首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Kojima M  Becker VK  Altaner CM 《Planta》2012,235(2):289-297
Koromiko [Hebe salicifolia G. Forst. (Pennell)] is a woody angiosperm native to New Zealand and Chile. Hebe spp. belong to the otherwise herbaceous family Plantaginaceae in the order Lamiales. Reaction wood exerting expansional forces was found on the lower side of leaning H. salicifolia stems. Such reaction wood is atypical for angiosperms, which commonly form contracting reaction wood on the upper side of leaning stems. Reaction wood typical for angiosperms is formed by species in other families in the order Lamiales. This suggests that the form of reaction wood is specific to the family level. Functionally the reaction wood of H. salicifolia is similar to that found in gymnosperms, which both act by pushing. However, their chemical, anatomical and physical characteristics are different. Typical features of reaction wood present in gymnosperms such as high density, thick-walled rounded cells and the presence of (1 → 4)-β-galactan in the secondary cell wall layer are absent in H. salicifolia reaction wood. Reaction wood of H. salicifolia varies from normal wood in having a higher microfibril angle, which is likely to determine the direction of generated maturation stresses.  相似文献   

2.
3.
 The terminal (1-year-old) shoot of dormant, 2-year-old balsam fir [Abies balsamea (L.) Mill.] seedlings was either left vertically oriented or tilted to an angle of 60° from the vertical (tilting experiment), or was ringed with N-1-naphthylphthalamic acid (NPA), an inhibitor of indole-3-acetic acid transport, at a concentration of 0, 1 or 10 mg g−1 lanolin (NPA experiment). After 6 weeks of growth, ethylene evolution from the cambial region was measured by gas chromatography – flame ionization detection, and tracheid production and compression wood formation were determined by microscopy. In vertical seedlings of the tilting experiment and in 0 mg g−1-treated seedlings of the NPA experiment, compression wood was not formed and neither ethylene evolution nor tracheid production varied longitudinally or circumferentially within the stem. Tilting induced compression wood formation and increased ethylene evolution and tracheid production on the lower side of the stem, while decreasing tracheid production on the upper side. Compression wood formation was induced and tracheid production and ethylene evolution were stimulated at and above the point where 1 or 10 mg NPA g−1 was applied, whereas below this point compression wood was not formed and tracheid production was inhibited. In both tilting and NPA experiments, there was a positive correlation between ethylene evolution and tracheid production when data from all seedlings were analyzed, but not when data from seedlings forming compression wood were excluded. The results indicate that cambial region ethylene evolution is enhanced when compression wood is being formed, and that the enhancement is related to compression wood formation per se rather than the associated increase in tracheid production. Received: 19 February 1998 / Accepted: 26 October 1998  相似文献   

4.
In nature, angiosperm trees develop tension wood on the upper side of their leaning trunks and drooping branches. Development of tension wood is one of the straightening mechanisms by which trees counteract leaning or bending of stem and resume upward growth. Tension wood is characterized by the development of a highly crystalline cellulose-enriched gelatinous layer next to the lumen of the tension wood fibers. Thus experimental induction of tension wood provides a system to understand the process of cellulose biosynthesis in trees. Since KORRIGAN endoglucanases (KOR) appear to play an important role in cellulose biosynthesis in Arabidopsis, we cloned PtrKOR, a full-length KOR cDNA from aspen xylem. Using RT-PCR, in situ hybridization, and tissue-print assays, we show that PtrKOR gene expression is significantly elevated on the upper side of the bent aspen stem in response to tension stress while KOR expression is significantly suppressed on the opposite side experiencing compression stress. Moreover, three previously reported aspen cellulose synthase genes, namely, PtrCesA1, PtrCesA2, and PtrCesA3 that are closely associated with secondary cell wall development in the xylem cells exhibited similar tension stress-responsive behavior. Our results suggest that coexpression of these four proteins is important for the biosynthesis of highly crystalline cellulose typically present in tension wood fibers. Their simultaneous genetic manipulation may lead to industrially relevant improvement of cellulose in transgenic crops and trees.Suchita Bhandari and Takeshi Fujino contributed equally to this research.  相似文献   

5.
Two-year-old Metasequoia glyptostroboides and 3-month-old Aesculus turbinata seedlings were tilted at a 45° angle to induce compression wood formation on the lower side of the former species and tension wood on the upper side of the latter. Two weeks later, the seedlings were tilted in an opposite direction at 45° so that the upper and lower sides changed to each other. This reverse tilting was kept for 7 weeks for M. glyptostroboides and 6 weeks for A. turbinata. The seedlings were sampled and analyzed at intervals throughout each experimental period so that an ethylene evolution kinetic was monitored. Ethylene evolution from the cambial region of the upper and lower sides of tilted stems was measured separately by gas chromatography with a flame ionization detector. Xylem production expressed as wood area during each experimental period was microscopically determined. In both tilting and reverse tilting periods, the rates of ethylene evolution from the lower side of M. glyptostroboides and the upper side of A. turbinata, where xylem production was accelerated and compression or tension wood formation was induced, had increased to high levels, whereas those from the opposite sides had either remained low (in tilting period) or rapidly recovered to low levels (in reverse tilting period). The cambial activity quantified by wood formation, including reaction wood, in both species showed the same tendency as ethylene evolution. The stem side with vigorous ethylene evolution, xylem development and reaction wood formation reversed with the reversal of tilting orientation. The roles of accelerated ethylene evolution in reaction wood formation in the tilted seedlings of gymnosperm and angiosperm trees are compared and discussed.This work was presented at the 5th Pacific Region Wood Anatomy Conference, Yogyakarta, Indonesia, 9–14 September 2002  相似文献   

6.
The plant hormones gibberellin (GA), ethylene and auxin can promote hypocotyl elongation of Arabidopsis seedlings grown in the light on a low nutrient medium (LNM). In this study, we used hypocotyl elongation as a system to investigate interactions between GA and ethylene or auxin and analysed their influence on the development of stomata in the hypocotyl. When applied together, GA and ethylene or auxin exerted a synergistic effect on hypocotyl elongation. Stimulated cell elongation is the main cause of hypocotyl elongation. Furthermore, hypocotyls treated with GA plus either ethylene or auxin show an increased endoreduplication. In addition, a small but significant increase in cell number was observed in the cortical cell files of hypocotyls treated with ethylene and GA together. However, studies with transgenic seedlings expressing CycB1::uidA genes revealed that cell division in the hypocotyl occurs only in the epidermis and mainly to form stomata, a process strictly regulated by hormones. Stomata formation in the hypocotyl is induced by the treatment with either GA or ethylene. The effect of GA could be strongly enhanced by the simultaneous addition of ethylene or auxin to the growth medium. Gibberellin is the main signal inducing stomata formation in the hypocotyl. In addition, this signal regulates hypocotyl elongation and is modulated by ethylene and auxin. The implication of these three hormones in relation to cell division and stomata formation is discussed.  相似文献   

7.
Compression wood conifer tracheids show different swelling and stiffness properties than those of usual normal wood, which has a practical function in the living plant: when a conifer shoot is moved from its vertical position, compression wood is formed in the under part of the shoot. The growth rate of the compression wood is faster than in the upper part resulting in a renewed horizontal growth. The actuating and load-carrying function of the compression wood is addressed, on the basis of its special ultrastructure and shape of the tracheids. As a first step, a quantitative model is developed to predict the difference of moisture-induced expansion and axial stiffness between normal wood and compression wood. The model is based on a state space approach using concentric cylinders with anisotropic helical structure for each cell-wall layer, whose hygroelastic properties are in turn determined by a self-consistent concentric cylinder assemblage of the constituent wood polymers. The predicted properties compare well with experimental results found in the literature. Significant differences in both stiffness and hygroexpansion are found for normal and compression wood, primarily due to the large difference in microfibril angle and lignin content. On the basis of these numerical results, some functional arguments for the reason of high microfibril angle, high lignin content and cylindrical structure of compression wood tracheids are supported.  相似文献   

8.
Formation and function of compression wood in gymnosperms   总被引:1,自引:0,他引:1  
Westing, Arthur H. (Middlebury Coll., Vt.). 1965.Formation and function of compression wood in gymnosperms. Bot. Rev. 31: 381–480 A review with ca. 575 references. The world literature pertaining to the biology of compression wood (Rotholz; reaction wood) is evaluated critically. Compression wood is a geotropic reaction to an inertial force and is peculiar to the Coniferales, Ginkgoales, and Taxales. It is formed by the cambium (or cambial derivatives) of the lower side of inclined stems and branches, where it expandsin situ thereby tending to right the former and maintain (or restore) the inherent angle of the latter. Compression wood is stimulated to form by applications of indoleacetic acid, but under natural conditions is interpreted to result from an increased sensitization of cells on the lower side to an insignificantly changed level of endogenous auxin. A theoretical model of the perception (susception) mechanism is advanced. The mechanics of righting is discussed and the forces involved are estimated. Frequent reference is made to other geotropic phenomena of the higher plants, particularly to tension wood, the analogue of compression wood in the arborescent Dicotyledoneae. Much pertaining to the perception, formation, and function of compression wood remains to be elucidated  相似文献   

9.
Hormone interactions during lateral root formation   总被引:2,自引:0,他引:2  
Lateral root (LR) formation, the production of new roots from parent roots, is a hormone- and environmentally-regulated developmental process in higher plants. Physiological and genetic studies using Arabidopsis thaliana and other plant species have revealed the roles of several plant hormones in LR formation, particularly the role of auxin in LR initiation and primordium development, resulting in much progress toward understanding the mechanisms of auxin-mediated LR formation. However, hormone interactions during LR formation have been relatively underexamined. Recent studies have shown that the plant hormones, cytokinin and abscisic acid negatively regulate LR formation whereas brassinosteroids positively regulate LR formation. On the other hand, ethylene has positive and negative roles during LR formation. This review summarizes recent findings on hormone-regulated LR formation in higher plants, focusing on auxin as a trigger and on the other hormones in LR formation, and discusses the possible interactions among plant hormones in this developmental process.  相似文献   

10.
In most gymnosperms, resistance to the flow of water per unit path length through the main stem is less than that of lateral branches. Using branches, leaders, and branches that have replaced missing leaders ('branch-leaders'), we tested the hypothesis that branch-leaders are at a hydraulic disadvantage. Reduced xylem transport efficiency in branch-leaders relative to leaders could be expected both because of an initial disparity in hydraulic capacity, and because of the relatively impermeable compression wood formed in branch-leaders during shoot reorientation. By subsampling branch-leaders, we also tested the hypothesis that opposite wood (formed directly opposite compression wood) is more permeable than normal wood, and could, therefore, compensate for the presence of compression wood at the whole shoot level. Fifteen months after leader removal, branch-leaders were intermediate between branches and leaders in their ability to supply foliage with water, suggesting a transition towards leader status that was not yet complete. Increased hydraulic capacity in branch-leaders was the result of increased xylem cross-sectional area per unit foliage, rather than an increase in permeability. Among subsampled wood types from basal branch-leader segments, opposite wood was significantly less permeable than normal wood, suggesting that it does not compensate for the presence of compression wood.  相似文献   

11.
Ethylene is produced in wood-forming tissues, and when applied exogenously, it has been shown to cause profound effects on the pattern and rate of wood development. However, the molecular regulation of ethylene biosynthesis during wood formation is poorly understood. We have characterised an abundant 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene (PttACO1) in the wood-forming tissues of Populus tremula (L.) x P. tremuloides (Michx). PttACO1 is primarily expressed in developing secondary xylem, and is specifically upregulated during secondary wall formation. Nevertheless, according to GC-MS analysis combined with tangential cryosectioning, the distribution of ACC was found to be fairly uniform across the cambial-region tissues. Gravitational stimulation, which causes tension wood to form on the upper side of the stem, resulted in a strong induction of PttACO1 expression and ACC oxidase activity in the tension wood-forming tissues. The ACC levels increased in parallel to the PttACO1 expression. However, the increase on the upper (tension wood) side was only minor, whereas large amounts of both ACC and its hydrolysable conjugates accumulated on the lower (opposite) side of the stem. This suggests that the relatively low level of ACC on the tension wood side is a result of its conversion to ethylene by the highly upregulated PttACO1, and the concurrent accumulation of ACC on the opposite side of the wood is because of the low PttACO1 levels. We conclude that PttACO1 and ACC oxidase activity, but not ACC availability, are important in the control of the asymmetric ethylene production within the poplar stem when tension wood is induced by gravitational stimulation.  相似文献   

12.
Indole acetic acid (IAA/auxin) profoundly affects wood formation but the molecular mechanism of auxin action in this process remains poorly understood. We have cloned cDNAs for eight members of the Aux/IAA gene family from hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) that encode potential mediators of the auxin signal transduction pathway. These genes designated as PttIAA1-PttIAA8 are auxin inducible but differ in their requirement of de novo protein synthesis for auxin induction. The auxin induction of the PttIAA genes is also developmentally controlled as evidenced by the loss of their auxin inducibility during leaf maturation. The PttIAA genes are differentially expressed in the cell types of a developmental gradient comprising the wood-forming tissues. Interestingly, the expression of the PttIAA genes is downregulated during transition of the active cambium into dormancy, a process in which meristematic cells of the cambium lose their sensitivity to auxin. Auxin-regulated developmental reprogramming of wood formation during the induction of tension wood is accompanied by changes in the expression of PttIAA genes. The distinct tissue-specific expression patterns of the auxin inducible PttIAA genes in the cambial region together with the change in expression during dormancy transition and tension wood formation suggest a role for these genes in mediating cambial responses to auxin and xylem development.  相似文献   

13.
红松应力木木材形成组织的化学组成特征分析   总被引:3,自引:0,他引:3  
朱莉  石江涛 《植物研究》2012,32(2):232-236
检测分析了天然红松应力木木材形成组织的乙酰溴木质素含量,傅里叶变换红外光谱和X射线衍射图谱。结果表明:木材形成组织木质素含量小于成熟木材,应压木中木质素含量高于正常材;木材形成组织中羟基特征峰的位置有异于成熟木材,在波数1 034~1 510 cm-1处的吸收峰有明显差异,化学官能团的相对吸收强度低于成熟木材;应压木木材形成组织红外光谱特征峰的位置和峰形与对应木、正常木的基本相同;应压木全谱图各化学官能团的相对吸收强度大于正常木。木材形成组织X射线衍射强度低于成熟木材,应压木低于正常材和对应木;木材形成组织纤维素相对结晶度小于成熟木材,应压木低于正常材和对应木。说明木材形成过程中组织的化学特征是动态变化的。应力木形成中木材组织化学特征就与正常木有差异。  相似文献   

14.
When a tree stem deviates from verticality, as a result of different environmental factors, patterns of differential radial growth appear. Higher rates of wood production have been observed on the lower side of the tree and lower rates in the opposite side. Biological studies on plant hormones have shown that the concentration of auxin induces radial growth. They also have demonstrated the redistribution of auxin transport in response to gravity. Auxin is then designated as a mediator for differential growth. This paper presents a model for three-dimensional (3-D) auxin transport in conifer trees, which includes gravity dependence. We obtain realistic heterogeneous patterns of auxin distribution over the tree. Then, we propose a law of growth based on auxin concentration to simulate successive differential radial growths. The predicted growths are compared with experimental results of reconstruction of 3-D annual growth of Radiata pine.  相似文献   

15.
The present work deals with growth eccentricity and reaction anatomy in horizontal branches of Pseudowintera colorata (Raoul) Dandy. Growth promotion is distinct and occurs on the lower (abaxial) side of inclined branches in the manner common to gymnosperms. Neither compression wood nor tension wood was found either on the upper or on the lower side of the investigated branches. The cells of the wood to the lower side show some differences from those of the upper side. The lower-side tracheids are longer, wider, possess thicker walls and have a higher microfibril angle than those of the upper side. The lower-side rays are less high but wider (because of a greater number of larger cells) than those of the upper side.  相似文献   

16.

Premise of the Study

Dimensions and spatial distribution of vessels are critically important features of woody stems, allowing for adaptation to different environments through their effects on hydraulic efficiency and vulnerability to embolism. Although our understanding of vessel development is poor, basipetal transport of auxin through the cambial zone may play an important role.

Methods

Stems of Populus tremula ×alba were treated with the auxin transport inhibitor N‐1‐naphthylphthalamic acid (NPA) in a longitudinal strip along the length of the lower stem. Vessel lumen diameter, circularity, and length; xylem growth; tension wood area; and hydraulic conductivity before and after a high pressure flush were determined on both NPA‐treated and control plants.

Key Results

NPA‐treated stems formed aberrant vessels that were short, small in diameter, highly clustered, and angular in cross section, whereas xylem formed on the untreated side of the stem contained typical vessels that were similar to those of controls. NPA‐treated stems had reduced specific conductivity relative to controls, but this difference was eliminated by the high‐pressure flush. The control treatment (lanolin + dimethyl sulfoxide) reduced xylem growth and increased tension wood formation, but never produced the aberrant vessel patterning seen in NPA‐treated stems.

Conclusions

These results are consistent with a model of vessel development in which basipetal polar auxin transport through the xylem‐side cambial derivatives is required for proper expansion and patterning of vessels and demonstrate that reduced auxin transport can produce stems with altered stem hydraulic properties.  相似文献   

17.
Flooding of soil, tilting of seedlings, application of ethrelto stems, and combinations of these treatments, variously alteredthe rate of growth and stem anatomy of 2-year-old Pinus densifloraseedlings. Either flooding or tilting increased stem diametergrowth and induced formation of abnormal xylem. Whereas floodingdecreased the rate of dry weight increment of roots and needlesand increased growth of bark tissues, tilting of stems did not.However, tilting decreased the rate of height growth, stimulatedtracheid production, and induced formation of well-developedcompression wood with rounded, thick-walled tracheids, witha high lignin content but without an S3 layer in the tracheidwall. Ethylene appeared to have an important regulatory rolein stimulating growth of bark tissues as shown by thicker barkin flooded seedlings or those treated with ethrel. Ethyleneappeared to have a less important role in regulating formationof compression wood. Flooding increased the ethylene contentsof stems and induced formation of rounded, thick-walled tracheids.However, these tracheids lacked such features of well-developedcompression wood tracheids as a thick S2 layer, high lignincontent, and absence of an S3 layer. Furthermore, applicationof ethrel to vertical stems greatly increased their ethylenecontents but did not induce formation of well-developed compressionwood. Furthermore, ethrel application blocked development ofcertain characteristics of compression wood when applied totilted seedlings. For example an S3 wall layer was absent intracheids of tilted seedlings but present in tracheids of tilted,ethrel-treated seedlings. Also lignification of tracheids wasincreased on the under side of tilted stems, but reduced intilted, ethrel-treated seedlings, further de-emphasizing a directrole of ethylene in the formation of compression wood. Ethreltreatment induced formation of longitudinal resin ducts in thexylem whereas flooding or tilting of stems did not. Key words: Pinus densiflora, xylogenesis, reaction wood, compression wood, lignification, ethrel, ethylene  相似文献   

18.
19.
Aim Wood properties are related to tree physiology and mechanical stability and are influenced by both phylogeny and the environment. However, it remains unclear to what extent geographical gradients in wood traits are shaped by either phylogeny or the environment. Here we aimed to disentangle the influences of phylogeny and the environment on spatial trends in wood traits. Location China. Methods We compiled a data set of 11 wood properties for 618 tree species from 98 sampling sites in China to assess their phylogenetic and spatial patterns, and to determine how many of the spatial patterns in wood properties are attributable to the environment after correction for phylogenetic influences. Result All wood traits examined exhibited significant phylogenetic signal. The widest divergence in wood traits was observed between gymnosperms and angiosperms, Rosids and Asterids, Magnoiliids and Eudicots, and in Lamiales. For most wood traits, the majority of trait variation was observed at genus and species levels. The mechanical properties of wood showed correlated evolution with wood density. Most of the mechanical properties of wood exhibited significant latitudinal variation but limited or no altitudinal variation, and were positively correlated with mean annual precipitation based on both Pearson's correlation analysis and the phylogenetic comparative method. Correlations at family level between mean annual temperature and wood density, compression strength, cross‐section hardness, modulus of elasticity and volumetric shrinkage coefficient became significant after correction for phylogenetic influences. Main conclusions Phylogeny interacted with the environment in shaping the spatial patterns of wood traits of trees across China because most wood properties showed strong phylogenetic conservatism and thus affected environmental tolerances and distributions of tree species. Mean annual precipitation was a key environmental factor explaining the spatial patterns of wood traits. Our study provides valuable insights into the geographical patterns in productivity, distribution and ecological strategy of trees linking to wood traits.  相似文献   

20.
The hormonal regulation of axillary bud growth in Arabidopsis   总被引:11,自引:0,他引:11  
Apically derived auxin has long been known to inhibit lateral bud growth, but since it appears not to enter the bud, it has been proposed that its inhibitory effect is mediated by a second messenger. Candidates include the plant hormones ethylene, cytokinin and abscisic acid. We have developed a new assay to study this phenomenon using the model plant Arabidopsis. The assay allows study of the effects of both apical and basal hormone applications on the growth of buds on excised nodal sections. We have shown that apical auxin can inhibit the growth of small buds, but larger buds were found to have lost competence to respond. We have used the assay with nodes from wild-type and hormone-signalling mutants to test the role of ethylene, cytokinin and abscisic acid in bud inhibition by apical auxin. Our data eliminate ethylene as a second messenger for auxin-mediated bud inhibition. Similarly, abscisic acid signalling is not to be required for auxin action, although basally applied abscisic can enhance inhibition by apical auxin and apically applied abscisic acid can reduce it. By contrast, basally applied cytokinin was found to release lateral buds from inhibition by apical auxin, while apically applied cytokinin dramatically increased the duration of inhibition. These results are consistent with cytokinin acting independently to regulate bud growth, rather than as a second messenger for auxin. However, in the absence of cytokinin-signalling mutants, a role for cytokinin as a second messenger for auxin cannot be ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号