首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The genes encoding mouse and human acetylcholinesterases have been cloned from genomic and cosmid libraries. Restriction analysis and a comparison of sequence with the cDNAs have defined the exon-intron boundaries. In mammals, three invariant exons encode the signal peptide and the amino-terminal 535 amino acids common to all forms of the enzyme whereas alternative exon usage of the next exon accounts for the structural divergence in the carboxyl termini of the catalytic subunits. mRNA protection studies show that the cDNA encoding the hydrophilic catalytic subunits represents the dominant mRNA species in mammalian brain and muscle whereas divergent mRNA species are evident in cells of hematopoietic origin (bone marrow cells and a erythroleukemia cell line). Analyses of mRNA species in these cells and the genomic sequence have enabled us to define two alternative exons in addition to the one found in the cDNAs; they encode unique carboxyl-terminal sequences. One mRNA consists of a direct extension through the intervening sequence between the common exon and the 3' exon deduced from the cDNA. This sequence encodes a subunit lacking the cysteine critical to oligomer formation. Another mRNA results from a splice that encodes a stretch of hydrophobic amino acids immediately upstream of a stop codon. This exon, when spliced to the upstream invariant exons, should encode glycophospholipid-linked species of the enzyme. Homologous sequence, identity of exon-intron junctions, and identity of position of the stop codon are seen for this region in mouse and human. Polymerase chain reactions carried out across the expected intron region and mRNA protection studies show that this splice occurs in mouse bone marrow and erythroleukemia cells yielding the appropriate cDNA.  相似文献   

2.
3.
The complete nucleotide (nt) sequence of the cDNA encoding the chicken poly(ADP-ribose) synthetase has been determined. Positive clones overlapping the 5' region or the 3' region of the cDNA have been isolated from a lambda gt 10 hen oviduct cDNA library using two human cDNA probes. The missing middle portion has been obtained by the polymerase chain reaction procedure. A single 3033-nt open reading frame from start codon to stop codon encodes a sequence of 1011 amino acid residues. The alignment of this sequence with those from human and mouse reveals overall identities of 79% and 77%, respectively. However, an identity of about 82% is obtained in the DNA-binding domain within the two zinc fingers, and an even higher similarity (85-87%) is observed in the NAD-binding domain. The isolated clones consistently hybridize on chicken Northern blots to an mRNA species of about 4 kb, whereas they do not cross-hybridize with RNA blots of Drosophila melanogaster. Thus, it appears that, even if the functional properties of the enzyme are maintained, the cDNA identity will be much decreased in nonvertebrate organisms.  相似文献   

4.
A region of 25 nucleotides is highly conserved in genes coding for the alpha, beta, gamma, and delta subunits of the nicotinic acetylcholine receptor (AChR) of human, mouse, calf, chicken, and Torpedo. Based on this observation, a 2-fold degenerate oligonucleotide was synthesized and used as a probe to screen a cDNA library made from a mouse myogenic cell line. Clones coding for the beta, gamma, and delta subunits were identified by the probe. The protein sequence deduced from the beta subunit clones codes for a precursor polypeptide of 501 amino acids with a calculated molecular weight of 56,930 daltons, which includes a signal peptide of 23 amino acids. The protein sequence and structural features of the beta subunits of mouse, calf, and Torpedo are conserved. A clone coding for the mouse gamma subunit was isolated, and its identity was confirmed by alignment of its sequence to previously published cDNA sequences for the mouse and calf gamma subunits. The clone contained approximately 200 nucleotides more at its 3' end untranslated region than a mouse gamma clone recently described. Northern blot analysis, utilizing as probes these beta and gamma subunit cDNAs and previously characterized alpha and delta subunit cDNAs, shows that the steady-state levels of the four AChR mRNAs increase coordinately during terminal differentiation of cultured C2 and C2i mouse myoblasts. The increase in mRNA levels can account for the rise of cell surface receptors during myogenesis and suggests that the muscle AChR genes may be regulated during development by a common mechanism. Utilization of this oligonucleotide probe should prove useful for screening a variety of libraries made from different species and tissues which are known to express AChRs.  相似文献   

5.
A cDNA encoding acetylcholinesterase (AChE) (EC 3.1.1.7) from Torpedo californica was isolated and from its nucleotide sequence the entire amino acid sequence of the processed protein and a portion of the leader peptide has been deduced. Approximately 70% of the tryptic peptides from the catalytic subunit of the 11 S form have been sequenced, and a comparison of the peptide sequences with the sequence inferred from the cDNA suggests that the cDNA sequence derives from mRNA for the 11 S form of the enzyme. The amino acid sequence is preceded by a hydrophobic leader peptide and contains an open reading frame encoding for 575 amino acids characteristic of a secreted globular protein. Eight cysteines, most of which are disulfide linked, are found along with four potential sites of N-linked glycosylation. The active-site serine is located at residue 200. Local homology is found with other serine hydrolases in the vicinity of the active site, but the enzyme shows striking global homology with the COOH-terminal portion of thyroglobulin. Further comparison of the amino acid sequences of the individual enzyme forms with other cDNA clones that have been isolated should resolve the molecular basis for polymorphism of the AChE species.  相似文献   

6.
7.
The nicotinic acetylcholine receptor and a receptor-associated protein of 43 kDa are the major proteins present in postsynaptic membranes isolated from Torpedo electric organ. Immunochemical analyses indicated that a protein sharing antigenic determinants with the receptor-associated protein is also present at receptor clusters of muscle cell lines and postsynaptic membranes of vertebrate neuromuscular junctions. We now provide definitive proof that a homolog of the 43-kDa protein exists in mammals. Complimentary DNA clones encoding the complete protein sequence have been isolated from the mouse muscle cell line, BC3H1. We heretofore refer to these proteins as nicotinic receptor-associated proteins at synapses or N-RAP-syns. The deduced sequence of mouse RAPsyn has 412 amino acids and a molecular mass of 46,392 daltons. The overall identity with Torpedo RAPsyn is 70%; some regions are extremely well conserved and are therefore postulated to be functionally important. Important domains, including the amino terminus and a cAMP-dependent protein kinase phosphorylation site, are conserved between species. Several structural features are consistent with the proposal that RAPsyn is a peripheral membrane protein that associates with membranes by virtue of covalently bound myristate. Although multiple mRNAs were previously identified in Torpedo electric organ, RNA blot analysis reveals a single polyadenylated RAPsyn mRNA of approximately equal to 2.0 kilobases in newborn and 4-week-old mouse muscle. Finally, genomic DNA blot analysis indicates that a single N-RAPsyn gene is present in the mouse genome.  相似文献   

8.
9.
Acetylcholinesterase exists predominantly as a secreted enzyme which remains cell-associated at specific extracellular locations. Its extensive structural diversity appears responsible for the unique cellular disposition of the enzyme. To examine the molecular basis of the structural divergence of acetylcholinesterase species, we hybridized total RNA from Torpedo californica electric organ with restriction fragments from a cDNA encoding the catalytic subunits of asymmetric species of acetylcholinesterase. Multiple RNA species up to 14 kilobases in length can be detected on Northern blots using a full-length cDNA for hybridization. Each of these RNA species also hybridizes with smaller restriction fragments within the open reading frame and 3'-untranslated region of the cDNA. This indicates that the entire open reading frame plus the 3'-untranslated region is contained in the large RNA species. RNase protection experiments revealed at least three points of divergence for the message species. One occurs within the COOH-terminal portion of the open reading frame at a position just 5' to the TGA stop codon. This divergence accounts for the two classes of acetylcholinesterase found in abundance in Torpedo. The site of splicing has been further defined by isolating a genomic clone containing the exon serving as the potential splice donor. We find a divergence between the cDNA and genomic DNA at the position estimated by the protection experiments. A less abundant divergence in mRNA can also be detected in the 3'-untranslated region. Another divergence occurs as a deleted sequence within the 5'-noncoding region and may be important for controlling translation efficiency. Since it is hypothesized that a single gene encodes acetylcholinesterase, the divergences in the very 3' region of the open reading frame and the 5'-noncoding region correspond to presumed splice junction boundaries where alternative RNA splicing occurs.  相似文献   

10.
Lysyl oxidase cDNA clones were identified by their reactivity with anti-bovine lysyl oxidase in a neonatal rat aorta cDNA lambda gt11 expression library. A 500-bp cDNA sequence encoding four of six peptides derived from proteolytic digests of bovine aorta lysyl oxidase was found from the overlapping cDNA sequences of two positive clones. The library was rescreened with a radiolabeled cDNA probe made from one of these clones, thus identifying an additional 13 positive clones. Sequencing of the largest two of these overlapping clones resulted in 2672 bp of cDNA sequence containing partial 5'- and 3'-untranslated sequences of 286 and 1159 nucleotides, respectively, and a complete open reading frame of 1227 bp encoding a polypeptide of 409 amino acids (46 kDa), consistent with the 48 +/- 3 kDa cell-free translation product of rat smooth muscle cell RNA that was immunoprecipitated by anti-bovine lysyl oxidase. The rat aorta cDNA-derived amino acid sequence contains the sequence of each of the six peptides isolated and sequenced from the 32-kDa bovine aorta enzyme, including the C-terminal peptide with sequence identity of 96%. Northern blots screened with lysyl oxidase cDNA probes identified hybridizing species of 5.8 and 4.5 kb in mRNA of rat aorta and lung, while dot blot analyses were negative for lysyl oxidase mRNA in preparations of rat brain, liver, kidney, and heart. A 258-bp segment of the 3'-untranslated region of lysyl oxidase cDNA is 93% identical with a highly conserved region of the 3'-untranslated sequence of rat elastin cDNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
cDNA clones encoding the human N-cadherin cell adhesion molecule have been isolated from an embryonic muscle library by screening with an oligonucleotide probe complementary to the chick brain sequence and chick brain cDNA probe lambda N2. Comparison of the predicted protein sequences revealed greater than 91% homology between chick brain, mouse brain, and human muscle N-cadherin cDNAs over the 748 amino acids of the mature, processed protein. A single polyadenylation site in the chick clone was also present and duplicated in the human muscle sequence. Immediately 3' of the recognition site in chick a poly(A) tail ensued; however, in human an additional 800 bp of 3' untranslated sequence followed. Northern analysis identified a number of major N-cadherin mRNAs. These were of 5.2, 4.3, and 4.0 kb in C6 glioma, 4.3 and 4.0 kb in human foetal muscle cultures, and 4.3 kb in human embryonic brain and mouse brain with minor bands of 5.2 kb in human muscle and embryonic brain. Southern analysis of a panel of somatic cell hybrids allowed the human N-cadherin gene to be mapped to chromosome 18. This is distinct from the E-cadherin locus on chromosome 16. Therefore, it is likely that the cadherins have evolved from a common precursor gene that has undergone duplication and migration to other chromosomal locations.  相似文献   

12.
We have isolated mouse cDNA clones that are homologous to human Parkin gene, which was recently found to be responsible for the pathogenesis of autosomal recessive juvenile parkinsonism (AR-JP). One of these cDNA clones had the 1,392-bp open reading frame encoding a protein of 464 amino acids with presumed molecular weight of 51,615. The amino acid sequence of mouse parkin protein exhibits 83.2% identity to human Parkin protein, including the ubiquitin-like domain at the N-terminus (identity = 89.5%) and the RING finger-like domain at the C-terminus (identity = 90.6%). Two other clones had the 783-bp open reading frame encoding a truncated protein of 261 amino acids without RING finger-like domain. It was proved to be a novel splicing variant by 3′-RACE method. Northern blot analysis revealed that mouse parkin gene is expressed in various tissues including brain, heart, liver, skeletal muscle, kidney, and testis. It is notable that mouse parkin gene expression appears evident in 15th day mouse embryo and increases toward the later stage of development. These mouse parkin cDNA clones will be useful for elucidating the essential physiological function of parkin protein in mammals. Received: 5 May 1999 / Accepted: 11 February 2000  相似文献   

13.
We earlier identified the GTPBP1 gene which encodes a putative GTPase structurally related to peptidyl elongation factors. This finding was the result of a search for genes, the expression of which is induced by interferon-gamma in a macrophage cell line, THP-1. In the current study, we probed the expressed sequence tag database with the deduced amino acid sequence of GTPBP1 to search for partial cDNA clones homologous to GTPBP1. We used one of the partial cDNA clones to screen a mouse brain cDNA library and identified a novel gene, mouse GTPBP2, encoding a protein consisting of 582 amino acids and carrying GTP-binding motifs. The deduced amino acid sequence of mouse GTPBP2 revealed 44.2% similarity to mouse GTPBP1. We also cloned a human homologue of this gene from a cDNA library of the human T cell line, Jurkat. GTPBP2 protein was found highly conserved between human and mouse (over 99% identical), thereby suggesting a fundamental role of this molecule across species. On Northern blot analysis of various mouse tissues, GTPBP2 mRNA was detected in brain, thymus, kidney and skeletal muscle, but was scarce in liver. Level of expression of GTPBP2 mRNA was enhanced by interferon-gamma in THP-1 cells, HeLa cells, and thioglycollate-elicited mouse peritoneal macrophages. In addition, we determined the chromosomal localization of GTPBP1 and GTPBP2 genes in human and mouse. The GTPBP1 gene was mapped to mouse chromosome 15, region E3, and human chromosome 22q12-13.1, while the GTPBP2 gene is located in mouse chromosome 17, region C-D, and human chromosome 6p21-12.  相似文献   

14.
Three overlapping cDNA clones encoding methylmalonate-semialdehyde dehydrogenase (MMSDH; 2-methyl-3-oxopropanoate:NAD+ oxidoreductase (CoA-propanoylating); EC 1.2.1.27) have been isolated by screening a rat liver lambda gt 11 library with nondegenerate oligonucleotide probes synthesized according to polymerase chain reaction-amplified portions coding for the N-terminal amino acid sequence of rat liver MMSDH. The three clones cover a total of 1942 base pairs of cDNA, with an open reading frame of 1569 base pairs. The authenticity of the composite cDNA was confirmed by a perfect match of 43 amino acids known from protein sequencing. The composite cDNA predicts a 503 amino acid mature protein with M(r) = 55,330, consistent with previous estimates. Polymerase chain reaction was used to obtain the sequence of the 32 amino acids corresponding to the mitochondrial entry peptide. Northern blot analysis of total RNA from several rat tissues showed a single mRNA band of 3.8 kilobases. Relative mRNA levels were: kidney greater than liver greater than heart greater than muscle greater than brain, which differed somewhat from relative MMSDH protein levels determined by Western blot analysis: liver = kidney greater than heart greater than muscle greater than brain. A 1423-base pair cDNA clone encoding human MMSDH was isolated from a human liver lambda gt 11 library. The human MMSDH cDNA contains an open reading frame of 1293 base pairs that encodes the protein from Leu-74 to the C terminus. Human and rat MMSDH share 89.6 and 97.7% identity in nucleotide and protein sequence, respectively. MMSDH clearly belongs to a superfamily of aldehyde dehydrogenases and is closely related to betaine aldehyde dehydrogenase, 2-hydroxymuconic semialdehyde dehydrogenase, and class 1 and 2 aldehyde dehydrogenases.  相似文献   

15.
16.
cDNA libraries have been constructed from mRNAs isolated from mature male DBA/2 mouse submaxillary glands. Several recombinant plasmids have been assigned to particular mRNA species and their in vitro translation products by HART and hybrid selection. Clones containing copies of two abundant mRNA species that showed no sexual dimorphism were selected for detailed characterisation. Nucleotide sequences determined from one series of clones define an 850 nucleotide mRNA encoding a polypeptide of 16.5 kd having an N-terminal signal sequence, an acidic core and four glycosylation sites. A second family of clones correspond to an mRNA of 800 nucleotides, the sequence of which can be interpreted as coding for an intracellular protein of 14.7 kd. Computer searches of protein and nucleic acid sequences have not revealed the identity of either of these submaxillary gland products.  相似文献   

17.
L M Hall  P Spierer 《The EMBO journal》1986,5(11):2949-2954
The Ace locus of Drosophila melanogaster has been mapped at the molecular level. cDNA clones from the locus have been isolated and their sequence determined, confirming that Ace forms the structural gene for acetylcholinesterase (AChE). The cDNAs have a 1950 nucleotide open reading frame from which the complete amino acid sequence of AChE has been deduced. The Drosophila enzyme is found to have extensive homology to the known sequence of Torpedo AChE. Ace cDNAs have an unusual structure with a long 5' leader and several short upstream open reading frames.  相似文献   

18.
A full-length C-reactive protein (CRP) cDNA clone has been isolated from a CBA/J-strain-mouse acute-phase liver library. The 1614-nucleotide cDNA specifies mRNA 5' and 3' untranslated regions of 81 and 858 bases respectively that flank 675 bases encoding mouse pre-CRP. The derived amino acid sequence predicts a 19-residue leader peptide followed by a 206-residue mature mouse CRP that shows considerable sequence identity with both human and rabbit CRP. Northern-blot analysis of mouse liver CRP mRNA concentrations after inflammatory stimuli and comparison with hepatic induction of mRNA for the major mouse acute-phase protein serum amyloid P component established that CRP, a major acute-phase reactant in human and rabbit, is a minor acute-phase reactant in mouse. The size and organization of the mouse CRP mRNA 5' and 3' untranslated regions are significantly different from those of human and rabbit CRP mRNA and may have implications for its anomalous minimal induction during acute inflammation.  相似文献   

19.
We have isolated mouse DLG6 (mDLG6) cDNA clones by RT-PCR and then by using the RT-PCR products to screen a mouse brain cDNA library. The deduced amino acid sequence of mDLG6 shows 79.2% and 82.7% overall identity to human (hDLG6) and rat DLG6 (rDLG6), respectively. In situ hybridization revealed that mDLG6 mRNA is predominantly expressed in embryonic and adult brain.  相似文献   

20.
cDNA clones coding for a catalytic subunit of acetylcholinesterase were isolated from cDNA libraries constructed from Torpedo marmorata electric organ. The nucleotide sequence of the cloned cDNAs codes for a 599-amino acid precursor containing a 24-amino acid signal peptide. This primary structure has been compared with the sequences of Torpedo californica and Drosophila melanogasta acetylcholinesterases, and with that of human butyrylcholinesterase. Genomic blot experiments carried out with cDNA restriction fragments used as hybridization probes are in agreement with the existence of a single gene coding for the different catalytic subunits of Torpedo acetylcholinesterase. Unexpectedly, we observed multiple 5'-untranslated regions, which may contain several initiation codons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号