首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Conspecific allorecognition, the ability for an organism to discriminate its own cells from those of another individual of the same species, has been developed by many organisms. Allorecognition specificities are determined by highly polymorphic genes. The processes by which this extreme polymorphism is generated remain largely unknown. Fungi are able to form heterokaryons by fusion of somatic cells, and somatic non self-recognition is controlled by heterokaryon incompatibility loci (het loci). Herein, we have analyzed the evolutionary features of the het-d and het-e fungal allorecognition genes. In these het genes, allorecognition specificity is determined by a polymorphic WD-repeat domain. We found that het-d and het-e belong to a large gene family with 10 members that all share the WD-repeat domain and show that repeats of all members of the family undergo concerted evolution. It follows that repeat units are constantly exchanged both within and between members of the gene family. As a consequence, high mutation supply in the repeat domain is ensured due to the high total copy number of repeats. We then show that in each repeat four residues located at the protein/protein interaction surface of the WD-repeat domain are under positive diversifying selection. Diversification of het-d and het-e is thus ensured by high mutation supply, followed by reshuffling of the repeats and positive selection for favourable variants. We also propose that RIP, a fungal specific hypermutation process acting specifically on repeated sequences might further enhance mutation supply. The combination of these evolutionary mechanisms constitutes an original process for generating extensive polymorphism at loci that require rapid diversification.  相似文献   

2.
The het-e gene of the filamentous fungus Podospora anserina is involved in vegetative incompatibility. Co-expression of antagonistic alleles of the unlinked loci het-e and het-c triggers a cell death reaction that prevents the formation of viable heterokaryons between strains that contain incompatible combinations of het-c and het-e alleles. The het-e1 A gene encodes a polypeptide that contains a putative GTP-binding site and WD40 repeats. The role of these two domains in the reactivity of the HET-E protein in incompatibility was analyzed. An in vitro assay confirmed that the first domain is functional and can bind GTP and not ATP, suggesting that GTP-binding is essential for triggering the incompatibility reaction. The relationship between the number of WD40 repeats and the reactivity of the protein in incompatibility was investigated by estimating this number in different wild-type and mutant het-e alleles. It was deduced that reactive alleles contain a minimal number of ten WD40 repeats. These results demonstrate that the reactivity of the HET-E protein depends on two functional elements, a GTP-binding domain and several WD40 repeats. These motifs are present in separate polypeptides in trimeric G proteins, suggesting that HET-E polypeptides are also involved in signal transduction. Disruption of the het-e locus does not impair the phenotype of strains but DNA hybridization analyses revealed that het-e may belong to a multigenic family.  相似文献   

3.
The het-e gene of the filamentous fungus Podospora anserina is involved in vegetative incompatibility. Co-expression of antagonistic alleles of the unlinked loci het-e and het-c triggers a cell death reaction that prevents the formation of viable heterokaryons between strains that contain incompatible combinations of het-c and het-e alleles. The het-e1 A gene encodes a polypeptide that contains a putative GTP-binding site and WD40 repeats. The role of these two domains in the reactivity of the HET-E protein in incompatibility was analyzed. An in vitro assay confirmed that the first domain is functional and can bind GTP and not ATP, suggesting that GTP-binding is essential for triggering the incompatibility reaction. The relationship between the number of WD40 repeats and the reactivity of the protein in incompatibility was investigated by estimating this number in different wild-type and mutant het-e alleles. It was deduced that reactive alleles contain a minimal number of ten WD40 repeats. These results demonstrate that the reactivity of the HET-E protein depends on two functional elements, a GTP-binding domain and several WD40 repeats. These motifs are present in separate polypeptides in trimeric G proteins, suggesting that HET-E polypeptides are also involved in signal transduction. Disruption of the het-e locus does not impair the phenotype of strains but DNA hybridization analyses revealed that het-e may belong to a multigenic family. Received: 20 January 1997 / Accepted: 8 June 1997  相似文献   

4.
Paoletti M  Clavé C 《Eukaryotic cell》2007,6(11):2001-2008
Vegetative incompatibility is a programmed cell death reaction that occurs when fungal cells of unlike genotypes fuse. Genes defining vegetative incompatibility (het genes) are highly polymorphic, and most if not all incompatibility systems include a protein partner bearing the fungus-specific domain termed the HET domain. The nonallelic het-C/het-E incompatibility system is the best-characterized incompatibility system in Podospora anserina. Cell death is triggered by interaction of specific alleles of het-C, encoding a glycolipid transfer protein, and het-E, encoding a HET domain and a WD repeat domain involved in recognition. We show here that overexpression of the isolated HET domain from het-E results in cell death. This cell death is characterized by induction of autophagy, increased vacuolization, septation, and production of lipid droplets, which are hallmarks of cell death by incompatibility. In addition, the HET domain lethality is suppressed by the same mutations as vegetative incompatibility, but not by the inactivation of het-C. These results establish the HET domain as the mediator of cell death by incompatibility and lead to a modular conception of incompatibility systems whereby recognition is ensured by the variable regions of incompatibility proteins and cell death is triggered by the HET domain.  相似文献   

5.
In fungi, cell fusion between genetically unlike individuals triggers a cell death reaction known as the incompatibility reaction. In Podospora anserina, the genes controlling this process belong to a gene family encoding STAND proteins with an N‐terminal cell death effector domain, a central NACHT domain and a C‐terminal WD‐repeat domain. These incompatibility genes are extremely polymorphic, subject to positive Darwinian selection and display a remarkable genetic plasticity allowing for constant diversification of the WD‐repeat domain responsible for recognition of non‐self. Remarkably, the architecture of these proteins is related to pathogen‐recognition receptors ensuring innate immunity in plants and animals. Here, we hypothesize that these P. anserina incompatibility genes could be components of a yet‐unidentified innate immune system of fungi. As already proposed in the case of plant hybrid necrosis or graft rejection in mammals, incompatibility could be a by‐product of pathogen‐driven divergence in host defense genes.  相似文献   

6.

Background  

Genes involved in non-self recognition and host defence are typically capable of rapid diversification and exploit specialized genetic mechanism to that end. Fungi display a non-self recognition phenomenon termed heterokaryon incompatibility that operates when cells of unlike genotype fuse and leads to the cell death of the fusion cell. In the fungus Podospora anserina, three genes controlling this allorecognition process het-d, het-e and het-r are paralogs belonging to the same hnwd gene family. HNWD proteins are STAND proteins (signal transduction NTPase with multiple domains) that display a WD-repeat domain controlling recognition specificity. Based on genomic sequence analysis of different P. anserina isolates, it was established that repeat regions of all members of the gene family are extremely polymorphic and undergoing concerted evolution arguing for frequent recombination within and between family members.  相似文献   

7.
8.
S. J. Saupe  N. L. Glass 《Genetics》1997,146(4):1299-1309
In filamentous fungi, the ability to form a productive heterokaryon with a genetically dissimilar individual is controlled by specific loci termed het loci. Only strains homozygous for all het loci can establish a heterokaryon. In Neurospora crassa, 11 loci, including the mating-type locus, regulate the capacity to form heterokaryons. An allele of the het-c locus (het-c(OR)) of N. crassa has been previously characterized and encodes a nonessential 966 amino acid glycine-rich protein. Herein, we describe the genetic and molecular characterization of two het-c alleles, het-c(PA) and het-c(GR), that have a different specificity from that of het-c(OR), showing that vegetative incompatibility is mediated by multiple alleles at het-c. By constructing chimeric alleles, we show that het-c specificity is determined by a highly variable domain of 34-48 amino acids in length. In this regard, het-c is similar to loci that regulate recognition in other species, such as the (S) self-incompatibility locus in plants, the sexual compatibility locus in basidiomycetes and the major histocompatibility complex (MHC) genes in vertebrates.  相似文献   

9.
David D. Perkins 《Genetics》1975,80(1):87-105
Heterokaryon (vegetative) incompatibility, governing the fusion of somatic hyphal filaments to form stable heterokaryons, is of interest because of its widespread occurrence in fungi and its bearing on cellular recognition. Conventional investigations of the genetic basis of heterokaryon incompatibility in N. crassa are difficult because in commonly used stocks differences are present at several het loci, all with similar incompatibility phenotypes. This difficulty is overcome by using duplications (partial diploids) that are unlikely to contain more than one het locus. A phenotypically expressed incompatibility reaction occurs when unlike het alleles are present within the same somatic nucleus, and this parallels the heterokaryon incompatibility reaction that occurs when unlike alleles in different haploid nuclei are introduced into the same somatic hypha by mycelial fusion.—Nontandem duplications were used to confirm that the incompatibility reactions in heterokaryons and in duplications are alternate expressions of the same genes. This was demonstrated for three loci which had previously been established by conventional heterokaryon tests—het-e, het-c and mt. These were each obtained in duplications as recombinant meiotic segregants from crosses heterozygous for duplication-generating chromosome rearrangements. The particular method of producing the duplications is irrelevant so long as the incompatibility alleles are heterozygous.—The duplication technique has made it possible to determine easily the het-e and het-c genotypes of numerous laboratory and wild strains of unknown constitution. In laboratory strains both loci are represented simply by two alleles. Analysis of het-c is more complicated in some wild strains, where differences have been demonstrated at one or more additional het loci within the duplication used and multiple allelism is also possible.—The results show that the duplication method can be used to identify and map additional vegetative incompatibility loci, without the necessity of heterokaryon tests.  相似文献   

10.
11.
J Royet  T Bouwmeester    S M Cohen 《The EMBO journal》1998,17(24):7351-7360
Signaling by Notch family receptors is involved in many cell-fate decisions during development. Several modifiers of Notch activity have been identified, suggesting that regulation of Notch signaling is complex. In a genetic screen for modifiers of Notch activity, we identified a gene encoding a novel WD40-repeat protein. The gene is called Notchless, because loss-of-function mutant alleles dominantly suppress the wing notching caused by certain Notch alleles. Reducing Notchless activity increases Notch activity. Overexpression of Notchless in Xenopus or Drosophila appears to have a dominant-negative effect in that it also increases Notch activity. Biochemical studies show that Notchless binds to the cytoplasmic domain of Notch, suggesting that it serves as a direct regulator of Notch signaling activity.  相似文献   

12.
We describe analyses of almost full-length sequences (including both the kinase domain and the S-domain) of the putative SRK incompatibility gene of the self-incompatible plant Arabidopsis lyrata. In A. lyrata, the SRK S-domain controls the pistil recognition specificity, as in self-incompatible Brassica species. In alleles from plants derived from natural A. lyrata populations, nonsynonymous and synonymous site diversity values are very high in both domains; even in exons 3 to 7 of the kinase domain, which probably have no recognition functions, 39% of the amino acids are polymorphic. Within populations, diversity between alleles is high, as expected for an incompatibility locus, which should be under frequency-dependent selection within populations, whereas within the different putative allelic classes polymorphism is very low, as predicted from theoretical models when recombination is rare. Nonsynonymous site variability declines in the kinase domain with increasing distance from the S-domain border, although synonymous diversity remains high, and the introns are unalignable. A decline in nonsynonymous diversity is expected due to selective constraints in the kinase domain, in combination with recombination (allowing diversity to decrease at sites distant from those under balancing selection). However, it is unclear whether recombination occurs in the SRK locus, and interpretation of the observed diversity pattern is complicated by apparent gene conversion with a paralogous gene (or genes). Patterns of linkage disequilibrium in our SRK sequences do not support the conclusion that recombination occurs, which was suggested from previous analyses based on Brassica SLG sequences.  相似文献   

13.
Kaneko I  Dementhon K  Xiang Q  Glass NL 《Genetics》2006,172(3):1545-1555
Nonself recognition in filamentous fungi is conferred by genetic differences at het (heterokaryon incompatibility) loci. When individuals that differ in het specificity undergo hyphal fusion, the heterokaryon undergoes a programmed cell death reaction or is highly unstable. In Neurospora crassa, three allelic specificities at the het-c locus are conferred by a highly polymorphic domain. This domain shows trans-species polymorphisms indicative of balancing selection, consistent with the role of het loci in nonself recognition. We determined that a locus closely linked to het-c, called pin-c (partner for incompatibility with het-c) was required for het-c nonself recognition and heterokaryon incompatibility (HI). The pin-c alleles in isolates that differ in het-c specificity were extremely polymorphic. Heterokaryon and transformation tests showed that nonself recognition was mediated by synergistic nonallelic interactions between het-c and pin-c, while allelic interactions at het-c increased the severity of the HI phenotype. The pin-c locus encodes a protein containing a HET domain; predicted proteins containing HET domains are frequent in filamentous ascomycete genomes. These data suggest that nonallelic interactions may be important in nonself recognition in filamentous fungi and that proteins containing a HET domain may be a key factor in these interactions.  相似文献   

14.
Non-self-recognition during asexual growth of Neurospora crassa involves restriction of heterokaryon formation via genetic differences at 11 het loci, including mating type. The het-6 locus maps to a 250-kbp region of LGIIL. We used restriction fragment length polymorphisms in progeny with crossovers in the het-6 region and a DNA transformation assay to identify two genes in a 25-kbp region that have vegetative incompatibility activity. The predicted product of one of these genes, which we designate het-6(OR), has three regions of amino acid sequence similarity to the predicted product of the het-e vegetative incompatibility gene in Podospora anserina and to the predicted product of tol, which mediates mating-type vegetative incompatibility in N. crassa. The predicted product of the alternative het-6 allele, HET-6(PA), shares only 68% amino acid identity with HET-6(OR). The second incompatibility gene, un-24(OR), encodes the large subunit of ribonucleotide reductase, which is essential for de novo synthesis of DNA. A region in the carboxyl-terminal portion of UN-24 is associated with incompatibility and is variable between un-24(OR) and the alternative allele un-24(PA). Linkage analysis indicates that the 25-kbp un-24-het-6 region is inherited as a block, suggesting that a nonallelic interaction may occur between un-24 and het-6 and possibly other loci within this region to mediate vegetative incompatibility in the het-6 region of N. crassa.  相似文献   

15.
Expression of many microbial genes required for the utilisation of less favoured carbon sources is carbon catabolite repressed in the presence of a preferred carbon source such as D-glucose. In Aspergillus nidulans, creC mutants show derepression in the presence of D-glucose of some, but not all, systems normally subject to carbon catabolite repression. These mutants also fail to grow on some carbon sources, and show minor morphological impairment and altered sensitivity to toxic compounds including molybdate and acriflavin. The pleiotropic nature of the phenotype suggests a role for the creC gene product in the carbon regulatory cascade. The creC gene was cloned and found to encode a protein which contains five WD40 motifs. The sequence changes in three mutant alleles were found to lead to production of truncated proteins which lack one or more of the WD40 repeats. The similarity of the phenotypes conferred by these alleles implies that these alleles represent loss of function alleles. Deletion analysis also showed that at least the most C-terminal WD40 motif is required for function. The CreC protein is highly conserved relative to the Schizosaccharomyces pombe protein Yde3 – whose function is unknown – and human and mouse DMR-N9, which may be associated with myotonic dystrophy.  相似文献   

16.
Expression of many microbial genes required for the utilisation of less favoured carbon sources is carbon catabolite repressed in the presence of a preferred carbon source such as D-glucose. In Aspergillus nidulans, creC mutants show derepression in the presence of D-glucose of some, but not all, systems normally subject to carbon catabolite repression. These mutants also fail to grow on some carbon sources, and show minor morphological impairment and altered sensitivity to toxic compounds including molybdate and acriflavin. The pleiotropic nature of the phenotype suggests a role for the creC gene product in the carbon regulatory cascade. The creC gene was cloned and found to encode a protein which contains five WD40 motifs. The sequence changes in three mutant alleles were found to lead to production of truncated proteins which lack one or more of the WD40 repeats. The similarity of the phenotypes conferred by these alleles implies that these alleles represent loss of function alleles. Deletion analysis also showed that at least the most C-terminal WD40 motif is required for function. The CreC protein is highly conserved relative to the Schizosaccharomyces pombe protein Yde3 – whose function is unknown – and human and mouse DMR-N9, which may be associated with myotonic dystrophy. Received: 1 July 1999 / Accepted: 31 January 2000  相似文献   

17.
任玉玲  赵艳  赵成周  李萍 《广西植物》2022,42(9):1561-1571
WD40转录因子家族广泛参与调节植物生长、发育、次生代谢物积累和环境适应等过程。为了探究WD40家族在多刺绿绒蒿生长、发育和次生代谢物积累以及抗逆方面的作用,该研究基于全长转录组测序数据,鉴定了多刺绿绒蒿WD40基因家族成员,并对这些基因及其编码的蛋白进行了生物信息学分析。结果表明:(1)共鉴定到19个WD40基因,编码的蛋白均具有WD40结构域,氨基酸数目为109~758 aa,分子量介于11 830~84 130 Da之间,预测大多数蛋白定位在细胞核中且都为亲水性蛋白;(2)系统进化树分析表明多刺绿绒蒿与罂粟、博落回亲缘关系较近;(3)WD40基因启动子区域均存在数量不等的激素或逆境响应元件,表明该家族基因可能参与植物生长、发育和次生代谢物积累等多种生物学进程的调节;(4)蛋白三级结构显示这些蛋白在进化过程中发生了不同程度的进化。这些结果可为深入研究多刺绿绒蒿WD40基因家族在其响应逆境胁迫和次生代谢物积累等方面的具体机制提供前期基础。  相似文献   

18.
Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial and sporadic Parkinson''s disease (PD). LRRK2 is a complex protein that consists of multiple domains, including predicted C-terminal WD40 repeats. In this study, we analyzed functional and molecular features conferred by the WD40 domain. Electron microscopic analysis of the purified LRRK2 C-terminal domain revealed doughnut-shaped particles, providing experimental evidence for its WD40 fold. We demonstrate that LRRK2 WD40 binds and sequesters synaptic vesicles via interaction with vesicle-associated proteins. In fact, a domain-based pulldown approach combined with mass spectrometric analysis identified LRRK2 as being part of a highly specific protein network involved in synaptic vesicle trafficking. In addition, we found that a C-terminal sequence variant associated with an increased risk of developing PD, G2385R, correlates with a reduced binding affinity of LRRK2 WD40 to synaptic vesicles. Our data demonstrate a critical role of the WD40 domain within LRRK2 function.  相似文献   

19.
S. D. Harrison  N. Solomon    G. M. Rubin 《Genetics》1995,139(4):1701-1709
We have performed and F(2) genetic screen to identify lethal mutations within the 63E-64A genomic region. We have isolated 122 mutations in 20 different complementation groups. Of these groups, 16 are represented by multiple alleles. We have also established that the Rop and Ras2 genes are located within the 63E-64A genomic domain at 64A10,11. We have sequenced 10.2 kb of DNA surrounding this gene pair and find that in addition to Rop and Ras2 there is another gene located within this DNA sequence. The gene product, which we have named Rfc40, shows 68% identity to the 40-kDa subunit of replication factor C. We find that the members of one complementation group (13 alleles) derived from our screen correspond to mutations in the Rop gene, whereas the members of another (five alleles) correspond to mutations in the Rfc40 gene. In addition we have isolated 11 new mutant alleles of the disembodied gene.  相似文献   

20.
Huang J  Wang MM  Bao YM  Sun SJ  Pan LJ  Zhang HS 《Gene》2008,424(1-2):71-79
By analysis with microarray data, we found that a gene encoding a novel protein containing five WD40 repeats, was regulated by salt stress in rice and named as SRWD1 (Salt responsive WD40 protein 1). By database searching, additional four SRWD1-like genes (SRWD2-SRWD5) were found in rice genome, and these five SRWD genes formed a novel WD40 subfamily. Phylogenetic analysis showed that plant SRWD proteins divided into four groups. The significant functional divergences during SRWD evolution were found. The tissue-specific and salt responsive expression profiling for SRWD genes was investigated based on microarray data. It was found that all five SRWD genes in rice were regulated by salt stress. Further, we found that SRWD1 was regulated with different patterns by salt stress in two rice cultivars responding differently to salt stress. Our study correlates WD40 proteins with salt stress in plants and provides fundamental information for the further investigation of plant SRWD proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号