首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 260 毫秒
1.
The enzyme-soluble guanylate cyclase (sGC), which converts GTP to cGMP, is a receptor for the signaling agent nitric oxide (NO). YC-1, a synthetic benzylindazole derivative, has been shown to activate sGC in an NO-independent fashion. In the presence of carbon monoxide (CO), which by itself activates sGC approximately 5-fold, YC-1 activates sGC to a level comparable to stimulation by NO alone. We have used kinetic analyses and resonance Raman spectroscopy (RR) to investigate the interaction of YC-1 and CO with guanylate cyclase. In the presence of CO and 200 microM YC-1, the V(max)/K(m GTP) increases 226-fold. While YC-1 does not perturb the RR spectrum of the ferrous form of baculovirus/Sf9 cell expressed sGC, it induces a shift in the Fe-CO stretching frequency for the CO-bound form from 474 to 492 cm(-1). Similarly, YC-1 has no effect on the RR spectrum of ferrous beta1(1-385), the isolated sGC heme-binding domain, but shifts the nu(Fe-CO) of CO-beta1(1-385) from 478 to 491 cm(-1), indicating that YC-1 binds in heme-binding region of sGC. In addition, the CO-bound forms of sGC and beta1(1-385) in the presence of YC-1 lie on the nu(Fe-CO) vs nu(C-O) correlation curve for proximal ligands with imidazole character, which suggests that histidine remains the heme proximal ligand in the presence of YC-1. Interestingly, YC-1 does not shift nu(Fe-CO) for the CO-bound form of H105G(Im), the imidazole-rescued heme ligand mutant of beta1(1-385). The data are consistent with binding of CO and YC-1 to the sGC heme-binding domain leading to conformational changes that give rise to an increase in catalytic turnover and a change in the electrostatic environment of the heme pocket.  相似文献   

2.
Soluble guanylate cyclase (sGC) is a receptor for endogenous and exogenous nitric oxide (NO) and is activated many fold upon its binding, making it a core enzyme in the nitric oxide signal transduction pathway. Much effort has been made to understand the link between binding of NO at the sGC heme and activation of the cyclase activity. We report here the first direct evidence for the role of conformational changes in transmitting the signal between the heme and cyclase domains. Using both circular dichroism (CD) and fluorescence spectroscopies, we have probed the effect that the sGC activators NO and 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl-indazole (YC-1) and the inhibitor 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (ODQ) have on the structure of the protein. Surprisingly, binding of either ODQ or YC-1 to NO-bound sGC cause virtually identical changes in the far-UV CD spectra of sGC, reflecting a perturbation in the secondary structure of the enzyme. This change is absent upon binding of NO, YC-1 or ODQ alone. Using this and previous data, we propose a working model for the mechanism of activation of sGC by NO and YC-1 and inhibition by ODQ.  相似文献   

3.
A Friebe  G Schultz    D Koesling 《The EMBO journal》1996,15(24):6863-6868
It took at least a decade to realize that the toxic gas NO is the physiological activator of soluble guanylyl cyclase (sGC), thereby acting as a signaling molecule in the nervous and cardiovascular systems. Despite its rather poor sGC-activating property, CO has also been implicated as a physiological stimulator of sGC in neurotransmission and vasorelaxation. Here, we establish YC-1 as a novel NO-independent sGC activator that potentiates both CO- and NO-induced sGC stimulation. As this potentiating effect is also observed with protoporphyrin IX which activates sGC independently of a gaseous ligand, we conclude that stabilization of the enzyme's active configuration is the underlying mechanism of YC-1's action. Moreover, the results obtained with YC-1 reveal that CO is capable of stimulating sGC to a degree similar to NO, and thus provide the molecular basis for CO functioning as a signaling molecule.  相似文献   

4.
Soluble guanylyl/guanylate cyclase (sGC), the primary biological receptor for nitric oxide, is required for proper development and health in all animals. We have expressed heterodimeric full-length and N-terminal fragments of Manduca sexta sGC in Escherichia coli, the first time this has been accomplished for any sGC, and have performed the first functional analyses of an insect sGC. Manduca sGC behaves much like its mammalian counterparts, displaying a 170-fold stimulation by NO and sensitivity to compound YC-1. YC-1 reduces the NO and CO off-rates for the approximately 100-kDa N-terminal heterodimeric fragment and increases the CO affinity by approximately 50-fold to 1.7 microm. Binding of NO leads to a transient six-coordinate intermediate, followed by release of the proximal histidine to yield a five-coordinate nitrosyl complex (k(6-5) = 12.8 s(-1)). The conversion rate is insensitive to nucleotides, YC-1, and changes in NO concentration up to approximately 30 microm. NO release is biphasic in the absence of YC-1 (k(off1) = 0.10 s(-1) and k(off2) = 0.0015 s(-1)); binding of YC-1 eliminates the fast phase but has little effect on the slower phase. Our data are consistent with a model for allosteric activation in which sGC undergoes a simple switch between two conformations, with an open or a closed heme pocket, integrating the influence of numerous effectors to give the final catalytic rate. Importantly, YC-1 binding occurs in the N-terminal two-thirds of the protein. Homology modeling and mutagenesis experiments suggest the presence of an H-NOX domain in the alpha subunit with importance for heme binding.  相似文献   

5.
Soluble guanylyl cyclase (sGC) is a heterodimeric enzyme formed by an alpha subunit and a beta subunit, the latter containing the heme where nitric oxide (NO) binds. When NO binds, the basal activity of sGC is increased several hundred fold. sGC activity is also increased by YC-1, a benzylindazole allosteric activator. In the presence of NO, YC-1 synergistically increases the catalytic activity of sGC by enhancing the affinity of NO for the heme. The site of interaction of YC-1 with sGC is unknown. We conducted a mutational analysis to identify the binding site and to determine what residues were involved in the propagation of NO and/or YC-1 activation. Because guanylyl cyclases (GCs) and adenylyl cyclases (ACs) are homologous, we used the three-dimensional structure of AC to guide the mutagenesis. Biochemical analysis of purified mutants revealed that YC-1 increases the catalytic activity not only by increasing the NO affinity but also by increasing the efficacy of NO. Effects of YC-1 on NO affinity and efficacy were dissociated by single-point mutations implying that YC-1 has, at least, two types of interaction with sGC. A structural model predicts that YC-1 may adopt two configurations in one site that is pseudosymmetric with the GTP binding site and equivalent to the forskolin site in AC.  相似文献   

6.
Nitric oxide (NO) is a physiologically relevant activator of the hemoprotein soluble guanylate cyclase (sGC). In the presence of NO, sGC is activated several hundredfold above the basal level by a mechanism that remains to be elucidated. The heme ligand n-butyl isocyanide (BIC) was used to probe the mechanism of NO activation of sGC. Electronic absorption spectroscopy was used to show that BIC binds to the sGC heme, forming a 6-coordinate complex with an absorbance maximum at 429 nm. BIC activates sGC 2-5-fold, and synergizes with the allosteric activator YC-1, to activate the enzyme 15-25-fold. YC-1 activates the sGC-BIC complex, and leads to an increase in both the V(max) and K(m). BIC was also used to probe the mechanism of NO activation. The activity of the sGC-BIC complex increases 15-fold in the presence of NO, without displacing BIC at the heme, which is consistent with previous reports that proposed the involvement of a non-heme NO binding site in the activation process.  相似文献   

7.
Soluble guanylate cyclase (sGC) is activated by the known benzylindazole derivative YC-1 [1-benzyl-3-(5'-hydroxymethyl-2'-furyl)-indazole]. YC-1 also acts synergistically with CO, activating sGC to a level comparable to that achieved upon binding of nitric oxide, the endogenous activator of sGC. We here describe the synthesis of a YC-1 phosphonate analogue with improved aqueous solubility as well as its effects on sGC.  相似文献   

8.
Isatin (indole-dione-2,3) is an endogenous indole that exhibits a wide spectrum of biological and pharmacological activities. Physiologically relevant concentrations of isatin (ranged from 1 nM to 10 μM) did not influence basal activity of soluble human platelet guanylate cyclase (sGC), but caused a bell-shaped inhibition of the NO-activated enzyme. Inhibition of the NO-dependent activation by isatin did not depend on a chemical nature of the NO donors. The inhibitory effects of ODC (a heme-dependent inhibitor of sGC) and isatin were non-additive suggesting that the inhibitory effect of isatin may involve the heme binding domain (possibly heme iron) and experiments with hemin revealed some isatin-dependent changes in its spectrum. Isatin also inhibited sGC activation by the allosteric activator YC-1. It is suggested that the bell shaped inhibition of the NO-dependent activation of sGC by isatin may be attributed to complex interaction of isatin with the heme binding domain and the allosteric YC-1-binding site of sGC.  相似文献   

9.
Soluble guanylate cyclase (sGC) is the mammalian endogenous nitric oxide (NO) receptor. The mechanisms of activation and deactivation of this heterodimeric enzyme are unknown. For deciphering them, functional domains can be overexpressed. We have probed the dynamics of the diatomic ligands NO and CO within the isolated heme domain β(1)(190) of human sGC by piconanosecond absorption spectroscopy. After photo-excitation of nitrosylated sGC, only NO geminate rebinding occurs in 7.5 ps. In β(1)(190), both photo-dissociation of 5c-NO and photo-oxidation occur, contrary to sGC, followed by NO rebinding (7 ps) and back-reduction (230 ps and 2 ns). In full-length sGC, CO geminate rebinding to the heme does not occur. In contrast, CO geminately rebinds to β(1)(190) with fast multiphasic process (35, 171, and 18 ns). We measured the bimolecular association rates k(on) = 0.075 ± 0.01 × 10(6) M(-1) · S(-1) for sGC and 0.83 ± 0.1 × 10(6) M(-1) · S(-1) for β(1)(190). These different dynamics reflect conformational changes and less proximal constraints in the isolated heme domain with respect to the dimeric native sGC. We concluded that the α-subunit and the β(1)(191-619) domain exert structural strains on the heme domain. These strains are likely involved in the transmission of the energy and relaxation toward the activated state after Fe(2+)-His bond breaking. This also reveals the heme domain plasticity modulated by the associated domains and subunit.  相似文献   

10.
Soluble guanylate cyclase (sGC), a physiological nitric oxide (NO) receptor, is a heme-containing protein and catalyzes the conversion of GTP to cyclic GMP. We found that 200 mM imidazole moderately activated sGC in the coexistence with 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), although imidazole or YC-1 alone had little effect for activation. GTP facilitated this process. Resonance Raman spectra of imidazole complex of native sGC and CO-bound sGC (CO-sGC) have demonstrated that a simple heme adduct with imidazole at the sixth coordination position is not present for both sGC and CO-sGC below 200 mM of the imidazole concentration and that the Fe-CO stretching band (nuFe-CO)) appears at 492 cm(-1) in the presence of imidazole compared with 473 cm(-1) in its absence. Both frequencies fall on the line of His-coordinated heme proteins in the nuFe-CO vs nuC-O plot. However, it is stressed that the CO-heme of sGC becomes apparently photo-inert in a spinning cell in the presence of imidazole, suggesting the formation of five-coordinate CO-heme or of six-coordinate heme with a very weak trans ligand. These observations suggest that imidazole alters not only the polarity of heme pocket but also the coordination structure at the fifth coordination side presumably by perturbing the heme-protein interactions at propionic side chains. Despite the fact that the isolated sGC stays in the reduced state and is not oxidized by O(2), sGC under the high concentration of imidazole (1.2 M) yielded nu4 at 1373 cm(-1) even after its removal by gel-filtration, but addition of dithionite gave the strong nu4 band at 1360 cm(-1). This indicated that imidazole caused autoxidation of sGC.  相似文献   

11.
The effects of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) on responses to sodium nitroprusside (SNP), S-nitroso-N-acetyl-penicillamine (SNAP), the nitroxyl anion donor Angeli's salt, and nitrergic nerve stimulation, as well as the release of NO from nitrergic nerves, were studied in the rat isolated anococcygeus muscle. YC-1 (1-100 microM) produced concentration-dependent relaxations in contracted muscles, which were partially but significantly reduced by the inhibitor of soluble guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, 1 and 10 microM). At a concentration that did not affect tissue tension, YC-1 (1 microM) significantly enhanced relaxations to SNP, SNAP, and Angeli's salt but did not affect relaxations to papaverine (10 microM). Nitrergic relaxations elicited by short periods (1 Hz for 10 s, 15 V) and long periods of EFS (5 Hz for 5 min, 15 V) were also enhanced by YC-1. YC-1 (100 microM), in an l-NAME and tetrodotoxin-insensitive manner, also increased the amount of NO detected in the organ bath media after the tissue was field stimulated (5 Hz for 5 min), which may have resulted from the electrolytic degradation of YC-1, as this effect was also seen in the absence of tissue. In summary, YC-1 enhanced relaxations to donors of NO, Angeli's salt, and nitrergic nerve stimulation in the rat anococcygeus muscle; however, the enhanced release of NO by YC-1 following nitrergic nerve stimulation was not a tissue-dependent effect.  相似文献   

12.
Soluble guanylate cyclase (sGC, EC 4.6.1.2) acts as a sensor for nitric oxide (NO), but is also activated by carbon monoxide in the presence of an allosteric modulator. Resonance Raman studies on the structure-function relations of sGC are reviewed with a focus on the CO-adduct in the presence and absence of allosteric modulator, YC-1, and substrate analogues. It is demonstrated that the sGC isolated from bovine lung contains one species with a five-coordinate (5c) ferrous high-spin heme with the Fe-His stretching mode at 204 cm(-1), but its CO adduct yields two species with different conformations about the heme pocket with the Fe-CO stretching (nuFe-CO) mode at 473 and 489 cm(-1), both of which are His- and CO-coordinated 6c ferrous adducts. Addition of YC-1 to it changes their population and further addition of GTP yields one kind of 6c (nuFe-CO=489 cm(-1)) in addition to 5c CO-adduct (nuFe-CO=521 cm(-1)). Under this condition the enzymatic activity becomes nearly the same level as that of NO adduct. Addition of gamma-S-GTP yields the same effect as GTP does but cGMP and GDP gives much less effects. Unexpectedly, ATP cancels the effects of GTP. The structural meaning of these spectroscopic observations is discussed in detail.  相似文献   

13.
The radial artery (RA) is used as a spastic coronary bypass graft. This study was designed to investigate the mechanism of vasorelaxant effects of YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole), a nitric oxide (NO)-independent soluble guanylate cyclase (sGC) activator, and DEA/NO (diethylamine/nitric oxide), a NO-nucleophile adduct, on the human RA. RA segments (n = 25) were obtained from coronary artery bypass grafting patients and were divided into 3-4 mm vascular rings.Using the isolated tissue bath technique, the endothelium-independent vasodilatation function was tested in vitro by the addition of cumulative concentrations of YC-1 (10-10 to 3 x 10-7 mol/L) and DEA/NO (10-8 to 3 x 10-5 mol/L) following vasocontraction by phenylephrine in the presence or absence of 10-5 mol/L ODQ (1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1-one), the selective sGC inhibitor, 10-7 mol/L iberiotoxin, a blocker of Ca2+-activated K+ channels, or 10-5 mol/L ODQ plus 10-7 mol/L iberiotoxin. We also evaluated the effect of YC-1 and DEA/NO on the cGMP levels in vascular rings obtained from human radial artery (n = 6 for each drug). YC-1 (10-10 to 3 x 10-7 mol/L) and DEA/NO (10-8 to 3 x 10-5 mol/L) caused the concentration-dependent vasorelaxation in RA rings precontracted with phenylephrine (10-5 mol/L) (n = 20 for each drug). Pre-incubation of RA rings with ODQ, iberiotoxin, or ODQ plus iberiotoxin significantly inhibited the vasorelaxant effect of YC-1, but the inhibitor effect of ODQ plus iberiotoxin was significantly more than that of ODQ and iberiotoxin alone (p < 0.05). The vasorelaxant effect of DEA/NO almost completely abolished in the presence of ODQ and iberiotoxin plus ODQ, but did not significantly change in the presence of iberiotoxin alone (p > 0.05). The pEC50 value of DEA/NO was significantly lower than those for YC-1 (p < 0.01), with no change Emax values in RA rings. In addition, YC-1-stimulated RA rings showed more elevation in cGMP than that of DEA/NO (p < 0.05). These findings indicate that YC-1 is a more potent relaxant than DEA/NO in the human RA. The relaxant effects of YC-1 could be due to the stimulation of the sGC and Ca2+-sensitive K+channels, whereas the relaxant effects of DEA/NO could be completely due to the stimulation of the sGC. YC-1 and DEA/NO may be effective as vasodilator for the short-term treatment of perioperative spasm of coronary bypass grafts.  相似文献   

14.
Besides nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H(2)S) is a third gaseous messenger that may play a role in controlling vascular tone and has been proposed to serve as an O(2) sensor. However, whether H(2)S is vasoactive in the ductus arteriosus (DA) has not yet been studied. We investigated, using wire myography, the mechanical responses induced by Na(2)S (1 μM-1 mM), which forms H(2)S and HS(-) in solution, and by authentic CO (0.1 μM-0.1 mM) in DA rings from 19-day chicken embryos. Na(2)S elicited a 100% relaxation (pD(2) 4.02) of 21% O(2)-contracted and a 50.3% relaxation of 62.5 mM KCl-contracted DA rings. Na(2)S-induced relaxation was not affected by presence of the NO synthase inhibitor l-NAME, the soluble guanylate cyclase (sGC) inhibitor ODQ, or the K(+) channel inhibitors tetraethylammonium (TEA; nonselective), 4-aminopyridine (4-AP, K(V)), glibenclamide (K(ATP)), iberiotoxin (BK(Ca)), TRAM-34 (IK(Ca)), and apamin (SK(Ca)). CO also relaxed O(2)-contracted (60.8% relaxation) and KCl-contracted (18.6% relaxation) DA rings. CO-induced relaxation was impaired by ODQ, TEA, and 4-AP (but not by L-NAME, glibenclamide, iberiotoxin, TRAM-34 or apamin), suggesting the involvement of sGC and K(V) channel stimulation. The presence of inhibitors of H(2)S or CO synthesis as well as the H(2)S precursor L-cysteine or the CO precursor hemin did not significantly affect the response of the DA to changes in O(2) tension. Endothelium-dependent and -independent relaxations were also unaffected. In conclusion, our results indicate that the gasotransmitters H(2)S and CO are vasoactive in the chicken DA but they do not suggest an important role for endogenous H(2)S or CO in the control of chicken ductal reactivity.  相似文献   

15.
Carbon monoxide has been under active investigation for a role in controlling vascular tone throughout the last decade because of its ability to induce relaxation in blood vessels. The underlying mechanisms of this response are hypothesized to be mediated by soluble guanylyl cyclase (sGC) and, in some instances, KCa channels. The major source of CO in major blood vessels is the catabolic process of heme degradation, which is catalyzed by heme oxygenase (HO). This heme substrate could be derived from heme sources within vascular smooth muscle cells, such as heme proteins, or by uptake from the extracellular milieu. The current study shows that the isolated rat aorta relaxes upon exposure to pharmacological concentrations of heme in the bathing medium. This response was inhibited by an inhibitor of HO (tin protoporphyrin) and sGC (1-H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one). These observations were interpreted to mean that vascular smooth muscle cells are capable of taking up and utilizing heme for the production of CO.  相似文献   

16.
Regulation of soluble guanylate cyclase (sGC), the primary NO receptor, is linked to NO binding to the prosthetic heme group. Recent studies have demonstrated that the degree and duration of sGC activation depend on the presence and ratio of purine nucleotides and on the presence of excess NO. We measured NO dissociation from full-length alpha1beta1 sGC, and the constructs beta1(1-194), beta1(1-385), and beta2(1-217), at 37 and 10 degrees C with and without the substrate analogue guanosine-5'-[(alpha,beta-methylene]triphosphate (GMPCPP) or the activator 3-(5'-hydroxymethyl-3'-furyl)-1-benzylindazole (YC-1). NO dissociation from each construct was complex, requiring two exponentials to fit the data. Decreasing the temperature decreased the contribution of the faster exponential for all constructs. Inclusion of YC-1 moderately accelerated NO dissociation from sGC and beta2(1-217) at 37 degrees C and dramatically accelerated NO dissociation from sGC at 10 degrees C. The presence of GMPCPP also dramatically accelerated NO dissociation from sGC at 10 degrees C. This acceleration is due to increases in the observed rate for each exponential and in the contribution of the faster exponential. Increases in the contribution of the faster exponential correlated with higher activation of sGC by NO. These data indicate that the sGC ferrous-nitrosyl complex adopts two 5-coordinate conformations, a lower activity "closed" form, which releases NO slowly, and a higher activity "open" form, which releases NO rapidly. The ratio of these two species affects the overall rate of NO dissociation. These results have implications for the function of sGC in vivo, where there is evidence for two NO-regulated activity states.  相似文献   

17.
Resonance Raman (RR) spectra of soluble guanylate cyclase (sGC) reported by five independent research groups have been classified as two types: sGC(1) and sGC(2). Here we demonstrate that the RR spectra of sGC isolated from bovine lung contain only sGC(2) while both species are observed in the spectra of the CO-bound form (CO-sGC). The relative populations of the two forms were altered from an initial composition in which the CO-sGC(2) form predominated, with the Fe-CO (nu(Fe)(-)(CO)) and C-O stretching modes (nu(CO)) at 472 and 1985 cm(-)(1), respectively, to a composition dominated by the CO-sGC(1) form with nu(Fe)(-)(CO) and nu(CO) at 488 and 1969 cm(-)(1), respectively, following the addition of a xenobiotic, YC-1. Further addition of a substrate, GTP, completed the change. GDP and cGMP had a significantly weaker effect, while a substrate analogue, GTP-gamma-S, had an effect similar to that of GTP. In contrast, ATP had a reverse effect, and suppressed the effects of YC-1 and GTP. In the presence of both YC-1 and GTP, vinyl vibrations of heme were significantly influenced. New CO isotope-sensitive bands were observed at 521, 488, 363, and 227 cm(-)(1). The 521 cm(-)(1) band was assigned to the five-coordinate (5c) species from the model compound studies using ferrous iron protoporphyrin IX in CTAB micelles. Distinct from the 472 cm(-)(1) species, both the 488 and 521 cm(-)(1) species were apparently un-photodissociable when an ordinary Raman spinning cell was used, indicating rapid recombination of photodissociated CO. On the basis of these findings, binding of YC-1 to the heme pocket is proposed.  相似文献   

18.
Soluble guanylate cyclase (sGC), a hemoprotein, is the primary nitric oxide (NO) receptor in higher eukaryotes. The binding of NO to sGC leads to the formation of a five-coordinate ferrous-nitrosyl complex and a several hundred-fold increase in cGMP synthesis. NO activation of sGC is influenced by GTP and the allosteric activators YC-1 and BAY 41-2272. Electron paramagnetic resonance (EPR) spectroscopy shows that the spectrum of the sGC ferrous-nitrosyl complex shifts in the presence of YC-1, BAY 41-2272, or GTP in the presence of excess NO relative to the heme. These molecules shift the EPR signal from one characterized by g 1 = 2.083, g 2 = 2.036, and g 3 = 2.012 to a signal characterized by g 1 = 2.106, g 2 = 2.029, and g 3 = 2.010. The truncated heme domain constructs beta1(1-194) and beta2(1-217) were compared to the full-length enzyme. The EPR spectrum of the beta2(1-217)-NO complex is characterized by g 1 = 2.106, g 2 = 2.025, and g 3 = 2.010, indicating the protein is a good model for the sGC-NO complex in the presence of the activators, while the spectrum of the beta1(1-194)-NO complex resembles the EPR spectrum of sGC in the absence of the activators. Low-temperature resonance Raman spectra of the beta1(1-194)-NO and beta2(1-217)-NO complexes show that the Fe-NO stretching vibration of the beta2(1-217)-NO complex (535 cm (-1)) is significantly different from that of the beta1(1-194)-NO complex (527 cm (-1)). This shows that sGC can adopt different five-coordinate ferrous nitrosyl conformations and suggests that the Fe-NO conformation characterized by this unique EPR signal and Fe-NO stretching vibration represents a highly active sGC state.  相似文献   

19.
Soluble guanylate cyclase (sGC) is the primary receptor for the signaling agent nitric oxide (NO). Electronic absorption and resonance Raman spectroscopy were used to show that nitrosoalkanes bind to the heme of sGC to form six-coordinate, low-spin complexes. In the sGC-nitrosopentane complex, a band assigned to an Fe-N stretching vibration is observed at 543 cm(-)(1) which is similar to values reported for other six-coordinate NO-bound hemoproteins. Nitrosoalkanes activate sGC 2-6-fold and synergize with YC-1, a synthetic benzylindazole derivative, to activate the enzyme 11-47-fold. In addition, the observed off-rates of nitrosoalkanes from sGC were found to be dependent on the alkyl chain length. A linear correlation was found between the observed off-rates and the alkyl chain length which suggests that the sGC heme has a large hydrophobic distal ligand-binding pocket. Together, these data show that nitrosoalkanes are a novel class of heme-based sGC activators and suggest that heme ligation is a general requirement for YC-1 synergism.  相似文献   

20.
This study examines in endothelium-denuded bovine pulmonary arteries the effects of increasing heme oxygenase-1 (HO-1) activity on relaxation and soluble guanylate cyclase (sGC) activation by nitric oxide (NO). A 24-h organ culture with 0.1 mM cobalt chloride (CoCl2) or 30 microM Co-protoporphyrin IX was developed as a method of increasing HO-1 expression. These treatments increased HO-1 expression and HO activity by approximately two- to fourfold and lowered heme levels by 40-45%. Induction of HO-1 was associated with an attenuation of pulmonary arterial relaxation to the NO-donor spermine-NONOate. The presence of a HO-1 inhibitor 30 microM chromium mesoporphyrin during the 24-h organ culture (but not acute treatment with this agent) reversed the attenuation of relaxation to NO seen in arteries co-cultured with agents that increased HO-1. Relaxation to isoproterenol, which is thought to be mediated through cAMP, was not altered in arteries with increased HO-1. Inducers of HO-1 did not appear to alter basal sGC activity in arterial homogenates or expression of the beta(1)-subunit of sGC. However, the increase in activity seen in the presence of 1 microM spermine-NONOate was attenuated in homogenates obtained from arteries with increased HO-1. Since arteries with increased HO-1 had decreased levels of superoxide detected by the chemiluminescence of 5 microM lucigenin, superoxide did not appear to be mediating the attenuation of relaxation to NO. These data suggest that increasing HO-1 activity depletes heme, and this is associated with an attenuation of pulmonary artery relaxation and sGC activation responses to NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号