首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperatures were recorded at several body sites in emperor penguins (Aptenodytes forsteri) diving at an isolated dive hole in order to document temperature profiles during diving and to evaluate the role of hypothermia in this well-studied model of penguin diving physiology. Grand mean temperatures (+/-S.E.) in central body sites during dives were: stomach: 37.1+/-0.2 degrees C (n=101 dives in five birds), pectoral muscle: 37.8+/-0.1 degrees C (n=71 dives in three birds) and axillary/brachial veins: 37.9+/-0.1 degrees C (n=97 dives in three birds). Mean diving temperature and duration correlated negatively at only one site in one bird (femoral vein, r=-0.59, P<0.05; range <1 degrees C). In contrast, grand mean temperatures in the wing vein, foot vein and lumbar subcutaneous tissue during dives were 7.6+/-0.7 degrees C (n=157 dives in three birds), 20.2+/-1.2 degrees C (n=69 in three birds) and 35.2+/-0.2 degrees C (n=261 in six birds), respectively. Mean limb temperature during dives negatively correlated with diving duration in all six birds (r=-0.29 to -0.60, P<0.05). In two of six birds, mean diving subcutaneous temperature negatively correlated with diving duration (r=-0.49 and -0.78, P<0.05). Sub-feather temperatures decreased from 31 to 35 degrees C during rest periods to a grand mean of 15.0+/-0.7 degrees C during 68 dives of three birds; mean diving temperature and duration correlated negatively in one bird (r=-0.42, P<0.05). In general, pectoral, deep venous and even stomach temperatures during diving reflected previously measured vena caval temperatures of 37-39 degrees C more closely than the anterior abdominal temperatures (19-30 degrees C) recently recorded in diving emperors. Although prey ingestion can result in cooling in the stomach, these findings and the lack of negative correlations between internal temperatures and diving duration do not support a role for hypothermia-induced metabolic suppression of the abdominal organs as a mechanism of extension of aerobic dive time in emperor penguins diving at the isolated dive hole. Such high temperatures within the body and the observed decreases in limb, anterior abdomen, subcutaneous and sub-feather temperatures are consistent with preservation of core temperature and cooling of an outer body shell secondary to peripheral vasoconstriction, decreased insulation of the feather layer, and conductive/convective heat loss to the water environment during the diving of these emperor penguins.  相似文献   

2.
To simulate pressure effects and experience thoracic compression while breath-hold diving in a relatively safe environment, competitive breath-hold divers exhale to residual volume before diving in a swimming pool, thus compressing the chest even at depth of only 3-6 m. The study was undertaken to investigate whether such diving could cause pulmonary edema and hemoptysis. Eleven volunteer breath-hold divers who regularly dive on full exhalation performed repeated dives to 6 m during a 20-min period. The subjects were studied with dynamic spirometry, video-fibernasolaryngoscopy, and single-breath diffusion capacity of carbon monoxide (Dl(CO)). The duration of dives with empty lungs ranged from 30 to 120 s. Postdiving forced vital capacity (FVC) was reduced from mean (SD) 6.57 +/- 0.88 to 6.23 +/- 1.02 liters (P < 0.05), and forced expiratory volume during the first second (FEV(1.0)) was reduced from 5.09 +/- 0.64 to 4.59 +/- 0.72 liters (P < 0.001) (n = 11). FEV(1.0)/FVC was 0.78 +/- 0.05 prediving and 0.74 +/- 0.05 postdiving (P < 0.001) (n = 11). All subjects reported a (reversible) change in their voice after diving, irritation, and slight congestion in the larynx. Fresh blood that originated from somewhere below the vocal cords was found by laryngoscopy in two subjects. Dl(CO)/alveolar ventilation (Va) was 1.56 +/- 0.17 mmol.kPa(-1).min(-1).l(-1) before diving. After diving, the Dl(CO)/Va increased to 1.72 +/- 0.24 (P = 0.001), but 20 min later it was indistinguishable from the predive value: 1.57 +/- 0.20 (n = 11). Breath-hold diving with empty lungs to shallow depths can induce hemoptysis in healthy subjects. Edema was possibly present in the lower airways, as suggested by reduced dynamic spirometry.  相似文献   

3.
We present data on diving pattern and performance (dive depth, duration, frequency and organization during the foraging trip) in gentoo penguins Pygoscelis papua , obtained using time-depth recorders ( n = 9 birds, 99 foraging trips). These data are used to estimate various parameters of foraging activity, e.g. foraging range, prey capture rates, and are compared in relation to breeding chronology. Foraging trip duration was 6 h and 10 h, and trip frequency 1.0/day and 0.96/day, during the brooding and creche periods, respectively. Birds spent on average 52%of each foraging trip diving. Dive depth and duration were highly bimodal: shallow dives (< 21 m) averaged 4 m and 0.23 min, and deep dives (> 30 m) 80 m and 2.5 min, respectively. Birds spent on average 71%and 25%of total diving time in deep and shallow dives, respectively. For deep dives, dive duration exceeded the subsequent surface interval, but shallow dives were followed by surface intervals 2–3 times dive duration. We suggest that most shallow dives are searching/exploratory dives and most deep dives are feeding dives. Deep dives showed clear diel patterns averaging 40 m at dawn and dusk and 80–90 m at midday. Estimated foraging ranges were 2.3 km and 4.1 km during the brood and creche period, respectively. Foraging trip duration increased by 4 h between the brood and creche periods but total time spent in deep dives (i.e. time spent feeding) was the same (3 h). Of 99 foraging trips, 56%consisted of only one dive bout and 44%of 2–4 bouts delimited by extended surface intervals > 10 min. We suggest that this pattern of diving activity reflects variation in spatial distribution of prey rather than the effect of physiological constraints on diving ability.  相似文献   

4.
J. P. Croxall    D. R. Briggs    A. Kato    Y. Naito    Y. Watanuki    T. D. Williams 《Journal of Zoology》1993,230(1):31-47
The pattern and characteristics of diving in two female macaroni penguins Eudyptes chrysolophus was studied, during the brooding period, using continuous-recording time-depth recorders, for a total of I8 days (15 consecutive days) during which the depth, duration and timing of 4876 dives were recorded. Diving in the first 11 days was exclusively diurnal, averaging 244 dives on trips lasting 12 hours. Near the end of the brooding period trips were longer and included diving at night. About half of all trips (except those involving continuous night-time diving) was spent in diving and dive rate averaged 14–25 dives per hour (42 per hour at night). The duration of day time dives varied between trips, and averaged 1.4–1.7 min, with a subsequent surface interval of 0.5–0.9 min. Dive duration was significantly directly related to depth, the latter accounting for 53% of the variation. The average depths of daytime dives were 20–35 m (maximum depth 11 5 m). Dives at night were shorter (average duration 0.9 min) and much shallower (maximum 11 m); depth accounted for only 6% of the variation in duration. Estimates of potential prey capture rates (3–5 krill per dive; one krill every 17–20 s) are made. Daily weight changes in chicks were directly related to number of dives, but not to foraging trip duration nor time spent diving. Of the other species at the same site which live by diving to catch krill, gentoo penguins forage exclusively diurnally, making longer. deeper dives; Antarctic fur seals, which dive to similar depths as macaroni penguins, do so mainly at night.  相似文献   

5.
Nine male walruses were equipped with dive recording devices in Svalbard to investigate walrus diving and haul-out behaviour in late summer. Dive information on 6,018 dives was collected by 3 satellite linked dive recorders. Additional dive information on 7,769 dives was obtained from 3 time depth recorders. The deepest dive recorded was 67 m, but mean depth of foraging dives was 22.5 m. The longest-lasting dive recorded was 24 min, but mean duration of foraging dives was 6 min. The walruses, on average, spent 56 h in the water followed by 20 h hauled out on land.  相似文献   

6.
1. Time-depth data recorders (TDRs) have been widely used to explore the behaviour of relatively large, deep divers. However, little is known about the dive behaviour of small, shallow divers such as semi-aquatic mammals. 2. We used high-resolution TDRs to record the diving behaviour of American mink Mustela vison (weight of individuals 580-1275 g) in rivers in Oxfordshire (UK) between December 2005 and March 2006. 3. Dives to > 0.2 m were measured in all individuals (n = 6). Modal dive depth and duration were 0.3 m and 10 s, respectively, although dives up to 3 m and 60 s in duration were recorded. Dive duration increased with dive depth. 4. Temperature data recorded by TDRs covaried with diving behaviour: they were relatively cold (modal temperature 4-6 degrees C across individuals) when mink were diving and relatively warm (modal temperature 24-36 degrees C across individuals) when mink were not diving. 5. Individuals differed hugely in their use of rivers, reflecting foraging plasticity across both terrestrial and aquatic environments. For some individuals there was < 1 dive per day while for others there was > 100 dives per day. 6. We have shown it is now possible to record the diving behaviour of small free-living animals that only dive a few tens of centimetres, opening up the way for a new range of TDR studies on shallow diving species.  相似文献   

7.
Diving behavior of 2 breeding Chinstrap penguins (Pygoscelis antarctica) was studied focusing first and primarily on dive bouts rather than dives themselves. Analysis of dive bout organization revealed (1) though there are differences between solitary dives and dive bouts in dive duration and dive depth, the first dives of dive bouts do not differ from solitary dives in the dive parameters, (2) mean dive duration during bout correlates positively to both mean dive depth during bout and mean surface interval during bout, while number of dives during bout negatively correlates to both cost (consumed energy) and duration of a dive cycle during bout. These findings suggest the following possibilities on foraging behavior of penguins: (1) their decision to repeat diving depends on the result of the first dive at a site, and the first dives of bouts would tend to be searching or evaluating dives though they would be also successful foraging dives, (2) they repeat diving at a foraging patch until foraging efficiency decrease to a threshold of diminishing returns.  相似文献   

8.
Many diving seabirds and marine mammals have been found to regularly exceed their theoretical aerobic dive limit (TADL). No animals have been found to dive for durations that are consistently shorter than their TADL. We attached time-depth recorders to 7 blue whales and 15 fin whales (family Balaenopteridae). The diving behavior of both species was similar, and we distinguished between foraging and traveling dives. Foraging dives in both species were deeper, longer in duration and distinguished by a series of vertical excursions where lunge feeding presumably occurred. Foraging blue whales lunged 2.4 (+/-1.13) times per dive, with a maximum of six times and average vertical excursion of 30.2 (+/-10.04) m. Foraging fin whales lunged 1.7 (+/-0.88) times per dive, with a maximum of eight times and average vertical excursion of 21.2 (+/-4.35) m. The maximum rate of ascent of lunges was higher than the maximum rate of descent in both species, indicating that feeding lunges occurred on ascent. Foraging dives were deeper and longer than non-feeding dives in both species. On average, blue whales dived to 140.0 (+/-46.01) m and 7.8 (+/-1.89) min when foraging, and 67.6 (+/-51.46) m and 4.9 (+/-2.53) min when not foraging. Fin whales dived to 97.9 (+/-32.59) m and 6.3 (+/-1.53) min when foraging and to 59.3 (+/-29.67) m and 4.2 (+/-1.67) min when not foraging. The longest dives recorded for both species, 14.7 min for blue whales and 16.9 min for fin whales, were considerably shorter than the TADL of 31.2 and 28.6 min, respectively. An allometric comparison of seven families diving to an average depth of 80-150 m showed a significant relationship between body mass and dive duration once Balaenopteridae whales, with a mean dive duration of 6.8 min, were excluded from the analysis. Thus, the short dive durations of blue whales and fin whales cannot be explained by the shallow distribution of their prey. We propose instead that short duration diving in large whales results from either: (1) dispersal behavior of prey; or (2) a high energetic cost of foraging.  相似文献   

9.
J. P. Croxall    Y. Naito    A. Kato    P. Rothery    D. R. Briggs 《Journal of Zoology》1991,225(2):177-199
The pattern and characteristics of diving of two male blue-eyed shags Phalacrocorax atriceps were studied, using continuous-recording time-depth recorders, for a total of 15 consecutive days during which the depth, duration, bottom time, ascent and descent rates and surface intervals of 674 dives were recorded. Deep dives (> 35 m, averages80–90 m, max. 116 m) were twice as common (64% versus 34%) as shallow dives (< 21 m and 90% < 10 m). Deep dives were long (averages 2.7-4.1 min, max. 5.2 min) with half the time spent near maximum depth and fast travel speeds (averages 1.0-2.4 m s−1). Shallow dives were short (average 0.5 min, max. 1.3 min), without bottom time and with slow travel speeds (0.1–0.6 m s−1). The time spent at depth and the diet (mainly benthic fish and octopus) is consistent with benthic foraging; the function of shallow dives is uncertain. Male shags forage mainly in the afternoon in3–5 distinct bouts of diving. Within bouts (and shorter homogeneous sequences of diving) surface intervals are consistently2–3 times the preceding dive duration; in other shags the reverse is the case. Blue-eyed shag diving depth, duration and pattern is extreme amongst shags; and the relationship between dives and surface intervals suggests that they may regularly exceed their aerobic dive limit.  相似文献   

10.
We attached a video system and data recorder to a northern elephant seal to track its three-dimensional movements and observe propulsive strokes of the hind flippers. During 6 h of recording, the seal made 20 dives and spent 90% of the time submerged. Average dive duration, maximum depth and swimming speed were 14.9 min+/-6.1 S.D., 289 m+/-117 S.D. and 1.1 m s(-1)+/-0.12 S.D., respectively. The distance swum during a dive averaged 925 m+/-339 S.D., and the average descent and ascent angles were 41 degrees +/-18 S.D. and 50 degrees +/-21 S.D., respectively. Dive paths were remarkably straight suggesting that the seal was navigating while submerged. We identified three modes of swimming based on the interval between propulsive strokes: continuous stroking; stroke-and-glide swimming; and prolonged gliding. The seal used continuous stroking from the surface to a mean depth of 20 m followed by stroke-and-glide swimming. Prolonged gliding started at a mean depth of 60 m and continued to the bottom of dives. For dives to depths of 300 m or more, 75% of the descent time was spent in prolonged gliding and 10% in stroke-and-glide swimming, amounting to 5.9-9.6 min of passive descent per dive. Average swimming speed varied little with swimming mode and was not a good indicator of propulsive effort. It appears that the seal can use prolonged gliding to reduce the cost of transport and increase dive duration. Energetically efficient locomotion may help explain the long and deep dives that routinely exceed the theoretical aerobic dive limit in this species.  相似文献   

11.
In order to monitor the diving behavior of free-ranging cetaceans, microdataloggers, with pre-programmed release mechanisms, were attached to the dorsal fins of two female harbor porpoises ( Phocoena phocoena ) in Funka Bay, Hokkaido, Japan, in 1994. The two loggers were successfully recovered and a total of 141 h of diving data (depth and water temperature in 4,671 dives) was obtained. Both porpoises dived almost continuously, rarely exhibiting long-term rest at the surface. Maximum dive depths were 98.6 m and 70.8 m, respectively, with more than 70% of diving time at 20 m or less. Most shallow dives were V-shaped with no bottom time. The V-shaped dives were significantly shallower in dive depth and shorter in dive duration than U-shaped dives. Descent rate was not constant during a dive. The deeper the dive depths, the faster the mean descent and initial descent rates. This suggests that porpoises have anticipated the depth to which they will dive before initiating the dive itself.  相似文献   

12.
Swim velocities at 15-sec intervals and maximum depth per dive were recorded by microprocessor units on two "mixed diver" adult female northern fur seals during summer foraging trips. These records allowed comparison of swim velocities of deep (>75 m) and shallow (<75 m) dives.
Deep dives averaged 120 m depth and 3 min duration; shallow dives averaged 30 m and 1.2 min. Mean swim velocities on deep dives were 1.8 and 1.5 m/sec for the two animals; mean swim velocities on shallow dives were 1.5 and 1.2 m/sec. The number of minutes per hour spent diving during the deep and shallow dive patterns were 11 and 27 min, respectively.
Swim velocity, and hence, relative metabolic rate, did not account for the differences in dive durations between deep and shallow dives. The long surface durations associated with deep dives, and estimates of metabolic rates for the observed swim velocities, suggest that deep dives involve significant anaerobic metabolism.  相似文献   

13.
SUMMER DIVING BEHAVIOR OF MALE WALRUSES IN BRISTOL BAY, ALASKA   总被引:1,自引:0,他引:1  
Pacific walruses ( Odobenus rosmarus divergens ) make trips from ice or land haul-out sites to forage for benthic prey. We describe dive and trip characteristics from time-depth-recorder data collected over a one-month period during summer from four male Pacific walruses in Bristol Bay, Alaska. Dives were classified into four types. Shallow (4 m), short (2.7 min), square-shaped dives accounted for 11% of trip time, and many were probably associated with traveling. Shallow (2 m) and very short (0.5 min) dives composed only 1% of trip time. Deep (41 m), long (7.2 min), square-shaped dives accounted for 46% of trip time and were undoubtedly associated with benthic foraging. V-shaped dives ranged widely in depth, were of moderate duration (4.7 min), and composed 3% of trip time. These dives may have been associated with navigation or exploration of the seafloor for potential prey habitat. Surface intervals between dives were similar among dive types, and generally lasted 1–2 min. Total foraging time was strongly correlated with trip duration and there was no apparent diel pattern of diving in any dive type among animals. We found no correlation between dive duration and postdive surface interval within dive types, suggesting that diving occurred within aerobic dive limits. Trip duration varied considerably within and among walruses (0.3–9.4 d), and there was evidence that some of the very short trips were unrelated to foraging. Overall, walruses were in the water for 76.6% of the time, of which 60.3% was spent diving.  相似文献   

14.
The diving behaviour of 15 dugongs (Dugong dugon) was documented using time-depth recorders (TDRs), which logged a total of 39,507 dives. The TDRs were deployed on dugongs caught at three study sites in northern Australia: Shark Bay, the Gulf of Carpentaria and Shoalwater Bay. The average time for which the dive data were collected per dugong was 10.4±1.1 (S.E.) days. Overall, these dugongs spent 47% of their daily activities within 1.5 m of the sea surface and 72% less than 3 m from the sea surface. Their mean maximum dive depth was 4.8±0.4 m (S.E.), mean dive duration was 2.7±0.17 min and the number of dives per hour averaged 11.8±1.2. The maximum dive depth recorded was 20.5 m; the maximum dive time in water >1.5 m deep was 12.3 min. The effects of dugong sex, location (study site), time of day and tidal cycle on diving rates (dives per hour), mean maximum dive depths, durations of dives, and time spent ≤1.5 m from the surface were investigated using weighted split-plot analysis of variance. The dugongs exhibited substantial interindividual variation in all dive parameters. The interaction between location and time of day was significant for diving rates, mean maximum dive depths and time spent within 1.5 m of the surface. In all these cases, there was substantial variation among individuals within locations among times of day. Thus, it was the variation among individuals that dominated all other effects. Dives were categorised into five types based on the shape of the time-depth profile. Of these, 67% of dives were interpreted as feeding dives (square and U-shaped), 8% as exploratory dives (V-shaped), 22% as travelling dives (shallow-erratic) and 3% as shallow resting dives. There was systematic variation in the distribution of dive types among the factors examined. Most of this variation was among individuals, but this differed across both time of day and tidal state. Not surprisingly, there was a positive relationship between dive duration and depth and a negative relationship between the number of dives per hour and the time spent within 1.5 m of the surface after a dive.  相似文献   

15.
We tested the hypothesis that immersion hypothermia enhances the diving capabilities of adult and juvenile muskrats by reducing rates of oxygen consumption (V O2). Declines in abdominal body temperature (T(b)) comparable to those observed in nature (0.5-3.5 degrees C) were induced by pre-chilling animals in 6 degrees C water. Pre-chilling did not reduce diving V O2 of any animal tested in 10 degrees C or 30 degrees C water, irrespective of the nature of the dive. Most behavioural indices of dive performance, including average and cumulative dive times, were unaffected by T(b) reduction in adults, but depressed in hypothermic juveniles (200-400 g). Hypothermia reduced diving heart rate only on short (<25s) dives (16% reduction, P=0.01), but did not affect the temporal onset of diving bradycardia. Post-immersion V O2 was higher for pre-chilled than for normothermic muskrats, but the difference became insignificant on longer (>90 s) dives. Our findings suggest that the mild hypothermia experienced by muskrats in nature has minimal effect on diving and post-immersion metabolic costs, and thus has little impact on the dive performance of this northern semi-aquatic mammal.  相似文献   

16.
1. Foraging behaviours of the Australian sea lion (Neophoca cinerea) reflect an animal working hard to exploit benthic habitats. Lactating females demonstrate almost continuous diving, maximize bottom time, exhibit elevated field metabolism and frequently exceed their calculated aerobic dive limit. Given that larger animals have disproportionately greater diving capabilities, we wanted to examine how pups and juveniles forage successfully. 2. Time/depth recorders were deployed on pups, juveniles and adult females at Seal Bay Conservation Park, Kangaroo Island, South Australia. Ten different mother/pup pairs were equipped at three stages of development (6, 15 and 23 months) to record the diving behaviours of 51 (nine instruments failed) animals. 3. Dive depth and duration increased with age. However, development was slow. At 6 months, pups demonstrated minimal diving activity and the mean depth for 23-month-old juveniles was only 44 +/- 4 m, or 62% of adult mean depth. 4. Although pups and juveniles did not reach adult depths or durations, dive records for young sea lions indicate benthic diving with mean bottom times (2.0 +/- 0.2 min) similar to those of females (2.1 +/- 0.2 min). This was accomplished by spending higher proportions of each dive and total time at sea on or near the bottom than adults. Immature sea lions also spent a higher percentage of time at sea diving. 5. Juveniles may have to work harder because they are weaned before reaching full diving capability. For benthic foragers, reduced diving ability limits available foraging habitat. Furthermore, as juveniles appear to operate close to their physiological maximum, they would have a difficult time increasing foraging effort in response to reductions in prey. Although benthic prey are less influenced by seasonal fluctuations and oceanographic perturbations than epipelagic prey, demersal fishery trawls may impact juvenile survival by disrupting habitat and removing larger size classes of prey. These issues may be an important factor as to why the Australian sea lion population is currently at risk.  相似文献   

17.
Our aim was to describe the free-ranging diving pattern and to determine the location of foraging of pregnant female southern elephant seals, Mirounga leonina , from Peninsula Valdes, Argentina. This colony is unusual in two respects: it is removed from deep water by a broad shallow shelf (345–630 km wide), and colony numbers have been increasing in recent years in contrast to numbers from other southern hemisphere colonies that are stable or in decline. Microprocessor controlled, geolocation-time-depth recorders were deployed on four females, recording a total of 15,836 dives (270 dive days) during the period February to April, 1992. Departing seals crossed the continental shelf quickly (54–5–62–1 h) and did not show signs of foraging until reaching deep water, due east of the colony in the South Atlantic Ocean. Diving was virtually continuous (93% of the time underwater) with overall mean (±S.D.) rates of 2.5±0.2 dives/h, mean dive durations of 22.8 ± 7.1 min (maximum dive duration = 79 min) with 1.6±0.6min surface intervals between dives, and dive depths of 431±193m (maximum dive depth = 1,072 m). The diving pattern of females from Patagonia is similar to that of seals from colonies where numbers are decreasing (Macquarie stock) or are stable (South Georgia Island). Our subjects did not, however, feed in or south of the Antarctic Polar Front, or in cold waters along the Antarctic coast, where seals from declining or stable colonies forage.  相似文献   

18.
Three juvenile narwhals captured during August 1998 in the northeast of Svalbard, Norway, were equipped with satellite-relayed data loggers (SRDLs) that transmitted diving and swim-speed data, in addition to location, for up to 46 days. A total of 1,354 complete dive cycles were recorded. Most of the diving was shallow and of short duration. Maximum recorded dive depth was 546 m, maximum recorded dive duration was 24.8 min, and maximum recorded swim-speed was 4.7 ms−1. Ascent speed, vertical ascent speed, descent speed and vertical descent speed were all significantly higher during deep dives (>200 m) than for shallow dives (<200 m). In addition both ascent and descent angles were much steeper for deep dives than during shallow dives. Most of the shallow diving seemed to be associated with travelling, with the animal shifting between various locations, while the deep diving (often to the bottom) for extended periods in some specific areas might have been associated with foraging. Even though the sample size in this study is small, the data are the first information available for movements and diving behaviour of narwhals near Svalbard.  相似文献   

19.
Arterial blood gas tensions, pH, and hemoglobin concentrations were measured in four free-diving Weddell seals Leptonychotes weddelli. A microprocessor-controlled sampling system enabled us to obtain 24 single and 31 serial aortic blood samples. The arterial O2 tension (PaO2) at rest [78 +/- 13 (SD) Torr] increased with diving compression to a maximum measured value of 232 Torr and then rapidly decreased to 25-35 Torr. The lowest diving PaO2 we measured was 18 Torr just before the seal surfaced from a 27-min dive. A consistent increase of arterial hemoglobin concentrations from 15.1 +/- 1.10 to 22.4 +/- 1.41 g/100 ml (dives less than 17 min) and to 25.4 +/- 0.79 g/100 ml (dives greater than 17 min) occurred during each dive. We suggest that an extension of the sympathetic outflow of the diving reflex possibly caused profound contraction of the Weddell seal's very large spleen (0.89% of body wt at autopsy), although we have no direct evidence. This contraction may have injected large quantities of red blood cells (2/3 of the total) into the seal's central circulation during diving and allowed arterial O2 content to remain constant for the first 15-18 min of long dives. The increase of arterial CO2 tensions during the dive and the compression increase of arterial N2 tensions were also moderated by injecting red blood cells sequestered at ambient pressure. After each dive circulating red blood cells are oxygenated and rapidly sequestered, possibly in the spleen during the first 15 min of recovery.  相似文献   

20.
In 1983 NUTEC, together with two diving companies, completed two dives with 12 divers (6 in each dive) to pressures equivalent to 350 m s.w., one dive lasted for 17 d, and the other, 24 d. The purpose of the dives was to demonstrate that the diving companies were prepared for diving to 300 m depth in the North Sea. No major medical or physiological problems arose during the dives, although all divers had minor symptoms of high pressure nervous syndrome during compressions. During decompression three decompression sickness incidents occurred, which involved pain only, and all were successfully treated. All divers went through comprehensive medical physiological examinations before and after the dives. No significant changes from values measured before diving have been found in the six divers who have so far been examined after diving, except that five of them were considerably more sensitive to CO2 after the dive than before. Several problems arose in connection with the divers' breathing equipment, thermal protection and communication, which need to be improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号