首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Proper execution of chromosome segregation relies on tight control of attachment of chromosomes to spindle microtubules. This is monitored by the mitotic checkpoint that allows chromosome segregation only when all chromosomes are stably attached. Proper functioning of the attachment and checkpoint processes is thus important to prevent chromosomal instability. Both processes rely on the mitotic kinase Mps1.

Principal Finding

We present here two cell lines in which endogenous Mps1 has been stably replaced with a mutant kinase (Mps1-as) that is specifically inhibited by bulky PP1 analogs. Mps1 inhibition in these cell lines is highly penetrant and reversible. Timed inhibition during bipolar spindle assembly shows that Mps1 is critical for attachment error-correction and confirms its role in Aurora B regulation. We furthermore show that Mps1 has multiple controls over mitotic checkpoint activity. Mps1 inhibition precludes Mad1 localization to unattached kinetochores but also accelerates mitosis. This acceleration correlates with absence of detectable mitotic checkpoint complex after Mps1 inhibition. Finally, we show that short-term inhibition of Mps1 catalytic activity is sufficient to kill cells.

Conclusions/Significance

Mps1 is involved in the regulation of multiple key processes that ensure correct chromosome segregation and is a promising target for inhibition in anti-cancer strategies. We report here two cell lines that allow specific and highly penetrant inhibition of Mps1 in a reproducible manner through the use of chemical genetics. Using these cell lines we confirm previously suggested roles for Mps1 activity in mitosis, present evidence for novel functions and examine cell viability after short and prolonged Mps1 inhibition. These cell lines present the best cellular model system to date for investigations into Mps1 biology and the effects of penetrance and duration of Mps1 inhibition on cell viability.  相似文献   

2.
Polo-like kinases regulate many aspects of mitotic and meiotic progression from yeast to man. In early mitosis, mammalian Polo-like kinase 1 (Plk1) controls centrosome maturation, spindle assembly, and microtubule attachment to kinetochores. However, despite the essential and diverse functions of Plk1, the full range of Plk1 substrates remains to be explored. To investigate the Plk1-dependent phosphoproteome of the human mitotic spindle, we combined stable isotope labeling by amino acids in cell culture with Plk1 inactivation or depletion followed by spindle isolation and mass spectrometry. Our study identified 358 unique Plk1-dependent phosphorylation sites on spindle proteins, including novel substrates, illustrating the complexity of the Plk1-dependent signaling network. Over 100 sites were validated by in vitro phosphorylation of peptide arrays, resulting in a broadening of the Plk1 consensus motif. Collectively, our data provide a rich source of information on Plk1-dependent phosphorylation, Plk1 docking to substrates, the influence of phosphorylation on protein localization, and the functional interaction between Plk1 and Aurora A on the early mitotic spindle.During mitosis, multiple processes, such as mitotic entry, spindle assembly, chromosome segregation, and cytokinesis, must be carefully coordinated to ensure the error-free distribution of chromosomes into the newly forming daughter cells. The physical separation of the chromosomes to opposite poles of the cell is driven by the mitotic spindle, a proteinaceous and highly dynamic microtubule (MT)1-based macromolecular machine. Spindle assembly begins early in mitosis and is completed when the bipolar attachment of microtubules to kinetochore (KT) pairs is achieved (1, 2). Polo-like kinase 1 (Plk1), a serine/threonine-specific kinase first identified in Drosophila (3), is one of the key regulators of this essential mitotic process and has therefore attracted much attention (46). In agreement with its diverse functions, the localization of Plk1 during mitosis is dynamic. Plk1 first associates with centrosomes in prophase before it localizes to spindle poles and KTs in prometaphase and metaphase. During anaphase, Plk1 is recruited to the central spindle and finally accumulates at the midbody during telophase. Proteomics studies using oriented peptide libraries have shown that two so-called polo boxes at the C-terminal end of Plk1, the polo box domain (PBD), are crucial for the localization of this kinase to cellular structures (7, 8). This domain binds to specific phosphorylated sequence motifs that are created by other priming kinases or are self-primed by Plk1 itself, thus providing an efficient mechanism to regulate localization and substrate selectivity in time and space (911).Despite the pleiotropic and critical functions of Plk1 during mitosis, only a limited number of target proteins and phosphorylation sites on substrates have so far been identified or studied in detail (46, 12). The difficulties in identification of bona fide Plk1 substrates stem from the low abundance of some substrates, technical limitations for determining in vivo phosphorylation sites, the requirement for Plk1 localization for recognition of some substrates, and the possibility that Plk1 may phosphorylate a broader consensus motif than determined previously (13). Recent developments in mass spectrometry (MS)-based proteomics have allowed the identification of a large number of in vivo phosphorylation sites from complex samples (14). However, the nature of the kinase(s) responsible for most of these phosphorylation events is still unclear, and the assignment of phosphorylation sites to individual kinases remains a challenging task. Previously, we explored the human mitotic spindle by MS and successfully identified a large number of novel spindle proteins and phosphorylation sites (15, 16). Now, the development of quantitative methods to monitor in vivo phosphorylation changes in complex samples (1719) represents a unique opportunity to address the role of individual kinases in spindle function.To study Plk1 function at the mitotic spindle, we combined quantitative proteomics using stable isotope labeling by amino acids in cell culture (SILAC) (20) with the isolation of human mitotic spindles and phosphopeptide enrichment. To expand the experimental coverage of Plk1 substrates and gain further insight into direct and indirect functions of Plk1, we compared the phosphoproteomes of mitotic spindles isolated from cells lacking Plk1 activity with spindles from cells with fully active kinase. Two independent approaches were used to interfere with Plk1 activity: protein depletion using an inducible small hairpin (shRNA) cell line and selective inhibition of the kinase by the small molecule inhibitor ZK-thiazolidinone (TAL) (21). Phosphorylation sites found to be down-regulated after Plk1 inhibition/depletion were subsequently validated using in vitro phosphorylation of synthetic peptide arrays. This approach identified many candidate Plk1 substrates, allowed confirmation of direct phosphorylation by Plk1 of more than 100 sites identified in vivo, and suggested a broader phosphorylation consensus motif for this kinase. Collectively, our data set provides a rich resource for in-depth studies on the spindle-associated Plk1-dependent phosphoproteome. This is illustrated by selective follow-up studies in which we validated the Plk1-dependent localization of substrates to centrosomes and kinetochores. In particular, using a phosphospecific antibody, we confirmed Plk1-dependent CENP-F phosphorylation in vivo and demonstrated that CENP-F localization to kinetochores depends on Plk1 kinase activity. Furthermore, we identified several Aurora A-dependent phosphorylation events that are regulated by Plk1, supporting the emerging view of an intimate functional relationship between Plk1 and Aurora A kinase (22, 23).  相似文献   

3.
Jae-Hoon Ji 《FEBS letters》2010,584(20):4299-4305
Polo-like kinase-1 (Plk1) is phosphorylated on Thr210 for activation during mitosis. Here, we investigated the question of which kinase(s) is the specific upstream kinase of mitotic Plk1. Upstream kinases of Plk1 were purified from mitotic cell extracts through column chromatography procedures, and identified by mass spectrometry. Candidates for Plk1 kinase included p21-activated kinase, aurora A, and mammalian Ste20-like kinases. Immunoprecipitates of these proteins from mitotic cell extracts phosphorylated Plk1 on Thr210. Even if the activity of Aurora A was blocked with a specific inhibitor, Plk1 phosphorylation still occurred, suggesting that function of Plk1 could be controlled by these kinases for proper mitotic progression, as well as by Aurora A in very late G2 phase for the beginning of mitosis.

Structured abstract

MINT-7996332: PAK1 (uniprotkb:Q13153) physically interacts (MI:0915) with PLK1 (uniprotkb:P53350) by pull down (MI:0096)MINT-7996345: PAK3 (uniprotkb:O75914) physically interacts (MI:0915) with PLK1 (uniprotkb:P53350) by pull down (MI:0096)  相似文献   

4.

Background

CDK11p58 is a mitotic protein kinase, which has been shown to be required for different mitotic events such as centrosome maturation, chromatid cohesion and cytokinesis.

Methodology/Principal Findings

In addition to these previously described roles, our study shows that CDK11p58 inhibition induces a failure in the centriole duplication process in different human cell lines. We propose that this effect is mediated by the defective centrosomal recruitment of proteins at the onset of mitosis. Indeed, Plk4 protein kinase and the centrosomal protein Cep192, which are key components of the centriole duplication machinery, showed reduced levels at centrosomes of mitotic CDK11-depleted cells. CDK11p58, which accumulates only in the vicinity of mitotic centrosomes, directly interacts with the centriole-associated protein kinase Plk4 that regulates centriole number in cells. In addition, we show that centriole from CDK11 defective cells are not able to be over duplicated following Plk4 overexpression.

Conclusion/Significance

We thus propose that CDK11 is required for centriole duplication by two non-mutually-exclusive mechanisms. On one hand, the observed duplication defect could be caused indirectly by a failure of the centrosome to fully maturate during mitosis. On the other hand, CDK11p58 could also directly regulate key centriole components such as Plk4 during mitosis to trigger essential mitotic centriole modifications, required for centriole duplication during subsequent interphase.  相似文献   

5.
Mitosis is orchestrated by several protein kinases including Cdks, Plks and Aurora kinases. Despite considerable progress toward understanding the individual function of these protein kinases, how their activity is coordinated in space and time during mitosis is less well understood. In a recent article published in the Journal of Cell Biology, we show that CDK-1 regulates PLK-1 activity during mitosis in C. elegans embryos through multisite phosphorylation of the PLK-1 activator SPAT-1 (Aurora Borealis, Bora in human). SPAT-1 variants mutated on CDK-1 phosphorylation sites results in severe delays in mitotic entry, mimicking embryos lacking spat-1 or plk-1 function. We further show that SPAT-1 phosphorylation by CDK-1 promotes its binding to PLK-1 and stimulates PLK-1 phosphorylation on its activator T-loop by Aurora A kinase in vitro. Likewise, we find that phosphorylation of Bora by Cdk1 promotes phosphorylation of human Plk1 by Aurora A suggesting that this mechanism is conserved in humans. These results indicate that Cdk1 regulates Plk1 by boosting its kinase activity. Here we discuss these recent findings and open questions regarding the regulation of Plk1/PLK-1 by Cdk1/CDK-1 and Bora/SPAT-1.  相似文献   

6.
7.

Background

Checkpoint kinase 1 and 2 (Chk1/Chk2), and the Aurora kinases play a critical role in the activation of the DNA damage response and mitotic spindle checkpoints. We have identified a novel inhibitor of these kinases and utilized this molecule to probe the functional interplay between these two checkpoints.

Principal Findings

Fragment screening, structure guided design, and kinase cross screening resulted in the identification of a novel, potent small molecule kinase inhibitor (VER-150548) of Chk1 and Chk2 kinases with IC50s of 35 and 34 nM as well as the Aurora A and Aurora B kinases with IC50s of 101 and 38 nM. The structural rationale for this kinase specificity could be clearly elucidated through the X-ray crystal structure. In human carcinoma cells, VER-150548 induced reduplication and the accumulation of cells with >4N DNA content, inhibited histone H3 phosphorylation and ultimately gave way to cell death after 120 hour exposure; a phenotype consistent with cellular Aurora inhibition. In the presence of DNA damage induced by cytotoxic chemotherapeutic drugs, VER-150548 abrogated DNA damage induced cell cycle checkpoints. Abrogation of these checkpoints correlated with increased DNA damage and rapid cell death in p53 defective HT29 cells. In the presence of DNA damage, reduplication could not be observed. These observations are consistent with the Chk1 and Chk2 inhibitory activity of this molecule.

Conclusions

In the presence of DNA damage, we suggest that VER-150548 abrogates the DNA damage induced checkpoints forcing cells to undergo a lethal mitosis. The timing of this premature cell death induced by Chk1 inhibition negates Aurora inhibition thereby preventing re-entry into the cell cycle and subsequent DNA reduplication. This novel kinase inhibitor therefore serves as a useful chemical probe to further understand the temporal relationship between cell cycle checkpoint pathways, chemotherapeutic agent induced DNA damage and cell death.  相似文献   

8.

Background

The protein kinases Mps1 and Polo, which are required for proper cell cycle regulation in meiosis and mitosis, localize to numerous ooplasmic filaments during prometaphase in Drosophila oocytes. These filaments first appear throughout the oocyte at the end of prophase and are disassembled after egg activation.

Methodology/Principal Findings

We showed here that Mps1 and Polo proteins undergo dynamic and reversible localization to static ooplasmic filaments as part of an oocyte-specific response to hypoxia. The observation that Mps1- and Polo-associated filaments reappear in the same locations through multiple cycles of oxygen deprivation demonstrates that underlying structural components of the filaments must still be present during normoxic conditions. Using immuno-electron microscopy, we observed triple-helical binding of Mps1 to numerous electron-dense filaments, with the gold label wrapped around the outside of the filaments like a garland. In addition, we showed that in live oocytes the relocalization of Mps1 and Polo to filaments is sensitive to injection of collagenase, suggesting that the structural components of the filaments are composed of collagen-like fibrils. However, the collagen-like genes we have been able to test so far (vkg and CG42453) did not appear to be associated with the filaments, demonstrating that the collagenase-sensitive component of the filaments is one of a number of other Drosophila proteins bearing a collagenase cleavage site. Finally, as hypoxia is known to cause Mps1 protein to accumulate at kinetochores in syncytial embryos, we also show that GFP-Polo accumulates at both kinetochores and centrosomes in hypoxic syncytial embryos.

Conclusions/Significance

These findings identify both a novel cellular structure (the ooplasmic filaments) as well as a new localization pattern for Mps1 and Polo and demonstrate that hypoxia affects Polo localization in Drosophila.  相似文献   

9.
The Mps1 family of protein kinases contributes to cell cycle control by regulating multiple microtubule cytoskeleton activities. We have uncovered a new Mps1 substrate that provides a novel link between Mps1 and the actin cytoskeleton. We have identified a conserved human Mps1 (hMps1) interacting protein and have termed Mps1 interacting protein-1 (Mip1). Mip1 defines an uncharacterized family of conserved proteins that contain coiled-coil and calponin homology domains. We demonstrate that Mip1 is a phosphoprotein that interacts with hMps1 in vitro and in vivo and is a hMps1 substrate. Mip1 exhibits dynamic localization during the cell cycle; Mip1 localizes to the actin cytoskeleton during interphase, the spindle in early mitosis and the cleavage furrow during cytokinesis. Mip1 function is required to ensure proper spindle positioning at the onset of anaphase after cells begin furrow ingression. Cells depleted of Mip1 exhibit aberrant mitotic actin filament organization, excessive membrane blebbing, dramatic spindle rocking and chromosome distribution errors during early cytokinesis producing high numbers of binucleate cells. Our data indicate that Mip1 is a newly recognized component of the actin cytoskeleton that interacts with hMps1 and that it is essential to ensure proper segregation of the genome during cell cleavage.Key words: Mps1 kinase, actin, Mip1, cytokinesis  相似文献   

10.
11.
In mammalian cells entry into and progression through mitosis are regulated by multiple mitotic kinases. How mitotic kinases interact with each other and coordinately regulate mitosis remains to be fully understood. Here we employed a chemical biology approach using selective small molecule kinase inhibitors to dissect the relationship between Cdk1 and Aurora A kinases during G2/M transition. We find that activation of Aurora A first occurs at centrosomes at late G2 and is required for centrosome separation independently of Cdk1 activity. Upon entry into mitosis, Aurora A then becomes fully activated downstream of Cdk1 activation. Inactivation of Aurora A or Plk1 individually during a synchronized cell cycle shows no significant effect on Cdk1 activation and entry into mitosis. However, simultaneous inactivation of both Aurora A and Plk1 markedly delays Cdk1 activation and entry into mitosis, suggesting that Aurora A and Plk1 have redundant functions in the feedback activation of Cdk1. Together, our data suggest that Cdk1, Aurora A, and Plk1 mitotic kinases participate in a feedback activation loop and that activation of Cdk1 initiates the feedback loop activity, leading to rapid and timely entry into mitosis in human cells. In addition, live cell imaging reveals that the nuclear cycle of cells becomes uncoupled from cytokinesis upon inactivation of both Aurora A and Aurora B kinases and continues to oscillate in a Cdk1-dependent manner in the absence of cytokinesis, resulting in multinucleated, polyploidy cells.  相似文献   

12.

Background

Polo-like kinase 1 (Plk1) is a serine/threonine protein kinase that has been implicated in the regulation of mitosis. In addition, the activation of mitogen-activated protein kinase (MAPK) is a key event in the early stage of the growth factor response. The role of Plk1 in MAPK phosphorylation in cells has not been investigated.

Methods

Immunoblot analysis was used to evaluate Plk1 and MAPK phosphorylation in cells upon stimulation with platelet-derived growth factor (PDGF). We also generated stable Plk1 knockdown (KD) cells to assess the role of Plk1 in MAPK activation and cell proliferation. Furthermore, we used a non-phosphorylatable Plk1 mutant to determine the function of Plk1 phosphorylation in these processes.

Results

Treatment with PDGF increased Plk1 phosphorylation at Thr-210 (an indication of Plk1 activation) in human airway smooth muscle cells. Plk1 KD attenuated the PDGF-induced phosphorylation of MEK1/2 and ERK1/2 as well as cell proliferation. However, phosphorylation of Raf-1 and AKT upon stimulation with PDGF was not reduced in Plk1 KD cells. Furthermore, the expression of T210A Plk1 (alanine substitution at Thr-210) inhibited the PDGF-stimulated MEK1/2 phosphorylation, ERK1/2 phosphorylation and cell proliferation.

Conclusions

Together, these findings suggest that Plk1 is activated upon growth factor stimulation, which may control the activation of MEK1/2 and ERK1/2, and smooth muscle cell proliferation.  相似文献   

13.

Background

The dual specificity phosphatase cdc25C was the first human cdc25 family member found to be essential in the activation of cdk1/cyclin B1 that takes place at the entry into mitosis. Human cdc25C is phosphorylated on Proline-dependent SP and TP sites when it becomes active at mitosis and the prevalent model is that this phosphorylation/activation of cdc25C would be part of an amplification loop with cdk1/cyclin B1.

Methodology/Principal Findings

Using highly specific antibodies directed against cdc25C phospho-epitopes, pT67 and pT130, we show here that these two phospho-forms of cdc25C represent distinct pools with differential localization during human mitosis. Phosphorylation on T67 occurs from prophase and the cdc25C-pT67 phospho-isoform closely localizes with condensed chromosomes throughout mitosis. The phospho-T130 form of cdc25C arises in late G2 and associates predominantly with centrosomes from prophase to anaphase B where it colocalizes with Plk1. As shown by immunoprecipitation of each isoform, these two phospho-forms are not simultaneously phosphorylated on the other mitotic TP sites or associated with one another. Phospho-T67 cdc25C co-precipitates with MPM2-reactive proteins while pT130-cdc25C is associated with Plk1. Interaction and colocalization of phosphoT130-cdc25C with Plk1 demonstrate in living cells, that the sequence around pT130 acts as a true Polo Box Domain (PBD) binding site as previously identified from in vitro peptide screening studies. Overexpression of non-phosphorylatable alanine mutant forms for each isoform, but not wild type cdc25C, strongly impairs mitotic progression showing the functional requirement for each site-specific phosphorylation of cdc25C at mitosis.

Conclusions/Significance

These results show for the first time that in human mitosis, distinct phospho-isoforms of cdc25C exist with different localizations and interacting partners, thus implying that the long-standing model of a cdc25C/cdk1 multi-site auto amplification loop is implausible.  相似文献   

14.
Reversible protein phosphorylation is a key regulatory mechanism of mitotic progression. Importantly, protein kinases themselves are also regulated by phosphorylation-dephosphorylation processes; hence, phosphorylation dynamics of kinases hold a wealth of information about phosphorylation networks. Here, we investigated the site-specific phosphorylation dynamics of human kinases during mitosis using synchronization of HeLa suspension cells, kinase enrichment, and high resolution mass spectrometry. In biological triplicate analyses, we identified 206 protein kinases and more than 900 protein kinase phosphorylation sites, including 61 phosphorylation sites on activation segments, and quantified their relative abundances across three specific mitotic stages. Around 25% of the kinase phosphorylation site ratios were found to be changed by at least 50% during mitotic progression. Further network analysis of jointly regulated kinase groups suggested that Cyclin-dependent kinase- and mitogen-activated kinase-centered interaction networks are coordinately down- and up-regulated in late mitosis, respectively. Importantly, our data cover most of the already known mitotic kinases and, moreover, identify attractive candidates for future studies of phosphorylation-based mitotic signaling. Thus, the results of this study provide a valuable resource for cell biologists and provide insight into the system properties of the mitotic phosphokinome.Reversible phosphorylation is a ubiquitous posttranslational protein modification that is involved in the regulation of almost all biological processes (13). In human, 518 protein kinases have been identified in the genome that phosphorylate the majority of cellular proteins and increase the diversity of the proteome by severalfold (4). Addition of a phosphate group to a protein can alter its structural, catalytic, and functional properties; hence, kinases require tight regulation to avoid unspecific phosphorylation, which can be deleterious to cells (57). As a result, cells use a variety of mechanisms to ensure proper regulation of kinase activities (8). Importantly, most kinases are also in turn regulated through autophosphorylation and phosphorylation by other kinases, thus generating complex phosphorylation networks. In particular, phosphorylation on activation segments is a common mechanism to modulate kinase activities (911), but additional phosphorylation sites are also frequently required for fine tuning of kinase localizations and functions (12). Some kinases contain phosphopeptide binding domains that recognize prephosphorylated sites on other kinases, resulting in processive phosphorylation and/or targeting of kinases to distinct cellular locations (1316). Because such priming phosphorylation events depend on the activities of the priming kinases, these motifs act as conditional docking sites and restrict the interaction with docking kinases to a particular point in time and physiological state. In addition, phosphorylation sites may act through combinatorial mechanisms or through cross-talk with other posttranslational modifications (PTMs)1 (17, 18), thus further increasing the complexity of kinase regulatory networks.Regulation of kinases is of particular interest in mitosis as most of the mitotic events are regulated by reversible protein phosphorylation (19). During mitosis, error-free segregation of sister chromatids into the two daughter cells is essential to ensure genomic stability. Physically, this process is carried out by the mitotic spindle, a highly dynamic microtubule-based structure. After entry into mitosis, the major microtubule-organizing centers in animal cells, the centrosomes, start to increase microtubule nucleation and move to opposite poles of the cell. Throughout prometaphase, microtubules emanating from centrosomes are captured by kinetochores, protein complexes assembled on centromeric chromosomal DNA. This eventually leads to the alignment of all chromosomes in a metaphase plate. Because proper bipolar attachment of chromosomes to spindle microtubules is essential for the correct segregation of chromosomes, this critical step is monitored by a signaling pathway known as the spindle assembly checkpoint (SAC) (20). This checkpoint is silenced only after all chromosomes have attached to the spindle in a bioriented fashion, resulting in the synchronous segregation of sister chromatids during anaphase. Simultaneously, a so-called central spindle is formed between the separating chromatids, and the formation of a contractile ring initiates cytokinesis. Finally, in telophase, the chromosomes decondense and reassemble into nuclei, whereas remnants of the central spindle form the midbody, marking the site of abscission. Cyclin-dependent kinase 1 (Cdk1), an evolutionarily conserved master mitotic kinase, is activated prior to mitosis and initiates most of the mitotic events. Cdk1 works in close association with other essential mitotic kinases such as Plk1, Aurora A, and Aurora B for the regulation of mitotic progression (19, 2124). Plk1 and Aurora kinases dynamically localize to different subcellular locations to perform multiple functions during mitosis and are phosphorylated at several conserved sites. Although little is known about the precise roles of these phosphorylation sites, emerging data indicate that they are involved in regulating localization-specific functions (25, 26). Furthermore, the kinases Bub1, BubR1, and TTK (Mps1) and kinases of the Nek family play important roles in maintaining the fidelity and robustness of mitosis (19). Recently, a genome-wide RNA-mediated interference screen identified M phase phenotypes for many kinases that have not previously been implicated in cell cycle functions, indicating that additional kinases have important mitotic functions (27).Although protein phosphorylation plays a pivotal role in the regulation of cellular networks, many phosphorylation events remain undiscovered mainly because of technical limitations (28). The advent of mass spectrometry-based proteomics along with developments in phosphopeptide enrichment methods has enabled large scale global phosphoproteomics studies (29, 30). However, the number of phosphorylation sites identified on kinases is limited compared with other proteins because of their frequently low expression levels. To overcome this problem, small inhibitor-based kinase enrichment strategies were developed, resulting in the identification of more than 200 kinases from HeLa cell lysates (31, 32). This method was also used recently to compare the phosphokinomes during S phase and M phase of the cell cycle, resulting in the identification of several hundreds of M phase-specific kinase phosphorylation sites (31). In the present study, we address the dynamics of the phosphokinome during mitotic progression using large scale cell synchronization at three distinct mitotic stages, small inhibitor-based kinase enrichment, and stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative mass spectrometry. Thus, we determined the mitotic phosphorylation dynamics of more than 900 kinase phosphorylation sites and identified distinctly regulated kinase interaction networks. Our results provide a valuable resource for the dynamics of the kinome during mitotic progression and give insight into the system properties of kinase interaction networks.  相似文献   

15.

Background

Mammalian cardiac myocytes withdraw from the cell cycle during post-natal development, resulting in a non-proliferating, fully differentiated adult phenotype that is unable to repair damage to the myocardium, such as occurs following a myocardial infarction. We and others previously have shown that forced expression of certain cell cycle molecules in adult cardiac myocytes can promote cell cycle progression and division in these cells. The mitotic serine/threonine kinase, Polo-like kinase-1 (Plk1), is known to phosphorylate and activate a number of mitotic targets, including Cdc2/Cyclin B1, and to promote cell division.

Principal Findings

The mammalian Plk family are all differentially regulated during the development of rat cardiac myocytes, with Plk1 showing the most dramatic decrease in both mRNA, protein and activity in the adult. We determined the potential of Plk1 to induce cell cycle progression and division in cultured rat cardiac myocytes. A persistent and progressive loss of Plk1 expression was observed during myocyte development that correlated with the withdrawal of adult rat cardiac myocytes from the cell cycle. Interestingly, when Plk1 was over-expressed in cardiac myocytes by adenovirus infection, it was not able to promote cell cycle progression, as determined by cell number and percent binucleation.

Conclusions

We conclude that, in contrast to Cdc2/Cyclin B1 over-expression, the forced expression of Plk1 in adult cardiac myocytes is not sufficient to induce cell division and myocardial repair.  相似文献   

16.
Kang J  Goodman B  Zheng Y  Tantin D 《PloS one》2011,6(8):e23872
  相似文献   

17.
The Aurora and Polo-like kinases are central components of mitotic signaling pathways, and recent evidence suggests that substantial cross-talk exists between Aurora A and Plk1. In addition to their validation as novel anticancer agents, small molecule kinase inhibitors are increasingly important tools to help dissect clinically relevant protein phosphorylation networks. However, one major problem associated with kinase inhibitors is their promiscuity toward “off-target” members of the kinome, which makes interpretation of data obtained from complex cellular systems challenging. Additionally, the emergence of inhibitor resistance in patients makes it clear that an understanding of resistance mechanisms is essential to inform drug design. In this study, we exploited structural knowledge of the binding modes of VX-680, an Aurora kinase inhibitor, and BI 2536, a Polo-like kinase inhibitor, to design and evaluate drug-resistant kinase mutants. Using inducible stable human cell lines, we authenticated mitotic targets for both compounds and demonstrated that Aurora A mutants exhibit differential cellular sensitivity toward the inhibitors VX-680 and MLN8054. In addition, we validated Aurora B as an important anti-proliferative target for VX-680 in model human cancer cells. Finally, this chemical genetic approach allowed us to prove that Aurora A activation loop phosphorylation is controlled by a Plk1-mediated pathway in human cells.Protein kinase inhibitors are prime examples of small molecules with the potential to revolutionize the treatment of chronic disease states such as inflammation and cancer (1, 2). For example, the discovery of inhibitors of the BCR-ABL kinase has transformed the survival rates of patients diagnosed with tyrosine kinase-driven leukemias (3). Moreover, inhibitors of many distinct protein kinases have emerged as indispensable biological tools, in part through their rapid and often reversible mode of action, but also because of their widespread availability and utility in a range of research settings. Remarkably, scientific conclusions drawn in many thousands of peer-reviewed research papers every year rely upon experiments conducted with kinase inhibitors, but in only a handful of studies is the important question of inhibitor specificity explicitly addressed (47). This is a vital issue because claims for specificity have rarely stood the test of time, yet a detailed knowledge of kinase inhibitor promiscuity would be beneficial in the clinic, where the simultaneous blockade of multiple signaling pathways can be exploited as an anticancer strategy (8).The vast majority of kinase inhibitors bind in the conserved ATP-binding site located between the N- and C-terminal lobes of the catalytic domain, where they prevent nucleotide binding or lock the kinase into a structurally inactive confirmation. Inhibitor structure-activity relationship trends, which are often gleaned from combined biochemical and structural analysis, can be mechanistically revealing, but often fail to adequately address the interconnected issues of specificity and chemical resistance. Indeed, the emergence of drug resistance in chronic myeloid leukemia patients is testament to the high mutagenic susceptibility of protein kinases either selected for, or induced by, inhibitor exposure in vivo, making the discovery of mechanistically distinct inhibitors as backup therapies vitally important (9, 10).In human cells, the key mitotic events of centrosome separation, bipolar spindle formation, and chromosome segregation are linked to the physical separation of the genomes during cytokinesis (11). These conserved signaling programs are controlled by dedicated mitotic protein kinases, which include two prominent human gene families, the Aurora kinases (comprising Aurora A, B, and C) and the Polo-like kinases (comprising Plk1–4), whose overexpression in a spectrum of cancers make them outstanding drug candidates (12). A more detailed knowledge of the substrates and physiological events regulated by Aurora and Polo signaling pathways has been facilitated by the development of potent inhibitors of both enzyme families (13, 14). These include clinical candidates such as the dual Aurora/tyrosine kinase inhibitors VX-680 (15, 16) and AT9283 (17) and the Aurora inhibitors MLN8054 (18) and AZD1152 (19). In addition, the clinically advanced Plk1–3 inhibitor BI 2536 has been well characterized in human cells (20) and cancer models (21).One of the frustrations associated with interpreting cellular data obtained with compounds such as VX-680 and BI 2536 is their unknown cellular selectivity. No kinome-wide data are available in public data bases for any kinase inhibitors, and it is likely that these compounds have multiple kinase and non-kinase targets in human cells. For example, VX-680 inhibits both Aurora A and B in human cells and tyrosine kinases such as ABL, Src, and Flt3 in vitro (15, 22), raising the question as to which, if any, of these targets are critical for phenotypes and anti-proliferative effects observed after drug exposure. In addition, Plk1 and Aurora A signaling functions are mutually dependent in proliferating human cells (2326). This makes interpretation of experiments in which Aurora A or Plk1 inhibitors are employed potentially confusing because phenotypes assigned to one inhibitor target might actually be due to indirect inhibition of the other kinase. To begin to address these issues, we have investigated the cellular plasticity of kinase inhibition by both VX-680 and BI 2536. By evaluating drug-resistant Aurora A and B proteins in vitro and exploiting these mutants in stable human cell lines, we demonstrate that drug-resistant forms of these kinases can be used to prove that phenotypes arising from VX-680 exposure are actually due to inhibition of the predicted mitotic targets. We demonstrate that a VX-680-resistant Aurora A mutant remains sensitive to the distinct anti-proliferative agent MLN8054 in human cells and that Aurora B is the critical target of VX-680 that promotes cell death in a cancer cell model. Furthermore, by analyzing a Plk1 mutant with decreased sensitivity to BI 2536, we establish that a mitotic phenotype arising from exposure to this drug is indeed due to Plk1 inhibition and that, during mitosis, Plk1 controls Aurora A phosphorylation at the critical activating residue Thr288.  相似文献   

18.
Bipolar spindle formation is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, abnormal number and structural organization of centrosomes can lead to loss of spindle bipolarity and genetic integrity. ASAP (aster-associated protein or MAP9) is a centrosome- and spindle-associated protein, the deregulation of which induces severe mitotic defects. Its phosphorylation by Aurora A is required for spindle assembly and mitosis progression. Here, we show that ASAP is localized to the spindle poles by Polo-like kinase 1 (Plk1) (a mitotic kinase that plays an essential role in centrosome regulation and mitotic spindle assembly) through the γ-TuRC-dependent pathway. We also demonstrate that ASAP is a novel substrate of Plk1 phosphorylation and have identified serine 289 as the major phosphorylation site by Plk1 in vivo. ASAP phosphorylated on serine 289 is localized to centrosomes during mitosis, but this phosphorylation is not required for its Plk1-dependent localization at the spindle poles. We show that phosphorylated ASAP on serine 289 contributes to spindle pole stability in a microtubule-dependent manner. These data reveal a novel function of ASAP in centrosome integrity. Our results highlight dual ASAP regulation by Plk1 and further confirm the importance of ASAP for spindle pole organization, bipolar spindle assembly, and mitosis.  相似文献   

19.

Background

The appropriate control of mitotic entry and exit is reliant on a series of interlocking signaling events that coordinately drive the biological processes required for accurate cell division. Overlaid onto these signals that promote orchestrated cell division are checkpoints that ensure appropriate mitotic spindle formation, a lack of DNA damage, kinetochore attachment, and that each daughter cell has the appropriate complement of DNA. We recently discovered that AMP-activated protein kinase (AMPK) modulates the G2/M phase of cell cycle progression in part through its suppression of mammalian target of rapamycin (mTOR) signaling. AMPK directly phosphorylates the critical mTOR binding partner raptor inhibiting mTORC1 (mTOR-raptor rapamycin sensitive mTOR kinase complex 1). As mTOR has been previously tied to mitotic control, we examined further how raptor may contribute to this process.

Methodology/Principal Findings

We have discovered that raptor becomes highly phosphorylated in cells in mitosis. Utilizing tandem mass spectrometry, we identified a number of novel phosphorylation sites in raptor, and using phospho-specific antibodies demonstrated that raptor becomes phosphorylated on phospho-serine/threonine-proline sites in mitosis. A combination of site-directed mutagenesis in a tagged raptor cDNA and analysis with a series of new phospho-specific antibodies generated against different sites in raptor revealed that Serine 696 and Threonine 706 represent two key sites in raptor phosphorylated in mitosis. We demonstrate that the mitotic cyclin-dependent kinase cdc2/CDK1 is the kinase responsible for phosphorylating these sites, and its mitotic partner Cyclin B efficiently coimmunoprecipitates with raptor in mitotic cells.

Conclusions/Significance

This study demonstrates that the key mTOR binding partner raptor is directly phosphorylated during mitosis by cdc2. This reinforces previous studies suggesting that mTOR activity is highly regulated and important for mitotic progression, and points to a direct modulation of the mTORC1 complex during mitosis.  相似文献   

20.

Background

Motor proteins from the kinesin-5 subfamily play an essential role in spindle assembly during cell division of most organisms. These motors crosslink and slide microtubules in the spindle. Kinesin-5 motors are phosphorylated at a conserved site by Cyclin-dependent kinase 1 (Cdk1) during mitosis. Xenopus laevis kinesin-5 has also been reported to be phosphorylated by Aurora A in vitro.

Methodology/Principal Findings

We investigate here the effect of these phosphorylations on kinesin-5 from Xenopus laevis, called Eg5. We find that phosphorylation at threonine 937 in the C-terminal tail of Eg5 by Cdk1 does not affect the velocity of Eg5, but strongly increases its binding to microtubules assembled in buffer. Likewise, this phosphorylation promotes binding of Eg5 to microtubules in Xenopus egg extract spindles. This enhancement of binding elevates the amount of Eg5 in spindles above a critical level required for bipolar spindle formation. We find furthermore that phosphorylation of Xenopus laevis Eg5 by Aurora A at serine 543 in the stalk is not required for spindle formation.

Conclusions/Significance

These results show that phosphorylation of Eg5 by Cdk1 has a direct effect on the interaction of this motor with microtubules. In egg extract, phosphorylation of Eg5 by Cdk1 ensures that the amount of Eg5 in the spindle is above a level that is required for spindle formation. This enhanced targeting to the spindle appears therefore to be, at least in part, a direct consequence of the enhanced binding of Eg5 to microtubules upon phosphorylation by Cdk1. These findings advance our understanding of the regulation of this essential mitotic motor protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号