首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
When transport between the rough endoplasmic reticulum (ER) and Golgi complex is blocked by Brefeldin A (BFA) treatment or ATP depletion, the Golgi apparatus and associated transport vesicles undergo a dramatic reorganization. Because recent studies suggest that coat proteins such as beta-COP play an important role in the maintenance of the Golgi complex, we have used immunocytochemistry to determine the distribution of beta-COP in pancreatic acinar cells (PAC) in which ER to Golgi transport was blocked by BFA treatment or ATP depletion. In controls, beta-COP was associated with Golgi cisternae and transport vesicles as expected. Upon BFA treatment, PAC Golgi cisternae are dismantled and replaced by clusters of remnant vesicles surrounded by typical ER transitional elements that are generally assumed to represent the exit site of vesicular carriers for ER to Golgi transport. In BFA-treated PAC, beta-COP was concentrated in large (0.5-1.0 micron) aggregates closely associated with remnant Golgi membranes. In addition to typical ER transitional elements, we detected a new type of transitional element that consists of specialized regions of rough ER (RER) with ribosome-free ends that touched or extended into the beta-COP containing aggregates. In ATP-depleted PAC, beta-COP was not detected on Golgi membranes but was concentrated in similar large aggregates found on the cis side of the Golgi stacks. The data indicate that upon arrest of ER to Golgi transport by either BFA treatment or energy depletion, beta-COP dissociates from PAC Golgi membranes and accumulates as large aggregates closely associated with specialized ER elements. The latter may correspond to either the site of entry or exit for vesicles recycling between the Golgi and the RER.  相似文献   

2.
This report concerns the effects of Brefeldin A (BFA): i) on the Golgi complex and the ER of retrovirus-transformed murine erythroleukemia (MEL) cells and, ii) on the viral proteins these cells express. Golgi complexes were extensively disorganized by BFA. Within 5 min, most stacked cisternae were converted to vesicles scattered throughout the centrosphere region. By 30 min, the Golgi complexes were completely disassembled. Only clusters of small vesicles ("Golgi remnants") persisted in the vicinity of the centrioles and microtubule-organizing centers. Some of these small vesicles had a simple coat structure on their membranes. Over the next 1 to 2 h of BFA treatment, the number of vesicles in the Golgi area decreased concomitantly with the expansion of a predominantly smooth membrane portion of the ER, consisting of a network of dilated tubules in continuity with regular RER cisternae, annulate lamellae and the nuclear envelope. By electron microscopy, viral glycoproteins appeared to accumulate on the membranes of this network, and immature virions were found to bud preferentially into its cisternal space. Viral accumulations increased with time under BFA. The rest of the RER appeared normal, apparently unaffected by the drug. Preferential virion budding suggests that this expanding network is a chemically differentiated part of the ER. By immunofluorescence, antibodies to viral envelope proteins gave a punctate staining at the surface of control cells, presumably in the areas of virion budding, whereas relatively large intracellular masses of antigens were found in BFA-treated cells. We assume that these masses represent the differentiated parts of the ER. Taken together, these findings suggest that BFA blocks intracellular transport of newly synthesized cellular and viral proteins immediately distal to the distinct compartment of the ER in which virion budding preferentially occurs. BFA effects are rapidly and fully reversible. Within 1 min of the removal of the drug, stacks of Golgi cisternae began to reappear in the vicinity of the centrioles, and by 30 min, Golgi complexes regained their normal structural appearance.  相似文献   

3.
CHLAMYDOMONAS NOCTIGAMA has a non-motile Golgi apparatus consisting of several Golgi stacks adjacent to transitional ER. These domains are characterized by vesicle-budding profiles and the lack of ribosomes on the side of the ER proximal to the Golgi stacks. Immunogold labelling confirms the presence of COPI-proteins at the periphery of the Golgi stacks, and COPII-proteins at the ER-Golgi interface. After addition of BFA (10 microg/ml) a marked increase in the number of vesicular profiles lying between the ER and the Golgi stacks is seen. Serial sections of cells do not provide any evidence for the existence of tubular connections between the ER and the Golgi stacks, supporting the notion that COPI- but not COPII-vesicle production is affected by BFA. The fusion of COPII-vesicles at the CIS-Golgi apparatus apparently requires the presence of retrograde COPI-vesicles. After 15 min the cisternae of neighbouring Golgi stacks begin to fuse forming "mega-Golgis", which gradually curl before fragmenting into clusters of vesicles and tubules. These are surrounded by the transitional ER on which vesicle-budding profiles are still occasionally visible. Golgi remnants continue to survive for several hours and do not completely disappear. Washing out BFA leads to a very rapid reassembly of Golgi cisternae. At first, clusters of vesicles are seen adjacent to transitional ER, then "mini Golgis" are seen whose cisternae grow in length and number to produce "mega Golgis". These structures then divide by vertical fission to produce Golgi stacks of normal size and morphology roughly 60 min after drug wash-out.  相似文献   

4.
T. Noguchi  H. Watanabe  R. Suzuki 《Protoplasma》1998,201(3-4):202-212
Summary The effects of brefeldin A (BFA) on the structure of the Golgi apparatus, the nuclear envelope, and the endoplasmic reticulum (ER), and on the thiamine pyrophosphatase (TPPase) activity in these organelles were examined in a green alga,Scenedesmus acutus, to obtain evidence for the existence of a retrograde transport from the Golgi apparatus to the ER via the nuclear envelope. InScenedesmus, Golgi bodies are situated close to the nuclear envelope throughout the cell cycle and receive the transition vesicles not directly from the ER, but from the nuclear envelope. BFA induced the disassembly of Golgi bodies and an increase in the ER cisternae at the trans-side of decomposed Golgi bodies in interphase cells and multinuclear cells before septum formation. The accumulated ER cisternae connected to the nuclear envelope at one part. TPPase activity was detected in all cisternae of Golgi bodies, but not in the nuclear envelope or the ER in nontreated cells. On the contrary, in BFA-treated cells, TPPase activity was detected in the nuclear envelope and the ER in addition to the decomposed Golgi bodies. When septum-forming cells were treated with BFA, the disassembly of Golgi bodies was less than that in interphase cells, and TPPase activity was detected in the Golgi cisternae but not in the nuclear envelope or the ER. These results suggest mat BFA blocks the anterograde transport from the nuclear envelope to the Golgi bodies but does not block the retrograde transport from the Golgi bodies to the nuclear envelope in interphase and multinuclear cells.Abbreviations BFA brefeldin A - ER endoplasmic reticulum - TPPase thiamine pyrophosphatase  相似文献   

5.
In the green alga Scenedesmus acutus, Golgi bodies are located near the nucleus and supplied with transition vesicles that bud from the outer nuclear envelope membrane. Using this alga, we have shown previously that thiamine pyrophosphatase (TPPase), a marker enzyme of Golgi bodies, migrates in vesicles from the Golgi bodies to the ER via the nuclear envelope in the presence of BFA (Noguchi et al., Protoplasma 201, 202-212, 1998). In this study we demonstrate that both cytochalasin B and oryzalin (microtubule-disrupting agent) inhibit the BFA-induced migration of TPPase from Golgi bodies to the nuclear envelope. However, only actin filaments--not microtubules--can be detected between the nuclear envelope and the Golgi bodies in both BFA-treated and untreated cells. These observations suggest that actin filaments mediate the BFA-induced retrograde transport of vesicles. This mechanism differs from that found in mammalian cells, in which microtubules mediate BFA-induced retrograde transport by the elongation of membrane tubules from the Golgi cisternae. We also discuss the non-participation of the cytoskeleton in anterograde transport from the nuclear envelope to the Golgi bodies.  相似文献   

6.
Summary Using cryo-fixation and freeze-substitution electron microscopy, the effects of brefeldin A (BFA) on the structure of the trans-Golgi network (TGN), the endoplasmic reticulum (ER), and Golgi bodies in the unicellular green algaBotryococcus braunii were examined at various stages of the cell cycle. In the presence of BFA, all the TGNs of interphase and dividing cells aggregated to form a single tubular mass. In contrast, the TGNs decomposed just after cell division and disappeared during cell wall formation. Throughout the cell cycle, the TGN produced at least six kinds of vesicles, of which two were not formed in the presence of BFA: vesicles with a diameter of 200 nm and fibrillar substances, which formed in interphase cells; and vesicles with a diameter of 180–240 nm, which may participate in septum formation. In addition, the number of clathrin-coated vesicles attaching to the TGN decreased. In interphase cells, BFA induced the disassembly of Golgi bodies and an increase in the smooth-ER cisternae at the cis-side of Golgi bodies. This result may suggest the existence of retrograde transport from the Golgi bodies to the ER in the presence of BFA. These drastic structural changes in the Golgi bodies and the ER of interphase cells were not observed in BFA-treated dividing cells.Abbreviations BFA brefeldin A - ER endoplasmic reticulum - TGN trans-Golgi network  相似文献   

7.
7-Dehydrobrefeldin A (7-oxo-BFA) is a brefeldin A (BFA) analog that, like BFA, is a potent phytotoxin of Alternaria carthami, a fungal pathogen of safflower (Carthamus tinctorius L.) plants. Both BFA and 7-oxo-BFA have been shown to be causal agents of the leaf spot disease of these plants. We have investigated the effects of 7-oxo-BFA on the secretion and the structure of the Golgi stacks of sycamore maple (Acer pseudoplatanus) suspension-cultured cells to determine whether 7-oxo-BFA affects these cells in the same manner as BFA. When applied at 10 micrograms/mL for 1 h, 7-oxo-BFA inhibits secretion of proteins by approximately 80%, the same value obtained for BFA. However, electron micrographs of high-pressure frozen/freeze-substituted cells demonstrated that 7-oxo-BFA is a more potent disrupter of the Golgi stacks of sycamore maple cells than BFA. In cells treated for 1 h with 10 micrograms/mL 7-oxo-BFA, very few Golgi stacks can be discerned. Most of those that are left consist of fewer than three cisternae, all of which stain like trans-Golgi cisternae. They are surrounded by clusters of large (150-300 nm in diameter), darkly staining vesicles that are embedded in a fine-filamentous, ribosome-excluding matrix. Similarly sized and stained vesicles are seen budding from the rims of the residual trans-Golgi cisternae. Both the large vesicles and the residual Golgi stack buds stain with anti-xyloglucan polysaccharide antibodies. Recovery of Golgi stacks after removal of 7-oxo-BFA from 1-h-treated cells takes 2 to 6 h, compared with 1 to 2 h for cells treated with BFA. In contrast to 7-oxo-BFA, the BFA breakdown product BFA acid had no effect either on secretion or on the secretory apparatus. This is the first report, to our knowledge of a BFA analog inhibiting secretion in a eukaryotic cell system.  相似文献   

8.
The effects of 1-butanol on the organelles of the early secretory pathway in tobacco BY-2 cells have been examined, because this primary alcohol is known to interfere with phospholipase D an enzyme whose activity contributes to COPI-vesicle formation. Since the fungal lactone Brefeldin A (BFA) also prevents COPI-vesicle production by the Golgi apparatus, the sequential and simultaneous application of these two inhibitors was also investigated. 1-Butanol, but not 2-butanol caused rapid changes in the morphology of the BY-2 Golgi apparatus resulting in extended curved cisternae. By contrast with BFA-treated cells, ER cisternae did not attach laterally to these structures, and ER-Golgi fusion hybrids were not obtained with 1-butanol. However, immunofluorescence microscopy revealed that 1-butanol, like BFA, elicited the release of the GTPase ARF1 from Golgi membranes. Washing out the butanol resulted in re-attachment of ARF1 and a recovery of Golgi stack morphology. BY-2 cells treated sequentially with 1-butanol then BFA (each 30 min), did not reveal any BFA-typical changes in Golgi structure. Cells treated first with BFA, then 1-butanol retained the typical ER-Golgi sandwich morphology induced by BFA, but were larger. When 1-butanol and BFA were added together (for a 30 min period), even larger Golgi aggregates were formed with, again, no ER attachments. Thus, although both inhibitors had the Golgi apparatus as their principle cytological target and both interfere with coatomer attachment, they differ in their ability to induce an interaction with the ER.  相似文献   

9.
Brefeldin A (BFA) causes a block in the secretory system of eukaryotic cells by inhibiting vesicle formation at the Golgi apparatus. Although this toxin has been used in many studies, its effects on plant cells are still shrouded in controversy. We have reinvestigated the early responses of plant cells to BFA with novel tools, namely, tobacco Bright Yellow 2 (BY-2) suspension-cultured cells expressing an in vivo green fluorescent protein-Golgi marker, electron microscopy of high-pressure frozen/freeze-substituted cells, and antisera against Atgamma-COP, a component of COPI coats, and AtArf1, the GTPase necessary for COPI coat assembly. The first effect of 10 microg/mL BFA on BY-2 cells was to induce in <5 min the complete loss of vesicle-forming Atgamma-COP from Golgi cisternae. During the subsequent 15 to 20 min, this block in Golgi-based vesicle formation led to a series of sequential changes in Golgi architecture, the loss of distinct Golgi stacks, and the formation of an endoplasmic reticulum (ER)-Golgi hybrid compartment with stacked domains. These secondary effects appear to depend in part on stabilizing intercisternal filaments and include the continued maturation of cis- and medial cisternae into trans-Golgi cisternae, as predicted by the cisternal progression model, the shedding of trans-Golgi network cisternae, the fusion of individual Golgi cisternae with the ER, and the formation of large ER-Golgi hybrid stacks. Prolonged exposure of the BY-2 cells to BFA led to the transformation of the ER-Golgi hybrid compartment into a sponge-like structure that does not resemble normal ER. Thus, although the initial effects of BFA on plant cells are the same as those described for mammalian cells, the secondary and tertiary effects have drastically different morphological manifestations. These results indicate that, despite a number of similarities in the trafficking machinery with other eukaryotes, there are fundamental differences in the functional architecture and properties of the plant Golgi apparatus that are the cause for the unique responses of the plant secretory pathway to BFA.  相似文献   

10.
Brefeldin A (BFA) treatment stops secretion and leads to the resorption of much of the Golgi apparatus into the endoplasmic reticulum. This effect is reversible upon washing out the drug, providing a situation for studying Golgi biogenesis. In this investigation Golgi regeneration in synchronized tobacco BY-2 cells was followed by electron microscopy and by the immunofluorescence detection of ARF1, which localizes to the rims of Golgi cisternae and serves as an indicator of COPI vesiculation. Beginning as clusters of vesicles that are COPI positive, mini-Golgi stacks first become recognizable 60 min after BFA washout. They continue to increase in terms of numbers and length of cisternae for a further 90 min before overshooting the size of control Golgi stacks. As a result, increasing numbers of dividing Golgi stacks were observed 120 min after BFA washout. BFA-regeneration experiments performed on cells treated with BFA (10 microg mL(-1)) for only short periods (30-45 min) showed that the formation of ER-Golgi hybrid structures, once initiated by BFA treatment, is an irreversible process, the further incorporation of Golgi membranes into the ER continuing during a subsequent drug washout. Application of the protein kinase A inhibitor H-89, which effectively blocks the reassembly of the Golgi apparatus in mammalian cells, also prevented stack regeneration in BY-2 cells, but only at very high, almost toxic concentrations (>200 microm). Our data suggest that under normal conditions mitosis-related Golgi stack duplication may likely occur via cisternal growth followed by fission.  相似文献   

11.
Brefeldin A (BFA) has previously been shown to block protein transport from the endoplasmic reticulum (ER), to cause the redistribution of Golgi components to the ER, and to change profoundly the morphology of the Golgi apparatus. In order to quantitate the effects of this drug on the morphology of the ER and the Golgi apparatus in HeLa cells, the numerical, surface and volume densities of these organelles were determined by stereological means. We found that in cells treated with BFA (5 micrograms/ml) clusters of vesicles and tubules, often located near transitional elements of the ER, replaced the Golgi apparatus. The numerical density of these clusters in cells treated with BFA for 30 min or 4.5 h is similar to that of Golgi complexes and Golgi-related clusters in control cells. The surface density of the vesicles and tubules contained in these clusters is about 50% of that represented by Golgi elements in control cells. Concomitantly, a corresponding increase in the surface density of the ER-Golgi hybrid compartment was observed. This hybrid compartment contained Golgi-specific enzymes effecting modifications of N-linked oligosaccharides and the transfer of O-linked sugars. Antibodies recognizing different subcompartments of the Golgi apparatus or the intermediate compartment, labeled vesicles and tubules of the Golgi-related clusters. Applying low doses of BFA allowed for the dissection of the disassembly of the Golgi apparatus into at least two phases. At very low doses (10-20 ng/ml) the numerical density of vesicles in the clusters increased up to 4-fold above control, while the surface density did not markedly change, suggesting that vesiculation of the Golgi cisternae had occurred. Fusion of Golgi elements with the ER seemed to occur only at doses of BFA higher than 20 ng/ml. Contrary to observations on other cell types, removal of BFA from HeLa cell cultures resulted in a rather slow reformation (1-2 h) of the Golgi complex, which allowed us to observe several intermediate stages in this process. During this time period an ER was restored which no longer contained Golgi-specific O-glycosylation functions. Our results demonstrate that BFA does not simply cause the disappearance of the Golgi apparatus by fusion with the ER, but instead clusters of vesicles and tubules remain that contain Golgi-specific markers.  相似文献   

12.
A Driouich  G F Zhang    L A Staehelin 《Plant physiology》1993,101(4):1363-1373
Brefeldin A (BFA), a specific inhibitor of Golgi-mediated secretion in animal cells, has been used to study the organization of the secretory pathway and the function of the Golgi apparatus in plant cells. To this end, we have employed a combination of electron microscopical, immunocytochemical, and biochemical techniques to investigate the effects of this drug on the architecture of the Golgi apparatus as well as on the secretion of proteins and complex cell wall polysaccharides in sycamore maple (Acer pseudoplatanus) suspension-cultured cells. We have used 2.5 and 7.5 micrograms/mL of BFA, which is comparable to the 1 to 10 micrograms/mL used in experiments with animal cells. Electron micrographs of high-pressure frozen and freeze-substituted cells show that although BFA causes swelling of the endoplasmic reticulum cisternae, unlike in animal cells, it does not induce the disassembly of sycamore maple Golgi stacks. Instead, BFA induces the formation of large clusters of Golgi stacks, an increase in the number of trans-like Golgi cisternae, and the accumulation in the cytoplasm of very dense vesicles that appear to be derived from trans Golgi cisternae. These vesicles contain large amounts of xyloglucan (XG), the major hemicellulosic cell wall polysaccharide, as shown by immunocytochemical labeling with anti-XG antibodies. All of these structural changes disappear within 120 min after removal of the drug. In vivo labeling experiments using [3H]leucine demonstrate that protein secretion into the culture medium, but not protein synthesis, is inhibited by approximately 80% in the presence of BFA. In contrast, the incorporation of [3H]fucose into N-linked glycoproteins, which occurs in trans-Golgi cisternae, appears to be affected to a greater extent than the incorporation of [3H]xylose, which has been localized to medial Golgi cisternae. BFA also affects secretion of complex polysaccharides as evidenced by the approximate 50% drop in incorporation of [3H]xylose and [3H]fucose into cell wall hemicelluloses. Taken together, these findings suggest that at concentrations of 2.5 to 7.5 mu g/mL BFA causes the following major changes in the secretory pathway of sycamore maple cells: (a) it inhibits the transport of secretory proteins to the cell surface by about 80% and of hemicelluloses by about 50%; (b) it changes the patterns of glycosylation of N-linked glycoproteins and hemicelluloses; (c) it reduces traffic between trans Golgi cisternae and secretory vesicles; (d) it produces a major block in the transport of XG-containing, dense secretory vesicles to the cell surface; and (e) it induces the formation of large aggregates of Golgi apparatus of plant and animal cels share many functional and structural characteristics, the plant Golgi apparatus possesses properties that make its response to BFA unique.  相似文献   

13.
The Golgi apparatus forms stacks of cisternae in many eukaryotic cells. However, little is known about how such a stacked structure is formed and maintained. To address this question, plant cells provide a system suitable for live-imaging approaches because individual Golgi stacks are well separated in the cytoplasm. We established tobacco BY-2 cell lines expressing multiple Golgi markers tagged by different fluorescent proteins and observed their responses to brefeldin A (BFA) treatment and BFA removal. BFA treatment disrupted cis, medial, and trans cisternae but caused distinct relocalization patterns depending on the proteins examined. Medial- and trans-Golgi proteins, as well as one cis-Golgi protein, were absorbed into the endoplasmic reticulum (ER), but two other cis-Golgi proteins formed small punctate structures. After BFA removal, these puncta coalesced first, and then the Golgi stacks regenerated from them in the cis-to-trans order. We suggest that these structures have a property similar to the ER-Golgi intermediate compartment and function as the scaffold of Golgi regeneration.  相似文献   

14.
To delineate the traffic route through the Golgi apparatus followed by newly synthesized lysosomal enzymes, we subfractionated the Golgi apparatus of rat liver by preparative free-flow electrophoresis into cisternae fractions of increasing content of trans face markers and decreasing contents of markers for the cis face. NADPase was used to mark median cisternae. Beta-Hexosaminidase, the high mannose oligosaccharide processing enzyme, alpha-mannosidase II, the two enzymes involved in the biosynthesis of the phosphomannosyl recognition marker, and the phosphomannosyl receptor itself decreased in specific activity or amount from cis to trans. Additionally, these activities were observed in a fraction consisting predominantly of cisternae, vesicles and tubules derived from trans-most Golgi apparatus elements. These results, along with preliminary pulse-labeling kinetic data for the phosphomannosyl receptor, suggest that lysosomal enzymes enter the Golgi apparatus at the cis face, are phosphorylated, and appear in trans face vesicles by a route whereby the phosphomannosyl receptor bypasses at least some median and/or trans Golgi apparatus cisternae.  相似文献   

15.
Brefeldin A (BFA) induces the retrograde transport of proteins from the Golgi complex (GC) to the endoplasmic reticulum (ER). It is uncertain, however, whether the drug completely merges the ER with post-ER compartments, or whether some of their elements remain physically and functionally distinct. We investigated this question by the use of monoclonal antibodies specific for monomers and trimers of the influenza virus hemagglutinin (HA). In untreated influenza virus-infected cells, monomers and trimers almost exclusively partition into the ER and GC, respectively. In BFA-treated cells, both monomers and trimers are detected in the ER by immunofluorescence. Cell fractionation experiments indicate, however, that whereas HA monomers synthesized in the presence of BFA reside predominantly in vesicles with a characteristic density of the ER, HA trimers are primarily located in lighter vesicles characteristic of post-ER compartments. Biochemical experiments confirm that in BFA-treated cells, trimers are more extensively modified than monomers by GC-associated enzymes. Additional immunofluorescence experiments reveal that in BFA-treated cells, HA monomers can exist in an ER subcompartment less accessible to trimers and, conversely, that trimers are present in a vesicular compartment less accessible to monomers. These findings favor the existence of a post-ER compartment for which communication with the ER is maintained in the presence of BFA and suggest that trimers cycle between this compartment and the ER, but have access to only a portion of the ER.  相似文献   

16.
《The Journal of cell biology》1993,122(6):1197-1206
We have recently shown that ilimaquinone (IQ) causes the breakdown of Golgi membranes into small vesicles (VGMs for vesiculated Golgi membranes) and inhibits vesicular protein transport between successive Golgi cisternae (Takizawa et al., 1993). While other intracellular organelles, intermediate filaments, and actin filaments are not affected, we have found that cytoplasmic microtubules are depolymerized by IQ treatment of NRK cells. We provide evidence that IQ breaks down Golgi membranes regardless of the state of cytoplasmic microtubules. This is evident from our findings that Golgi membranes break down with IQ treatment in the presence of taxol stabilized microtubules. Moreover, in cells where the microtubules are first depolymerized by microtubule disrupting agents which cause the Golgi stacks to separate from one another and scatter throughout the cytoplasm, treatment with IQ causes further breakdown of these Golgi stacks into VGMs. Thus, IQ breaks down Golgi membranes independently of its effect on cytoplasmic microtubules. Upon removal of IQ from NRK cells, both microtubules and Golgi membranes reassemble. The reassembly of Golgi membranes, however, takes place in two sequential steps: the first is a microtubule independent process in which the VGMs fuse together to form stacks of Golgi cisternae. This step is followed by a microtubule-dependent process by which the Golgi stacks are carried to their perinuclear location in the cell. In addition, we have found that IQ has no effect on the structural organization of Golgi membranes at 16 degrees C. However, VGMs generated by IQ are capable of fusing and assembling into stacks of Golgi cisternae at 16 degrees C. This is in contrast to the cells recovering from BFA treatment where, after removal of BFA at 16 degrees C, resident Golgi enzymes fail to exit the ER, a process presumed to require the formation of vesicles. We propose that at 16 degrees C there may be general inhibition in the process of vesicle formation, whereas the process of vesicle fusion is not affected.  相似文献   

17.
Whereas brefeldin A (BFA) protected a number of cell lines against the protein toxin ricin, two of the cell lines tested were not protected but rather sensitized to ricin by BFA. EM studies revealed that upon addition of BFA the Golgi stacks in cells which were protected against the toxin rapidly transformed into a characteristic tubulo-vesicular reticulum connected to the endoplasmic reticulum, and subcellular fractionation experiments showed that galactosyl transferase disappeared from the Golgi fractions where it was normally located. EM and subcellular fractionation also indicated that in contrast to the Golgi stacks, the trans-Golgi network (TGN) remained intact and that internalized ricin was still localized in the TGN both when BFA was added before and after the toxin. Thus, BFA does not prevent fusion of ricin-containing vesicles with the TGN, and unlike resident proteins in Golgi stacks, ricin is not transported back to ER upon treatment of cells with BFA. Two kidney epithelial cell lines, MDCK and PtK2, were not protected against ricin by BFA, and EM studies of MDCK cells revealed that BFA did not alter the morphology of the Golgi complex in these cells. Also, subcellular fractionation revealed that, in contrast to the other cell types tested, the localization of galactosyl transferase in the gradients was not affected by BFA treatment. The data show that there is a correlation between BFA-induced disassembly of the Golgi stacks and protection against ricin, and they demonstrate that the structural organization of the Golgi apparatus is affected by BFA to different extents in various cell lines.  相似文献   

18.
The mucilage-secreting desmid, Closterium acerosum, is sensitive to the secretory inhibiting drug, brefeldin A (BFA). After 5 min of treatment with 5 g ml-1 of BFA, the Golgi body displays the following alterations: the number of cisternae decreases from 12-15 to 6-7; peripheries of cisternae from the same Golgi body often fuse to yield unique profiles; secretory vesicles still merge from the Golgi body; the cisternal stack dissociates to form irregular masses in the alleys of cytoplasm created by the lobes of the chloroplast. Fluoresbrite bead labelling shows that mucilage production ceases in cells treated with BFA even after only 5 min of treatment. Immunogold labelling using anti-mucilage antibody reveals that mucilage production still occurs in the Golgi body and associated vesicles. Helix pomatia lectin-gold labelling shows that wall synthesis still occurs in BFA-treated Golgi bodies and wall precursors accumulate in the perforate cisternal/vesicular masses seen in the TGN region of the Golgi stack.  相似文献   

19.
W J Brown  M G Farquhar 《Cell》1984,36(2):295-307
Mannose-6-phosphate (Man-6-P) receptors for lysosomal enzymes were localized by immunocytochemistry in several secretory and adsorptive cell types using monospecific antireceptor antibodies. By immunofluorescence, the receptors were found in the Golgi region of polarized cells. When localized by immunoperoxidase at the electron microscope level, they were detected in Golgi cisternae, coated vesicles, endosomes, and lysosomes of all cell types examined (hepatocytes, exocrine pancreatic and epididymal epithelia). Within the Golgi complex, immunoreactive receptors were restricted in their distribution to one or two cisternae on the cis side of the Golgi stacks. They were not detected in trans Golgi or GERL cisternae. Based on their high concentration of Man-6-P receptors, we propose that the cis Golgi cisternae represent the site where the secretory and lysosomal pathways diverge: lysosomal enzymes bearing the Man-6-P recognition marker bind to Man-6-P receptors in this location and are delivered to endosomes and lysosomes via coated vesicles.  相似文献   

20.
This investigation focuses on the identification, distribution, and transport of intracellular membrane systems during mitosis. The membranes of the Golgi apparatus can be identified cytochemically by staining for acid phosphatase (acPase) and thiamine pyrophosphatase (TPPase) activity. Using this approach we are able to study the disintegration of the Golgi apparatus during mitosis and to follow the dislocation as well as the organized reappearance of Golgi elements after the completion of mitosis. We are able to demonstrate that during mitosis the activity of both enzymes is strong enough to react with the substrate applied during the staining procedure. Furthermore, we observe a characteristic pattern of membrane distribution in mitotic cells. During interphase the TPPase reaction is characteristically limited to one or two cisternae of a dictyosomal stack. The acPase reaction stains the membranes of the total stack, of the GERL, of some vesicles and cisternae near the dictyosomes and lysosomes. After the mitotic breakdown of the dictyosomal stacks the forming vesicles still stain positively and are distributed over the entire cytoplasm. At late anaphase and early telophase the enzyme activity occurs not only in the reconstituting dictyosomes but also in the nuclear envelope and in some ER cisternae. The extended spectrum of membrane structures indicating Golgi enzyme activity becomes obvious. This phenomenon favors the idea that at least some functions of the Golgi apparatus persist during mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号