首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conformational studies of nociceptin (NC-NH2), its fully active fragment, NC(1-13)-NH2, and two significantly less potent fragments, NC(1-13)-OH and NC(1-11)-OH, were conducted in water and TFE solutions by the employment of circular dichroism, and in DMSO-d6 by 2DNMR spectroscopy in conjunction with theoretical conformational analysis. The conformations of all thepeptides studied were calculated taking two approaches. The first assumes multiconformational equilibrium of the peptide studied, which is characterized by a set of conformations (and their statistical weight values)obtained from a global conformational analysis using three methods: the electrostatically driven Monte-Carlo (EDMC) with the ECEPP/3 force field, the simulated annealing (SA) protocols in the AMBER and CHARMM force fields. The second approach incorporates the interproton distance and dihedral angle constraints into the starting conformation. Calculations were performed using the distance geometry and SA protocol in the CHARMM force field implemented in the X-PLOR program. The CD experiments indicated that for the active peptides, hydrophobic solvents induced a significantly higher (compared with those remaining)content order, probably a helical structure. Unfortunately, as a result of the conformational flexibility of thepeptides, the analysis of conformations obtained with both approaches and different force fields did not alllow the selection of any structural elements of the NC peptides that might be connected with their bioactivity. The only common element found in most conformations of the active peptides was a helical character of fragment 8-13, which allowed the side chains of basic amino acid residues to be exposed to the outside of the molecule and probably to interact with the ORL1 receptor.  相似文献   

2.
Four 7a-methyl octa(or hexa)hydrocyclopenta[d][1,3]oxazines, five 8a-methyl octa(or hexa)hydro[3,1]benzoxazines, two 6-phenyl hexahydro[3,1]benzoxazinones, and 8a-methyl hexahydro[1,3]benzoxazinone, all cis-fused, were prepared and their stereostructures studied by various one- and two-dimensional (1)H, (13)C, and (15)N NMR spectroscopic methods. In solution, the cyclopentane-fused 2-oxo derivatives and the 1,3-benzoxazinone were found to attain exclusively the N-in/O-in conformation, whereas the 6-phenyl 2-oxo/thioxo derivatives were found to be present predominantly in the N-out conformation. The C-2 unsubstituted and the 2-oxo/thioxo 7a/8a-methyl derivatives were all present in solution as a rapidly interconverting equilibrium of the N-in and N-out conformations. The C-2 methyl derivatives were each found to be interconvertable mixtures of epimers (at C-2) with the N-in conformer predominating for one epimer and the N-out conformer predominating for the other, with both predominating conformers having the C-2 methyl group equatorially orientated. The substituent on the nitrogen (H or Me) was found to be always predominantly equatorial with respect to the heteroring, except for the epimeric 2-methyl derivatives with N-out conformations where steric constraints and the generalized anomeric effect resulted in the axial orientation of the C-2 methyl being favored.  相似文献   

3.
D R Ripoll  H A Scheraga 《Biopolymers》1990,30(1-2):165-176
The conformational space of the membrane-bound portion of melittin has been searched using the electrostatically driven Monte Carlo (EDMC) method with the ECEPP/2 (empirical conformational energy program for peptides) algorithm. The former methodology assumes that a polypeptide or protein molecule is driven toward the native structure by the combined action of electrostatic interactions and stochastic conformational changes associated with thermal movements. The algorithm produces a Monte Carlo search in the conformational hyperspace of the polypeptide using electrostatic predictions and a random sampling technique, combined with local minimization of the energy function, to locate low-energy conformations. As a result of 8 test calculations on the 20-residue membrane-bound portion of melittin, starting from six arbitrary and two completely random conformations, the method was able to locate a very low-energy region of the potential with a well-defined structure for the backbone. In all of the cases under study, the method found a cluster of similar low-energy conformations that agree well with the structure deduced from x-ray diffraction experiments and with one computed earlier by the build-up procedure.  相似文献   

4.
Results of energy calculations for α-MSH (α-melanocyte stimulating hormone, Ac-Ser1-Tyr2-Ser3-Met4-Glu5-His6-Phe7-Arg8-Trp9-Gly10-Lys11-Pro12-Val13-NH2) and [D -Phe7]α-MSH were used for design of cyclic peptides with the general aim to stabilize different conformational isomers of the parent compound. The minimal structural modifications of the conformationally flexible Gly10 residue, as substitutions for L -Ala, D -Ala, or Aib (replacing of hydrogen atoms by methyl groups), were applied to obtain octa- and heptapeptide analogues of α-MSH(4–11) and α-MSH(5–11), which were cyclized by lactam bridges between the side chains in positions 5 and 11. Some of these analogues, namely those with substitutions of the Gly10 residue with L -Ala or Aib, showed biological activity potencies on frog skin comparable to the potency of the parent tridecapeptide hormone. Additional energy calculations for designed cyclic analogues were used for further refinement of the model for the biologically active conformations of the His-Phe-Arg-Trp “message” sequence within the sequences of α-MSH and [D -Phe7]α-MSH. In such conformations the aromatic moieties of the side chains of the His6, L/D -Phe7, and Trp9 residues form a continuous hydrophobic “surface,” presumably interacting with a complementary receptor site. This feature is characteristic for low-energy conformers of active cyclic analogues, but it is absent in the case of inactive analogues. This particular spatial arrangement of functional groups involved in the message sequence is very close for α-MSH and [D -Phe7]α-MSH, as well as for biologically active cyclic analogues despite differences of dihedral angle values for corresponding low-energy conformations. © 1998 John Wiley & Sons, Inc. Biopoly 46: 155–167, 1998  相似文献   

5.
Theoretical conformational analysis was carried out for several tetrapeptide analogues of beta-casomorphin and dermorphin containing a Phe residue in position 3. Sets of low-energy backbone structures of the mu-selective peptides [N-Me-Phe3, D-Pro4]-morphiceptin and Tyr-D-Orn-Phe-Asp-NH2 were obtained. These sets of structures were compared for geometrical similarity between themselves and with the low-energy conformations found for the delta-selective peptide Tyr-D-Cys-Phe-D-Pen-OH and nonactive peptide Tyr-Orn-Phe-Asp-NH2. Two pairs of geometrically similar conformations of mu-selective peptides, sharing no similarity with the conformations of peptides showing low affinity to the mu-receptor, were selected as two alternative models of probable mu-receptor-bound backbone conformations. Both models share geometrical similarity with the low-energy structures of the linear mu-selective peptide Tyr-D-Ala-Phe-Phe-NH2. Putative binding conformations of Tyr1 and Phe3 side chains are also discussed.  相似文献   

6.
Six cyclic peptides related to dermorphin(1-7) have been synthesized. The synthesis of linear peptides containing diamino acid residues in positions 2 and 4 was carried out on a 4-methylbenzhydrylamine resin, and cyclization was achieved by treatment with bis-(4-nitrophenyl)carbonate to form a urea unit. The peptides were tested in the guinea-pig ileum (GPI) and mouse vas deferens (MVD) assays. Diverse opioid agonist activities were observed, depending on the size of the ring. The results were compared with those obtained earlier for 1-4 dermorphin analogues. The conformations of all six dermorphin analogues were studied. The conformational space of the peptides was examined using the electrostatically driven Monte Carlo method. On the basis of NMR data, an ensemble of conformations was obtained for each peptide. The opioid activity profiles of the compounds are discussed in the light of the structural data.  相似文献   

7.
The Electrostatically Driven Monte Carlo (EDMC) method was applied in a study of a decamer of glycine whose conformational behavior is described by the Empirical Conformational Energy Program for Peptides (ECEPP/2) potential energy model. When free neutral end groups were used, it was found that conformations that were not alpha-helical had significantly lower potential energies than fully alpha-helical ones. However, when the N- and C-termini were blocked by acetyl and methyl amide groups, respectively, the number of unsatisfied hydrogen-bond donors and acceptors at the helix termini was diminished from 8 to 6; in this case, the possibility of forming two additional alpha-helical hydrogen bonds was an important enough factor in making the alpha-helical conformation the one with the lowest energy. The EDMC method was used as a global energy optimizer since it does not often become trapped in high-energy local minima.  相似文献   

8.
Six cyclic retro-analogues of the peptide hormone somatostatin have been synthesized using the solid phase technique. The peptides cyclo(-Xaa1-Phe2-Thr3-Lys4-Ybb5-Phe6-) and cyclo(-Phe1-Xaa2-Thr3-Lys4-Ybb5-Phe6-) with Xaa = D- or L-Pro and Ybb = D- or L-Trp were cyclized via the azide method. The conformations of the cyclic hexapeptides in DMSO-d6 solution were determined by a number of homo- and heteronuclear two-dimensional n.m.r.-techniques including 2D rotating frame NOE-spectroscopy. Two-step coherence transfers, ROE and chemical exchange, are observed for the first time in ROESY spectra. The backbone conformation of the all-trans cyclopeptides consists of a beta-turn containing the Pro residue in the position i + 1. These retro-analogues of somatostatin exhibit a high activity in the inhibition of cholate and phalloidin uptake by liver cells (cytoprotective effect); however, the hormonal activities of the natural hormone are completely suppressed. The constitutional and conformational requirements for the cytoprotective activity are discussed.  相似文献   

9.
Two analogues of Scyliorhinin I (Scyl), a tachykinin with N-MeLeu in position 8 and a 1,5-disubstituted tetrazole ring between positions 7 and 8, introduced in order to generate local conformational constraints, were synthesized using the solid-phase method. Conformational studies in water and DMSO-d6 were performed on these peptides using a combination of the two-dimensional NMR technique and theoretical conformational analysis. The algorithm of conformational search consisted of the following three stages: (i) extensive global conformational analysis in order to find all low-energy conformations; (ii) calculation of the NOE effects and vicinal coupling constants for each of the low energy conformations; (iii) determining the statistical weights of these conformations by means of a nonlinear least-squares procedure, in order to obtain the best fit of the averaged simulated spectrum to the experimental one. In both solvents the three-dimensional structure of the analogues studied can be interpreted only in terms of an ensemble of multiple conformations. For [MeLeu8]Scyl, the C-terminal 6-10 fragment adopts more rigid structure than the N-terminal one. In the case of the analogue with the tetrazole ring in DMSO-d6 the three-dimensional structure is characterized by two dominant conformers with similar geometry of their backbones. They superimpose especially well (RMSD = 0.28 A) in the 6-9 fragments. All conformers calculated in both solvents superimpose in their C-terminal fragments much better than those of the first analogue. The results obtained indicate that the introduction of the tetrazole ring into the Scyl molecule rigidifies its structure significantly more than that of MeLeu.  相似文献   

10.
A combined 1H-NMR and molecular mechanics study of [Cpp1, Sar7]AVP was performed in order to select the most probable conformations in DMSO solutions. The NMR constraints obtained were employed in the selection of starting conformations of the cyclic moiety of the analog. In particular, the diminished accessibility of the Asn5 NH proton to solvent and the close contact between Cpp1 and Cys6 C alpha H protons suggests a beta-turn conformation at the Phe3-Gln4 residues. Energy minimization was carried out both in the ECEPP/2 (rigid-valence geometry) and in the AMBER (flexible-valence geometry) force fields. Comparison of the experimental and calculated values of NMR characteristics has revealed that conformations containing type I, II, and III beta-turns at the Phe3-Gln4 residues are in reasonable agreement with the experimental data, with a dynamic equilibrium between the beta I (beta III) and beta II type structures of the cyclic part being the most probable. All of these conformations prefer the negative chirality of the disulfide bridge (theta 3 approximately -90 degrees). Five representative conformations were chosen for the acyclic tail: one with a beta I, one with a beta II'-turn at the Sar7-Arg8 residues, two extended-type conformations, and a conformation with a gamma-turn at Sar7. Because only high-energy extended conformations were in agreement with NMR data, it was concluded that the acyclic tail has considerable conformational flexibility in solution. The conformations obtained are discussed in terms of the structure-function relationship of the neurohypophyseal hormone analogs.  相似文献   

11.
The conformational preferences of the 7-residue peptide Glu-Val-Val-Pro-His-Lys-Lys was investigated using a global search algorithm, namely the Electrostatically Driven Monte Carlo (EDMC) method, and the ECEPP/2 potential energy function. This particular sequence corresponds to the N-terminal portion of a 19-residue peptide antigen whose three dimensional structure, when complexed to a cognate antibody, was reported recently. As a result of this study a series of low-energy conformations were identified showing a common folding pattern with residues Val-3, Pro-4, His-5 and Lys-6 forming a beta turn. A comparison of the computed conformations with the one determined by X-ray crystallography in the antibody-antigen complex reveals marked similarities. In most of the cases rms deviations smaller than 1.1 A were found for the backbone atoms of the four residues forming the turn. These results suggest that the recognition process is accomplished in this case through the interaction of the antibody with relatively stable conformers of the antigenic peptide.  相似文献   

12.
The rabbit cerebellum has been shown to contain significant quantities of opioid receptors consisting of both mu- and kappa-subtypes. To determine the nature of the endogenous opioid ligands in this tissue, extracts from rabbit cerebellum were separated by various chromatography techniques and fractions were assayed initially for opioid peptides with a radioimmunoassay capable of detecting all peptides with an amino-terminal Tyr-Gly-Gly-Phe sequence. This sequence is common to all mammalian opioid peptides and is critical for recognition by all known opioid receptors. Each of the three immunoreactive opioid peptide peaks detected was purified to homogeneity and subjected to amino acid composition and sequence analysis. One peak was analyzed further by mass spectrometry. This identified the major opioid peptides in the cerebellum as [Met5]enkephalin, [Leu5]enkephalin, and heptapeptide [Met5]enkephalyl-Arg6-Phe7. The comprehensiveness of this initial detection scheme in identifying biologically active opioid peptides was substantiated through subsequent analysis. Using specific radioimmunoassays for representative opioid peptides of the three opioid systems currently known, no other peptides of either the proenkephalin, proopiomelanocortin, or prodynorphin series were detected in any appreciable amounts. Collectively, these results are consistent with the position that rabbit cerebellar opioids are derived from proenkephalin. However, given that no appreciable quantities of either [Met5]enkephalyl-Arg6-Arg7-Val8-NH2 (metorphamide) or [Met5]enkephalyl-Arg6-Gly7-Leu8 were detected suggests that rabbit proenkephalin may have a slightly altered sequence and/or is differentially processed relative to other mammalian species studied.  相似文献   

13.
We report the conformational analysis by 1H nmr in DMSO and computer simulations involving distance geometry and molecular dynamics simulations of analogs of the cyclic octapeptide D-Phe1-c[Cys2-Phe3-D-Trp4-Lys5-Thr6-Cys 7]-Thr8-ol (sandostatin, octreotide). The analogs D-Phe1-c[Cys2-Phe3-D-Trp4-Lys5-Xaa6-Cys 7]-Xbb8-NH2 (Xaa = allo-Thr, D-allo-Thr, D-beta-Hyv, beta-Hyv, D-Thr, and Xbb = Thr or Xaa = Thr and Xbb = allo-Thr, D-allo-Thr, beta-Hyv, D-Thr) contain stereochemical changes in the Thr residues in positions 6 and 8, which allow us to investigate the influence of the stereochemistry within these residues on conformation and binding affinity. The molecular dynamics simulations provide insight into the conformational flexibility of these analogs. The compounds with (S)-configuration at the C(alpha) of residue 6 adopt beta-sheet structures containing a type II' beta-turn with D-Trp in the i+1 position, and these conformations are "folded" about residues 6 and 3. The structures are very similar to those observed for sandostatin, and the disulfide bridge results in a close proximity of the H(alpha) protons of residues 7 and 2, which confirms earlier observations that a disulfide bridge is a good mimic for a cis peptide bond. The compounds with (R)-configuration at the C(alpha) of residue 6 adopt considerably different backbone conformations. The structures observed for these analogs contain either a beta-turn about residue Lys and Xaa6 or a gamma-turn about the Xaa6 residue. These compounds do not exhibit significant binding to the somatostatin receptors, while the compounds with (S) configuration in position 6 bind potently to the sst2, 3, and 5 receptors. The nmr spectra of analogs with (R) or (S) configuration at the C(alpha) of residue 8 are strikingly similar to each other. We have demonstrated that the chemical shifts of protons of residues 3, 4, 5, and 6, which are part of the type II' beta-turn, and especially the effect on the Lys gamma-protons are considerably different in active molecules as compared to inactive analogs. Since the presence of a type II' beta-turn is crucial for the binding to the receptors, the chemical shifts, the amide temperature coefficients of the Thr residue and the medium strength NOE between LysNH and ThrNH can be extremely useful as an initial screening tool to separate the active molecules from inactive analogs.  相似文献   

14.
In this study we compared the steric structures of the bioactive part of substance P (SP[6-11]) and its analogs (NY3460 and pHOPA-SP5). The molecular dynamics-simulated annealing method was used to explore the conformational space, and the structural differences and similarities of these molecules were identified. For the three peptides, the conformational distributions were represented in Ramachandran density plots. The occurring secondary structural elements of the investigated molecules were identified, namely alpha-Helix, type III beta-Turn, gamma-Turn, and inverse gamma-Turn. For SP[6-11] and its two analogs, different intramolecular interactions (H-bonds between the main-chain atoms, aromatic-aromatic interactions, and amino-aromatic interactions) that can stabilize the various conformations of the three peptides were investigated. Detailed examination of these intramolecular interactions revealed that H-bonds between the main-chain atoms are relevant in the determination and stabilization of the conformer structures of the peptides, while the aromatic-aromatic interactions do not play an important stabilizing role. Furthermore, in the conformers of NY3460 and pHOPA-SP5, different types of amino-aromatic interactions were identified that contribute to the formation of the various structures of these peptides. For all three molecules, the orientations of the side chains were investigated and the rotamer populations were determined.  相似文献   

15.
The conformation of the 29-residue rat galanin neuropeptide was studied using the Monte Carlo with energy minimization (MCM) and electrostatically driven Monte Carlo (EDMC) methods. According to a previously elaborated procedure, the polypeptide chain was first treated in a united-residue approximation, in order to enable extensive exploration of the conformational space to be carried out (with the use of MCM), Then the low-energy united-residue conformations were converted to the all-atom representations, and EDMC simulations were carried out for the all-atom polypeptide chains, using the ECEPP/3 force field with hydration included. In order to estimate the effect of environment on galanin conformation, the low-energy conformations obtained as a result of these simulations were taken as starting structures for further EDMC runs that did not include hydration. The lowest-energy conformation obtained in aqueous solution calculations had a nonhelical N-terminal part packed against the nonpolar face of a residual helix that extended from Pro13 toward the C-terminus. One next lowest-energy structure was a nearly-all-helical conformation, but with a markedly higher energy. In contrast, all of the low-energy conformations in the absence of water were all-helical differing only by the extent to which the helix was kinked around Pro13. These results are in qualitative agreement with the available NMR and CD data of galanin in aqueous and nonaqueous solvents.  相似文献   

16.
The electrostatically driven Monte Carlo (EDMC) method has been greatly improved by adding a series of new features, including a procedure for cluster analysis of the accepted conformations. This information is used to guide the search for the global energy minimum. Alternative procedures for generating perturbed conformations to sample the conformational space were also included. These procedures enhance the efficiency of the method by generating a larger number of low-energy conformations. The improved EDMC method has been used to explore the conformational space of a 20-residue polypeptide chain whose sequence corresponds to the membrane-bound portion of melittin. The ECEPP/3 (Empirical Conformational Energy Program for Peptides) algorithm was used to describe the conformational energy of the chain. After an exhaustive search involving 14 independent runs, the lowest energy conformation (LEC) (−91.0 kcal/mol) of the entire study was encountered in four of the runs, while conformations higher in energy by no more than 1.8 kcal/mol were found in the remaining runs with the exception of one of them (run 8). The LEC is identical to the conformation found recently by J. Lee, H.A. Scheraga, and S. Rackovsky [(1998) “Conformational Analysis of the 20-Residue Membrane-Bound Portion of Melittin by Conformational Space Annealing,” Biopolymers, Vol. 46, pp. 103–115] as the lowest energy conformation obtained in their study using the conformational space annealing method. These results suggest that this conformation corresponds to the global energy minimum of the ECEPP/3 potential function for this specific sequence; it also appears to be the conformation of lowest free energy. © 1998 John Wiley & Sons, Inc. Biopoly 46: 117–126, 1998  相似文献   

17.
We have applied computational procedures that utilize nmr data to model the solution conformation of ferrichrome, a rigid microbial iron transport cyclohexapeptide of known x-ray crystallographic structure [D. van der Helm et al. (1980) J. Am. Chem. Soc. 102, 4224-4231]. The Al3+ and Ga3+ diamagnetic analogues, alumichrome and gallichrome, dissolved in d6-dimethylsulfoxide (d6-DMSO), were investigated via one- and two-dimensional 1H-nmr spectroscopy at 300, 600, and 620 MHz. Interproton distance constraints derived from proton Overhauser experiments were input to a distance geometry algorithm [T. F. Havel and K. Wüthrich (1984) Bull. Math. Biol. 46, 673-691] in order to generate a family of ferrichrome structures consistent with the experimental data. These models were subsequently optimized through restrained molecular dynamics/energy minimization [B. R. Brooks et al. (1983) J. Comp. Chem. 4, 187-217]. The resulting structures were characterized in terms of relative energies and conformational properties. Computations based on integration of the generalized Bloch equations for the complete molecule, which include the 14N-1H dipolar interaction, demonstrate that the x-ray coordinates reproduce the experimental nuclear Overhauser effect time courses very well, and indicate that there are no significant differences between the crystalline and solution conformations of ferrichrome. A similar study of the metal free peptide, deferriferrichrome, suggests that at least two conformers are present in d6-DMSO at 23 degrees C. Both are different from the ferrichrome structure and explain, through conformational averaging, the observed amide NH and CH alpha multiplet splittings. The occurrence of interconverting peptide backbone conformations yields an increased number of sequential NH-CH alpha and NH-NH Overhauser connectivities, which reflects the mean value of r-6 dependence of the dipolar interaction. Our results support the idea that, in the case of structurally rigid peptides, moderately accurate distance constraints define a conformational subspace encompassing the "true" structure, and that energy considerations reduce the size of this subspace. For flexible peptides, however, the straight-forward approach can be misleading since the nmr parameters are averaged over substantially different conformational states.  相似文献   

18.
R Maroun  N Gresh 《Biopolymers》1989,28(4):835-849
Theoretical computations are performed of the intercalative binding to a model d(CpG)2 minihelix of 7-H pyrido[4.3C]carbazole, the precursor of the antitumor bisintercalating drug ditercalinium. The conformations of the intercalation site are generated by the AGNAS procedure (algorithm to generate nucleic acid structures) of Miller and co-workers. The ligand-nucleotide interactions and the nucleotide conformational energies are computed with the SIBFA procedures (sum of interactions between fragments ab initio computed), which use formulas of empirical origin that reproduce ab initio SCF (self-consistent field) computations. Among the candidate intercalation sites most favored energetically, one has a pattern of conformational angles related to the one determined crystallographically by Sobell et al. in a series of x-ray structural studies of small intercalator-dinucleotide monophosphate complexes. Optimal values of the unwinding angle, found in the range of -12 degrees to -14 degrees, are consistent with available experimental data on DNA.  相似文献   

19.
In an attempt to explain the relationship between conformations of peptide substrates of thermolysin in natural form and the experimental enzymatic cleavages, five peptides of various length were studied in two solvents H2O and glycerol, which may mimic the catalytic environmental conditions. As NMR failed to define sufficiently rough constraints to ensure a convergence of a refinement process for such short and flexible peptides, the conformational space was first searched using the MCMM method. The generated structures were then clustered in families using a 0.3A rmsd criterion and the derived structural characteristics were compared to the experimental NMR parameters. In a first approach, the NMR consistent conformations were compared with the structure of a thermolysin bound peptidic inhibitor ZG(P)LL to characterize the free-ligand predisposition to be cleaved. Further molecular dynamic calculations were performed at 300 K on the conformations corresponding to families in agreement with the ZG(P)LL structure in order to obtain information on their stability and on the trajectories of the torsion angles involved in the active site recognition. In conclusion, for four studied peptides, some conformations were found to be in agreement with 5 of the 8 cleavages experimentally observed.  相似文献   

20.
The conformational behaviour of the basic hydrophilic Pro-Arg-Arg-Pro and Arg-Pro-Lys-Pro peptides, neurotensin (NT) and Substance P fragments, has been taken up by semi-empirical calculations. The presence of two Pro residues prevents these peptides from giving any folded structure (alpha helix, beta turn . . .). In both peptides the most stable conformations are essentially relative to more or less stretched structures; structures involving one or more residues in a gamma turn form are often encountered in Pro-Arg-Arg-Pro peptide while mixed structures involving residues in very different conformations are found for the Arg-Pro-Lys-Pro-peptide. In both peptides, positively charged Lys and Arg side-chains most often point in opposite directions. The Pro-Arg-Arg-Pro peptide is part of the active NT (7-13) fragment where both Arg residues are necessary to the activity. A tentative study shows that the hydrophilic tetrapeptide induces NT (7-13) stretched conformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号