mit entfernt verwandten Arten gekreuzt. Die Heterosis für Ertrag, Pflanzenh?he und Blattanzahl war am st?rksten bei Kreuzungen mit den Ausgangsarten, besonders mit N. otophora und N. tomentosiformis. Das Ausma? dieser Heterosis schien die in der Literatur berichteten Sch?tzungen für Kreuzungen zwischen Sorten von N. tabacum zu übertreffen. Eine weitere Untersuchung erbrachte Hinweise für die genomatische Grundlage der Heterosis bei Kreuzungen von N. tabacum mit N. tomentosiformis und N. sylvestris.


Dedicated to Dr. George F. Sprague on the occasion of his 65th birthday.

Paper Number 2318 of the Journal Series of the North Carolina Agricultural Experiment Station. This investigation was supported in part by Public Health Service Research Grant GM 11546 from the Division of General Medical Sciences.  相似文献   

19.
Interspecific hybrid plants between Nicotiana suaveolens and N. tabacum exhibit lethal symptoms at the seedling stage and cannot grow to maturity. In this investigation, an attempt was made to clarify the genomic factors responsible for this lethality. N. suaveolens was crossed to N. sylvestris (genomic constitution: SS) and N. tomentosiformis (TT), these latter two species being the progenitors of N. tabacum (SSTT). From the cross N. suaveolens x N. tomentosiformis, many seedlings were obtained through ovule culture, and these subsequently grew to maturity without exhibiting any lethality. In the reciprocal crossing between N. sauvelons and N. sylvestris, only a few hybrid seedlings were obtained through ovlue culture and all died after unfolding their cotyledons when cultured at 28 °C. This lethality could be avoided by culturing the ovules at 36 °C. These features of hybrid lethality resembled those observed in the interspecific hybrid between N. suaveolens and N. tabacum. These findings suggest that the S genome in N. tabacum is responsible for the lethality exhibited in the hybrid between N. suaveolens and N. tabacum.  相似文献   

20.
Nicotiana species carry cellular T‐DNA sequences (cT‐DNAs), acquired by Agrobacterium‐mediated transformation. We characterized the cT‐DNA sequences of the ancestral Nicotiana tabacum species Nicotiana tomentosiformis by deep sequencing. N. tomentosiformis contains four cT‐DNA inserts derived from different Agrobacterium strains. Each has an incomplete inverted‐repeat structure. TA is similar to part of the Agrobacterium rhizogenes 1724 mikimopine‐type T‐DNA, but has unusual orf14 and mis genes. TB carries a 1724 mikimopine‐type orf14‐mis fragment and a mannopine‐agropine synthesis region (mas2‐mas1‐ags). The mas2′ gene codes for an active enzyme. TC is similar to the left part of the A. rhizogenes A4 T‐DNA, but also carries octopine synthase‐like (ocl) and c‐like genes normally found in A. tumefaciens. TD shows a complex rearrangement of T‐DNA fragments similar to the right end of the A4 TL‐DNA, and including an orf14‐like gene and a gene with unknown function, orf511. The TA, TB, TC and TD insertion sites were identified by alignment with N. tabacum and Nicotiana sylvestris sequences. The divergence values for the TA, TB, TC and TD repeats provide an estimate for their relative introduction times. A large deletion has occurred in the central part of the N. tabacum cv. Basma/Xanthi TA region, and another deletion removed the complete TC region in N. tabacum. Nicotiana otophora lacks TA, TB and TD, but contains TC and another cT‐DNA, TE. This analysis, together with that of Nicotiana glauca and other Nicotiana species, indicates multiple sequential insertions of cT‐DNAs during the evolution of the genus Nicotiana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号