首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Abstract.— We investigated sex allocation in a Mediterranean population of the facultatively polygynous (multiple queen per colony) ant Pheidole pallidula . This species shows a strong split sex ratio, with most colonies producing almost exclusively a single-sex brood. Our genetic (microsatellite) analyses reveal that P. pallidula has an unusual breeding system, with colonies being headed by a single or a few unrelated queens. As expected in such a breeding system, our results show no variation in relatedness asymmetry between monogynous (single queen per colony) and polygynous colonies. Nevertheless, sex allocation was tightly associated with the breeding structure, with monogynous colonies producing a male-biased brood and polygynous colonies almost only females. In addition, sex allocation was closely correlated with colony total sexual productivity. Overall, our data show that when colonies become more productive (and presumably larger) they shift from monogyny to polygyny and from male production to female production, a pattern that has never been reported in social insects.  相似文献   

2.
The origin of eusociality in haplo-diploid organisms such as Hymenoptera has been mostly explained by kin selection. However, several studies have uncovered decreased relatedness values within colonies, resulting primarily from multiple queen matings (polyandry) and/or from the presence of more than one functional queen (polygyny). Here, we report on the use of microsatellite data for the investigation of sociogenetic parameters, such as relatedness, and levels of polygyny and polyandry, in the ant Pheidole pallidula. We demonstrate, through analysis of mother-offspring combinations and the use of direct sperm typing, that each queen is inseminated by a single male. The inbreeding coefficient within colonies and the levels of relatedness between the queens and their mate are not significantly different from zero, indicating that matings occur between unrelated individuals. Analyses of worker genotypes demonstrate that 38% of the colonies are polygynous with 2-4 functional queens, and suggest the existence of reproductive skew, i.e. unequal respective contribution of queens to reproduction. Finally, our analyses indicate that colonies are genetically differentiated and form a population exhibiting significant isolation-by-distance, suggesting that some colonies originate through budding.  相似文献   

3.
Identifying species exhibiting variation in social organization is an important step towards explaining the genetic and environmental factors underlying social evolution. In most studied populations of the ant Leptothorax acervorum, reproduction is shared among queens in multiple queen colonies (polygyny). By contrast, reports from other populations, but based on weaker evidence, suggest a single queen may monopolize all reproduction in multiple queen colonies (functional monogyny). Here we identify a marked polymorphism in social organization in this species, by conclusively showing that functional monogyny is exhibited in a Spanish population, showing that the social organization is stable and not purely a consequence of daughter queens overwintering, that daughter queen re-adoption is frequent and queen turnover is low. Importantly, we show that polygynous and functionally monogynous populations are not genetically distinct from one another based on mtDNA and nDNA. This suggests a recent evolutionary divergence between social phenotypes. Finally, when functionally monogynous and polygynous colonies were kept under identical laboratory conditions, social organization did not change, suggesting a genetic basis for the polymorphism. We discuss the implications of these findings to the study of reproductive skew.  相似文献   

4.
Ecological constraints on effective dispersal have been suggested to be a key factor influencing social evolution in animal societies as well as the shift from single queen colonies (monogyny) to multiple queen colonies (polygyny) in ants. However, little is known about the effective dispersal patterns of ant queens. Here we investigate the microgeographic genetic structure of mitochondrial haplotypes in polygynous populations of the ant Formica exsecta, both between pastures and among nests within pastures. An analysis of molecular variance revealed a very high genetic differentiation (phiST = 0.72) between pastures, indicating that queens rarely disperse successfully between pastures, despite the fact that pastures were sometimes as close as 1 km. Most of the pastures contained only a single haplotype, and haplotypes were frequently distinct between nearby pastures and even between groups of nests within the same pasture. In the three pastures that contained several haplotypes, haplotypes were not randomly distributed, the genetic differentiation between nests being phiST = 0.17, 0.52, and 0.69. This indicates that most queens are recruited within their parental colonies. However, a large proportion of nests contained more than one haplotype, demonstrating that colonies will sometimes accept foreign queens. The relatedness of mitochondrial genes among nestmates varied between 0.62 and 0.75 when relatedness was measured within each pasture and ranged between 0.72 and 1.0 when relatedness was assessed with all pastures as a reference population. Neighboring nests were more genetically similar than distant ones, and there was significant isolation by distance. This pattern may be due to new nests being formed by budding or by limited effective queen dispersal, probably on foot between neighboring nests. These results show that effective queen dispersal is extremely restricted even at a small geographical scale, a pattern consistent with the idea that ecological constraints are an important selective force leading to the evolution and maintenance of polygyny.  相似文献   

5.
Using a series of kin-selection models, I examine factors that favor multiple egg-laying queens (polygyny) in eusocial Hymenoptera colonies. One result is that there is a theoretical conflict of interest between the founding queens and their daughter workers over how many and which individuals should be the extra reproductives. Both castes should prefer their full sisters. Therefore, primary polygyny (multiple related foundresses) may favor queens while secondary polygyny (related queens added to mature colonies) may favor workers. Polygyny, itself, was found to be favored by high colony survivorship and low probability of queens contributing eggs to successive broods. Polygyne colonies, however, did not need to produce more offspring per brood to be selectively favored; they could be half as productive per brood as monogyne ones and still have higher lifetime fitness under some conditions. For reproductive data from eight ant species with both monogyne and polygyne colonies, the model generates results that are consistent with a kin-selection explanation of polygyny in all of them. It is proposed that queen number is an ecologically flexible trait that is influenced by a broad set of factors but is not necessarily linked to specific habitat types. Furthermore, neither polygyny nor monogyny may be reliably considered as the primitive or ancestral Hymenopteran social system. The optimal queen number within a species may evolutionarily increase or decrease, depending on the direction of environmental change.  相似文献   

6.
Alternative genetic foundations for a key social polymorphism in fire ants   总被引:2,自引:0,他引:2  
Ross KG  Krieger MJ  Shoemaker DD 《Genetics》2003,165(4):1853-1867
Little is known about the genetic foundations of colony social organization. One rare example in which a single major gene is implicated in the expression of alternative social organizations involves the presumed odorant-binding protein gene Gp-9 in fire ants. Specific amino acid substitutions in this gene invariably are associated with the expression of monogyny (single queen per colony) or polygyny (multiple queens per colony) in fire ant species of the Solenopsis richteri clade. These substitutions are hypothesized to alter the abilities of workers to recognize queens and thereby regulate their numbers in a colony. We examined whether these same substitutions underlie the monogyny/polygyny social polymorphism in the distantly related fire ant S. geminata. We found that Gp-9 coding region sequences are identical in the polygyne and monogyne forms of this species, disproving our hypothesis that one or a few specific amino acid replacements in the protein are necessary to induce transitions in social organization in fire ants. On the other hand, polygyne S. geminata differs genetically from the monogyne form in ways not mirrored in the two forms of S. invicta, a well-studied member of the S. richteri clade, supporting the conclusion that polygyny did not evolve via analogous routes in the two lineages. Specifically, polygyne S. geminata has lower genetic diversity and different gene frequencies than the monogyne form, suggesting that the polygyne form originated via a founder event from a local monogyne population. These comparative data suggest an alternative route to polygyny in S. geminata in which loss of allelic variation at genes encoding recognition cues has led to a breakdown in discrimination abilities and the consequent acceptance of multiple queens in colonies.  相似文献   

7.
The fire ant Solenopsis invicta exists in two social forms, one with colonies headed by a single reproductive queen (monogyne form) and the other with colonies containing multiple queens (polygyne form). This variation in social organization is associated with variation at the gene Gp-9, with monogyne colonies harboring only the B allelic variant and polygyne colonies containing b-like variants as well. We generated new Gp-9 sequences from 15 Solenopsis species and combined these with previously published sequences to conduct a comprehensive, phylogenetically based study of the molecular evolution of this important gene. The exon/intron structure and the respective lengths of the five exons of Gp-9 are identical across all species examined, and we detected no evidence for intragenic recombination. These data conform to a previous suggestion that Gp-9 lies in a genomic region with low recombination, and they indicate that evolution of the coding region in Solenopsis has involved point substitutions only. Our results confirm a link between the presence of b-like alleles and the expression of polygyny in all South American fire ant species known to possess colonies of both social forms. Moreover, phylogenetic analyses show that b-like alleles comprise a derived clade of Gp-9 sequences within the socially polymorphic species, lending further support to the hypothesis that monogyny preceded polygyny in this group of fire ants. Site-specific maximum likelihood tests identified several amino acids that have experienced positive selection, two of which are adjacent to the inferred binding-pocket residues in the GP-9 protein. Four other binding-pocket residues are variable among fire ant species, although selection is not implicated in this variation. Branch-specific tests revealed strong positive selection on the stem lineage of the b-like allele clade, as expected if selection drove the amino acid replacements crucial to the expression of polygyne social organization. Such selection may have operated via the ligand-binding properties of GP-9, as one of the two amino acids uniquely shared by all b-like alleles is predicted to be a binding-pocket residue.  相似文献   

8.
The number of queens per colony is of fundamental importance in the life history of social insects. Multiple queening (polygyny), with dependent colony founding by budding, has repeatedly evolved from ancestral single queening (monogyny) and independent founding by solitary queens in waSPS, bees and ants. By contrast, the reversal to monogyny appears to be rare, as polygynous queens often lack morphological adaptations necessary for dispersal and independent colony founding. In the ant genus Cardiocondyla, monogynous species evolved from polygynous ancestors. Here, we show that queens of monogynous species found their colonies independently, albeit in an unusual way: they mate in the maternal nest, disperse on foot and forage during the founding phase. This reversal appears to be associated with the occurrence of a wing polymorphism, which reflects a trade-off between reproduction and dispersal. Moreover, queens of monogynous species live considerably longer than queens in related polygynous taxa, suggesting that queen life span is a plastic trait.  相似文献   

9.
Thelohania solenopsae is a pathogen of the red imported fire ant, Solenopsis invicta, which debilitates queens and eventually causes the demise of colonies. Reductions of infected field populations signify its potential usefulness as a biological control agent. Thelohania solenopsae can be transmitted by introducing infected brood into a colony. The social forms of the fire ant, that is, monogyny (single queen per colony) or polygyny (multiple queens per colony), are associated with different behaviors, such as territoriality, that affect the degree of intercolony brood transfer. T. solenopsae was found exclusively in polygyne colonies in Florida. Non-synchronous infections of queens and transovarial transmission favor the persistence and probability of detecting infections in polygynous colonies. However, queens or alates with the monogyne genotype can be infected, and infections in monogyne field colonies have been reported from Louisiana and Argentina. Limited independent colony-founding capability and shorter dispersal of alate queens with the polygyne genotype relative to monogyne alates may facilitate the maintenance of infections in local polygynous populations. Demise of infected monogyne colonies can be twice as fast as in polygyne colonies and favors the pathogen's persistence in polygyne fire ant populations. The social form of the fire ant reflects different physiological and behavioral aspects of the queen and colony that will impact T. solenopsae spread and ultimate usefulness for biological control.  相似文献   

10.
How polygyny evolved in social insect societies is a long‐standing question. This phenomenon, which is functionally similar to communal breeding in vertebrates, occurs when several queens come together in the same nest to lay eggs that are raised by workers. As a consequence, polygyny drastically reduces genetic relatedness among nestmates. It has been suggested that the short‐term benefits procured by group living may outweigh the costs of sharing the same nesting site and thus contribute to organisms rearing unrelated individuals. However, tests of this hypothesis are still limited. To examine the evolutionary emergence of polygyny, we reviewed the literature to build a data set containing life‐history traits for 149 Palearctic ant species and combined this data set with a reconstructed phylogeny. We show that monogyny is the ancestral state and that polygyny has evolved secondarily and independently throughout the phylogenetic tree. The occurrence of polygyny is significantly correlated with larger colony size, dependent colony founding and ecological dominance. Although polydomy (when a colony simultaneously uses several connected nests) tends to occur more frequently in polygynous species, this trend is not significant when phylogenetic history is accounted for. Overall, our results indicate that polygyny may have evolved in ants in spite of the reduction in nestmate relatedness because large colony size provides immediate ecological advantages, such as the more efficient use of temporal food resources. We suggest that the competitive context of ant communities may have provided the conditions necessary for the evolution of polygyny in some clades.  相似文献   

11.
Colony structure and reproduction in the ant, Leptothorax acervorum   总被引:1,自引:0,他引:1  
We analyzed the sociogenetic organization of the ant (Leptothoraxacervorum) from Nrnberger Reichswald in Southern Germany. Accordingto relatedness estimates from allozyme analyses, virgin femalesexuals produced in polygynous colonies were on average fullsisters, whereas workers in a pooled sample of polygynous colonieswere significantly less closely related. Rather than attributingthis to reproductive hierarchies among nest mate queens, weshow how this phenomenon could result from seasonal fluctuationsof colony composition and a decline of the production of femalesexuals in polygynous colonies. We suggest that by queen adoptionand emigration or budding, colonies easily switch from monogynyto polygyny and vice versa. Due to the long developmental timeof sexual larvae, colonies that have become polygynous onlyrecently will still produce the female sexual progeny of a singlequeen. In older polygynous nests, fewer and fewer female sexualsare produced, but colonies may fragment into monogynous budsin which the production of female sexuals may begin again. Relatednessestimates, dissection results, and field observations supportthis suggestion. This pattern of cyclical monogyny and polygynykeeps nest mate relatedness high and probably facilitates colonyfounding in boreal habitats. Preliminary data suggest that thepattern of the production of sexuals in colonies of L. acervorumfits the expectations of sex allocation theory.  相似文献   

12.
The extraordinary array of mating systems in the Scolytidae and Platypodidae has been largely overlooked by researchers interested in the evolution of sexual behaviour. This paper provides the first overview of reproductive behaviour in this important and widespread group, known to most biologists only by the reputations of tree-killing taxa. Referred to generally as ‘bark beetles’, these insects chew egg tunnels inside a variety of (usually dead) plant tissues, though most species are either phloeophagous (breeding in the inner bark of woody plants) or xylomycetophagous (all stages feeding on mutualistic fungi growing on sapwood or heartwood). In most species, permanent records of many aspects of reproductive behaviour are etched in the host; in many, engravings reveal female fecundity, eggs sired per male, hatching success, and offspring survivorship. Each gallery arm represents a good portion of a given female's lifetime reproduction, but in many species females commonly re-emerge to reproduce in one or two additional sites. In most species of bark beetles, each female initiates her own gallery, to be joined later by a male. These monogynous gallery systems are associated with mating systems defined by how long males stay with females: in a few species, males seldom if ever join females under the bark; in the vast majority of species, males stay for part or all of the oviposition period then leave to seek other mates; and a few groups exhibit permanent monogamy, in that both sexes die in their only gallery system. While these patterns emerge from an overview of the world scolytid fauna, the length of male residency has seldom been quantified, and the costs and benefits associated with male mating strategies have not been measured for any bark beetle. Male-initiated monogyny is uncommon in Scolytidae, though the rule in Platypodidae; all instances of which I am aware are summarized from a phylogenetic perspective. Inbreeding polygyny with highly biased sex ratios has arisen at least seven times in Scolytidae. These taxa are usually characterized by males being dwarfed, flightless, and uncommon. Sex determination is known for only a few examples, but both haplodiploidy and diplodiploidy have been reported. Multiple origins of harem polygyny (otherwise rare in invertebrates) add an exciting dimension to the comparative and experimental study of scolytid mating systems. In harem polygynous taxa, males initiate gallery construction. I summarize what little can be learned from the literature about the fine structure of harem polygynous mating systems in bark beetles, and the problem of measuring reproductive success. Data on the nature of harem polygyny in Pityophthorus lautus are presented, illustrating (a) the fluidity of harems; (b) that average eggs laid per gallery arm is relatively unaffected by harem size, but strongly influenced by resource quality; (c) that male egg-gain is strongly correlated with territory quality (a consequence of (b) above); and (d) the temporal patterning of immigration and emigration and its effects on gallery system sex ratios. The second half of this paper is a discussion of the evolution of bark and ambrosia beetle mating Mating systems, emphasizing sexual selection and the role of resources. Male, residence is interpreted as postcopulalory guarding—preventing sexual liaisons with wandering males. Operational sex ratio, encounter rate, synchrony of breeding, ejaculate competition, and spatiotemporal distribution of resources are discussed as evolutionary forces moulding scolytid and platypodid male postmating behaviour. The nature of male male competition is reviewed. The paucity of information on male behaviour in gallery systems is mentioned; whether or not males significantly aid females is not known. Three hypotheses are presented for why females re-emerge, a feature which strongly affects operational sex ratios. Finally, I summarize features of bark beetle existence predisposing them to the evolution of post-inseminative guarding. Male-initiated monogyny presents a puzzle. I propose that most uncontested examples can be explained by monogyny re-evolving from (male-initiated) harem polygyny, and I present an argument for the evolution of harem polygyny leading to the development of male gallery initiation. The evolution of harem polygyny in birds and mammals has attracted considerable attention. The Verner Willson Orians polygyny threshold model is discussed with respect to bark beetles in general and P. lautus in particular. Resource quality is a major factor in P. lautus harem dynamics: the cost to females of joining harems is apparently slight compared to benefits accrued from moving into sites with higher quality inner bark. Female-biased adult sex ratios have been suggested to lead to harem polygyny, and literature and original data pertinent to this hypothesis are examined. The geometric constraints model, based on the polygyny threshold concept but tailored to bark beetles, is proposed to account for the failure of most species to evolve harem polygyny, and testable predictions are derived that interrelate breeding systems, habitat quality, and progeny size. The evolution of Inbreeding is briefly covered, and two routes to inbreeding polygyny are suggested.  相似文献   

13.
We investigated the fine genetic structure of colonies of the ant, Leptothorax acervorum, to examine how queens share parentage (skew) in a social insect with multiple queens (polygyny). Overall, 494 individuals from eight polygynous field colonies were typed at up to seven microsatellite loci each. The first main finding was that surprisingly many sexual progeny (60% of young queens and 49% of young males) were not the offspring of the extant queens within their colonies. This implies that a high turnover (brief reproductive lifespan) of queens within colonies could be an important feature of polygyny. The second main result was that in most colonies relatedness among sexual progeny fell significantly below that expected among full siblings, proving that these progeny were produced by more than one singly-mated queen, but that skew in two colonies where the data permitted its calculation was moderate to high. However, relative to a German population, the study population is characterized by low queen-queen relatedness and low skew in female production, which is in line with the predictions of skew theory.  相似文献   

14.
Past climate shifts have led to major oscillations in species distributions. Hence historical contingencies and selective processes occurring during such phases may be determinants for understanding the forces that have shaped extant phenotypes. In the plant-ant Petalomyrmex phylax (Formicinae), we observed spatial variation in number of queens in mature colonies, from several queens (high polygyny) in the median part of its distribution to a moderate number of queens (weak polygyny) or even only a single queen (monogyny) in the southwesternmost populations. This variation did not correlate with indicators of variation in current nest site availability and colony turnover, the supposedly determinant selective forces acting on gyny in ants. We show here that the variation in social structure correlates with a historical process corresponding to a progressive colonization of coastal southern Cameroon by the ant. Using microsatellite markers, we observed a clear pattern of isolation by distance except for the southernmost populations. Measures of genetic variability that do not take into account allele size were at equilibrium in all except the southernmost populations, suggesting recent foundation of the latter. Measures of genetic diversity taking into account allele size showed a clinal north-south decrease in variance of allele size. We propose that southern populations have yet to regain allele size variance after bottlenecks associated with the foundation of new populations, and that this variance is regained over time. Hence variation in social structure mirrors an old but still active southward colonization process or metapopulation dynamics, possibly in association with an expansion of the rain forest habitat during the late Holocene. A low number of queens in ant colonies is typically associated with strong dispersal capacity. We therefore suggest that the initial founders of new populations belong to the monogynous to weakly polygynous phenotype, and that queen number progressively increases in older populations.  相似文献   

15.
We investigated sex allocation in the Neotropical ant Allomerus octoarticulatus var. demerarae . Because Allomerus is a plant symbiont, we could make geographically extensive collections of complete colonies and of foundresses in saplings, allowing us to estimate not only population- and colony-level sex allocation but also colony resource levels and the relatednesses of competing ant foundresses. This species exhibits a strongly split sex ratio, with 80% of mature colonies producing ≥90% of one sex or the other. Our genetic analyses (DNA microsatellites) reveal that Allomerus has a breeding system characterized by almost complete monogyny and a low frequency of polyandry. Contrary to theoretical explanations, we find no difference in worker relatedness asymmetries between female- and male-specialist colonies. Furthermore, no clear link was found between colony sex allocation and life history traits such as the number of mates per queen, or colony size, resource level, or fecundity. We also failed to find significant support for male production by workers, infection by Wolbachia , local resource competition, or local mate competition. We are left with the possibility that Allomerus exhibits split sex ratios because of the evolution of alternative biasing strategies in queens or workers, as recently proposed in the literature.  相似文献   

16.
We investigated sex allocation in three U.K. populations ofthe facultatively polygynous ant Leptothorax acervorum over1-3 years. The first main finding was that, across sites, thepopulation sex-investment ratio changed from significantly femalebiased to significantly male biased with increasing polygyny.This was consistent with workers controlling sex allocationand reacting to changes in their population-level relatedness asymmetry.It was also consistent with local resource competition due to reproductionby colony budding under polygyny. Worker control was supportedby the finding that queen number had no effect on sex allocationamong polygynous colonies. The second main result was that monogynouscolonies consistently produced more female-biased sex-investmentratios than polygynous colonies in one site only (Santon). Theresults from Santon supported both the relative relatednessasymmetry hypothesis and the idea of sex ratio compensationdue to colony budding. The workers' response to their population-levelrelatedness asymmetry reinforced the case for relatedness asymmetrybeing influential at the colony level. The other populationscould have lacked split sex ratios because polygynous colonieswere either comparatively rare or common, making them behaveas almost entirely monogynous (Aberfoyle) or polygynous (Roydon) populations.In Roydon, this was consistent with the inference from allozyme datathat monogynous and polygynous colonies did not differ in theirworker relatedness asymmetries. The final principal findingwas that, of hypotheses linking the colony sex-investment ratiowith sexual productivity, there was support for the constantfemale hypothesis but not for the constant male, cost variation,or multifaceted parental investment hypotheses.  相似文献   

17.
Zusammenfassung Untersuchungen an 8 Kolonien vonMyrmecina graminicola ergaben, dass bei dieser Art neben monogynen auch echt polygyne Völker vorkommen. Im Gegensatz zu den Ergebnissen vonBaroni-Urbani (1968) ist daher eine funktionelle Monogynie beiMyrmecina nicht anzunehmen Ebenso kann eine obligatorische Monogynie ausgeschlossen werdent. Ob diese Art fakultative polygyn oder — wahrscheinlicher — regalmässig monogyn ist, kann noch nicht sicher entschieden werden.
Summary By investigation on 8 colonies ofMyrmecina graminicola monogyny as well as real polygyny was proved in this species. Therefore contrary to the results ofBaroni-Urbani (1968) a functional monogyny ofMyrmecina cannot be supposed. An obligatory monogyny as well can be excluded. Whether this species is facultatively polygynous or—more likely—regularely monogynous, can't yet surely be decided.


an der Immenburg 1, 53 Bonn, Rép. Féd. All.  相似文献   

18.
While colonies of most tropical species of the ant genus Cardiocondyla regularly contain multiple egg-laying queens (polygyny), single-queening (monogyny) evolved convergently in a Palearctic clade of Cardiocondyla and in Southeast Asian C.argyrotricha.” In the latter species, monogyny is probably an adaptation to patchily distributed but highly stable nest sites. In experimentally orphaned colonies of C.argyrotricha,” the first emerging queen shed its wings, began to lay eggs, and stayed mostly on the brood pile. Queens that emerged later remained in the peripheral areas of the nest without dispersing but retained their wings even after mating in the nest. Aggressive interactions among queens and between workers and queens were occasionally observed, but it appears that the order of queen emergence determines which of them will become reproductive and inherit the nest. We conclude that young queens commonly compete for nest inheritance in some species of Cardiocondyla and that queen–queen antagonism does not necessarily involve lethal fighting.  相似文献   

19.
Reproductive skew - the extent to which reproduction is unevenly shared between individuals in a social group - varies greatly between and within animal species. In this study, we investigated how queens share parentage in polygynous (multiple queen) colonies of the Mediterranean ant Pheidole pallidula. We used highly polymorphic microsatellites markers to determine parentage of gynes (new queens), males and workers in P. pallidula field colonies. The comparison of the genotypes of young and adult workers revealed a very low queen turnover (less than 2%). The first main finding of the study of reproductive skew in these colonies was that there was a significant departure from equal contribution of queens to gyne, male and worker production. Reproductive skew was greater for male production than for queen and worker production. There was no relationship between the magnitude of the reproductive skew and the number of reproductive queens per colony, their relatedness and the overall colony productivity, some of the factors predicted to influence the extent of reproductive skew. Finally, our study revealed for the first time a trade-off in the relative contribution of nestmate queens to gyne and worker production. The queens contributing more to gyne production contributed significantly less to worker production.  相似文献   

20.
The behavioral traits that shape the structure of animal societies vary considerably among species but appear to be less flexible within species or at least within populations. Populations of the ant Leptothorax acervorum differ in how queens interact with other queens. Nestmate queens from extended, homogeneous habitats tolerate each other and contribute quite equally to the offspring of the colony (polygyny: low reproductive skew). In contrast, nestmate queens from patchy habitats establish social hierarchies by biting and antennal boxing, and eventually only the top-ranking queen of the colony lays eggs (functional monogyny: high reproductive skew). Here we investigate whether queen-queen behavior is fixed within populations or whether aggression and high skew can be elicited by manipulation of socio-environmental factors in colonies from low skew populations. An increase of queen/worker ratio and to a lesser extent food limitation elicited queen-queen antagonism in polygynous colonies from Nürnberger Reichswald similar to that underlying social and reproductive hierarchies in high-skew populations from Spain, Japan, and Alaska. In manipulated colonies, queens differed more in ovarian status than in control colonies. This indicates that queens are in principle capable of adapting the magnitude of reproductive skew to environmental changes in behavioral rather than evolutionary time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号