首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A molecular model of collagen hydration is used to validate centrifugal dehydration force (CDF) and re-hydration isotherm (RHI) methods to measure and characterize hydration compartments on bovine tendon. The CDF method assesses fluid flow rate from flexor and extensor tendons expressed in (g-water/g-dry mass-minute) and hydration capacity of compartments in (g-water/g-dry mass). Measured water compartment capacities agree with the molecular model of collagen hydration [Fullerton GD, Rahal A. Collagen structure: the molecular source of tendon magic angle effect. J Mag Reson Imag 2007;25:345-361; Fullerton GD, Amurao MR. Evidence that collagen and tendon have monolayer water coverage in the native state. Cell Biol Int 2006;30(1):56-65]. Native tendon hydration has monolayer coverage on collagen h(m)=1.6 g/g which divides into primary hydration on polar surfaces h(pp)=0.8 g/g and secondary hydration h(s)=0.8 g/g bridging over hydrophobic surfaces. Primary hydration is hydrogen bonded to collagen polar side chains h(psc)=0.54 g/g with small free energy or to the protein main chain hydration h(pmc)=0.26 g/g with greater free energy of binding. The CDF method replaces the more time consuming water proton NMR spin-lattice dehydration (NMR titration) method, confirms the presence of three non-bulk water compartments on collagen (h(pmc)=0.26 g/g, h(pp)=0.8 g/g and h(m)=1.6 g/g). This CDF method provides the most reproducible experimental measure of total tissue non-bulk water (TNBW). The re-hydration isotherm method, on the other hand, provides the most accurate measure of the Ramachandran water-bridge capacity h(Ra)=0.0656 g/g. The only equipment needed are: microfilterfuge tubes, a microcentrifuge capable of 14,000 x g or 4MPa, a vacuum drying oven, an accurate balance and curve fitting ability. The newly validated methods should be useful for characterizing multiple water compartments in biological and non-biological materials by allowing direct measurement of water compartment changes induced by pH, co-solute salt, glycation and protein cross-linking.  相似文献   

2.
The water in unfertilized and fertilized sea urchin eggs was characterized with a proton nuclear magnetic resonance (NMR) titration method assuming fast proton diffusion (FPD) between water compartments. This method involves stepwise dehydration with sequential T1 relaxation time and water content determinations. The results analyzed by the FPD model give evidence of intracellular water compartments with three different correlation times: 6 X 10(-12) sec (bulk water), 1 X 10(-10) sec (structured water) and about 2 X 10(-9) sec (bound water). Fertilization is accompanied by a substantial increase in bulk water (from 111 to 414 g H2O per 100 g dry mass) and by a decrease in the water of hydration (from 128 g to 56 g per 100 g dry mass). This study shows that 54% of the water in the unfertilized sea urchin egg has motional properties different from bulk water and that this percentage decreases dramatically shortly after fertilization. Most of the change in T1 relaxation rate observed at fertilization can be accounted for by uptake of bulk water associated with elevation of the fertilization membrane.  相似文献   

3.
The proton nuclear magnetic resonance (NMR) titration method (which requires measurement of the relaxation rate at multiple measured levels of dehydration) was applied to the analysis of human erythrocytes, a hemoglobin solution, plasma, and serum. The results allowed identification of bulk water and four motionally perturbed water of hydration subfractions. Based on previous NMR studies of homopolypeptides we designated these subfractions as superbound, irrotationally bound, rotationally bound, and structured. The total water of hydration (sum of both structured and bound water subfractions) in plasma, serum, and hemoglobin ranged from 2.78 to 3.77 g H2O/g dry mass and the sum of the three bound water subfractions ranged from 1.23 to 1.72 g H2O/g dry mass. The total water of hydration on hemoglobin, as determined by (i) spin-lattice (T1) and spin-spin (T2) NMR data, (ii) quench ice-crystal imprint size, (iii) calculations based on osmotic pressure data, and (iv) two other methods, ranged from 2.26 to 3.45 g H2O/g dry mass. In contrast, the estimates of total water of hydration in the intact erythrocytes ranged from 0.34 to 1.44 g H2O/g dry mass, as determined by osmotic activity and spin-lattice titration, respectively. Studies on the magnetic-field dependence of the spin-lattice relaxation rate (1/T1 rho) of solvent water nuclei in protein solutions and in intact and disrupted erythrocytes indicated that hemoglobin aggregation exists in the intact erythrocytes and that erythrocyte disruption decreases the extent of hemoglobin aggregation. Together, the present and past data indicate that the extent of water of hydration associated with hemoglobin depends on the amount of salt present and the degree of aggregation of the hemoglobin molecules.  相似文献   

4.
Centrifugal dehydration force (CDF) and rehydration isotherm (RHI) methods were used to measure and characterize hydration fractions in rabbit psoas skeletal muscle. The CDF method assessed fluid flow rate from rabbit muscle and hydration capacity of the fractions. Bulk and multiple non-bulk water fractions were identified. The non-bulk water was divisible into the following fractions: two outer non-bulk fractions, a main chain proteins backbone or double water bridge fraction, and a single water bridge fraction. The total non-bulk water amounts to about 85% of the total water in the muscle. The sizes of the water fractions (in g water/g dry mass) agree with a recently proposed molecular stoichiometric hydration model (SHM) applicable to all proteins in and out of cells (Fullerton GD, Cameron IL. Water compartments in cells. Methods Enzymol, 2007; Cameron IL, Fullerton GD. Interfacial water compartments on tendon/collagen and in cells. In: Pollack GH, Chin WC, editors. Phase transitions in cells. Dordrecht, The Netherlands: Springer, 2008). Age of the rabbit significantly slowed the flow rate of the outer non-bulk water fraction by about 50%. Also, muscle of the older rabbit (26 weeks vs. 12 weeks old) had less bulk water and less outer non-bulk water but the same amount of main chain backbone water compared to muscle of the younger rabbit. Increase in time post-mortem from 30min to 4h resulted in rigor mortis and a significantly slower flow rate of water from the outer non-bulk water fraction, which is attributed to muscle contraction, increased packing of contractile elements and increased obstructions to flow of fluid from the muscle fibers.  相似文献   

5.
The hydration properties of Escherichia coli lipids (phosphatidylglycerol, phosphatidylethanolamine) and synthetic 1,2-dioleoyl-sn-glycero-3-phosphocholine in H2O/2H2O mixtures (9:1, v/v) were investigated with 2H-NMR. Comparison of the 2H2O spin lattice relaxation time (T1) as a function of the water content revealed a remarkable quantitative similarity of all three lipid-H2O systems. Two distinct hydration regions could be discerned in the T1 relaxation time profile. (1) A minimum of 11-16 water molecules was needed to form a primary hydration shell, characterized by an average relaxation time of T1 approximately equal to 90 ms. (2) Additional water was found to be in exchange with the primary hydration shell. The exchange process could be described in terms of a two-site exchange model, assuming rapid exchange between bulk water with T1 = 500 ms and hydration water with T1 = 80-120 ms. Analysis of the linewidth and the residual quadrupole splitting (at low water content) confirmed the size of the primary hydration layer. However, each lipid-water system exhibited a somewhat different linewidth behavior, and a detailed molecular interpretation appeared to be preposterous.  相似文献   

6.
A centrifugal dehydration force (CDF) method to quantify changes in tissue hydration in fresh and in post-mortem muscular fish tail tissue is presented. The data obtained were used to assess fluid flow rate from tissues and the size of hydration compartments expressed in g water/g dry mass (DM). Curve fit analysis demonstrated that muscle tissue has three detectable water compartments. Application of the method to the fresh fish indicated the presence of a large non-bulk water compartment (3.14 g water/g DM) with a much smaller (0.11 g water/g DM) inner non-bulk water sub-compartment in addition to a comparatively small bulk water compartment (0.99 g water/g DM). At 10 min and at 4h post-mortem, no significant change in size or flow rate of the water compartments was observed. At 24h post-mortem the muscular fish tissue, stored in water, swelled with statistically significant increase in total water and in the bulk water compartment but no significant change in the size of the non-bulk water compartments. The water flow rate from the non-bulk water compartment was, however, increased significantly in the 24h dead tissue. This simple CDF method has application for quantization of bulk and non-bulk water compartments in other biological and non-biological systems.  相似文献   

7.
Nuclear magnetic resonance (NMR) microimaging and proton relaxation times were used to monitor differences between the hydration state of the nucleus and cytoplasm in the Rana pipiens oocyte. Individual isolated ovarian oocytes were imaged in a drop of Ringer's solution with an in-plane resolution of 80 μm. Proton spin echo images of oocytes arrested in prophase I indicated a marked difference in contrast between nucleoplasm and cytoplasm with additional intensity gradations between the yolk platelet-rich region of the cytoplasm and regions with little yolk. Neither shortening τe (spin echo time) to 9 msec (from 18 msec) nor lengthening τr (spin recovery time) to 2 sec (from 0.5 sec) reduced the observed contrast between nucleus and cytoplasm. Water proton T1 (spin-lattice) relaxation times of oocyte suspensions indicated three water compartments that corresponded to extracellular medium (T1= 3.0 sec), cytoplasm (T1= 0.8 sec) and nucleoplasm (T1= 1.6 sec). The 1.6 sec compartment disappeared at the time of nuclear breakdown. Measurements of plasma and nuclear membrane potentials with KCl-filled glass microelectrodes demonstrated that the prophase I oocyte nucleus was about 25 mV inside positive relative to the extracellular medium. A model for the prophase-arrested oocyte is proposed in which a high concentration of large impermeant ions together with small counter ions set up a Donnan-type equilibrium that results in an increased distribution of water within the nucleus in comparison with the cytosol. This study indicates: (i) a slow exchange between two or more intracellular water compartments on the NMR time-scale, (ii) an increased rotational correlation time for water molecules in both the cytoplasmic and nuclear compartments compared to bulk water, and (iii) a higher water content (per unit dry mass) of the nucleus compared to the cytoplasm, and (iv) the existence of a large (about 75 mV positive) electropotential difference between the nuclear and cytoplasmic compartments. Received: 18 January 1996/Revised: 29 April 1996  相似文献   

8.
The temperature and cell volume dependence of the NMR water proton line-width, spin-lattice, and spin-spin relaxation times have been studied for normal and sickle erythrocytes as well as hemoglobin A and hemoglobin S solutions. Upon deoxygenation, the spin-spin relaxation time (T2) decreases by a factor of 2 for sickle cells and hemoglobin S solutions but remains relatively constant for normal cells and hemoglobin A solutions. The spin-lattice relaxation time (T1) shows no significant change upon deoxygenation for normal or sickle packed red cells. Studies of the change in the NMR linewidth, T1 and T2 as the cell hydration is changed indicate that these parameters are affected only slightly by a 10-20% cell dehydration. This result suggests that the reported 10% cell dehydration observed with sickling is not important in the altered NMR properties. Low temperature studies of the linewidth and T1 for oxy and deoxy hemoglobin A and hemoglobin S solutions suggest that the "bound" water possesses similar properties for all four species. The low temperature linewidth ranges from about 250 Hz at -15 degrees C to 500 Hz at -36 degrees C and analysis of the NMR curves yield hydration values near 0.4 g water/g hemoglobin for all four species. The low temperature T1 data go through a minimum at -35 degrees C for measurements at 44.4 MHz and -50 degrees C for measurements at 17.1 MHz and are similar for oxy and deoxy hemoglobin A and hemoglobin S. These similarities in the low temperature NMR data for oxy and deoxy hemoglobin A and hemoglobin S suggest a hydrophobically driven sickling mechanism. The room temperature and low temperature relaxation time data for normal and sickle cells are interpreted in terms of a three-state model for intracellular water. In the context of this model the relaxation time data imply that type III, or irrotationally bound water, is altered during the sickling process.  相似文献   

9.
The relative self-diffusion coefficients D/Do, of water in various solutions, in fresh barnacle muscle fibers, and in membrane-damaged fibers equilibrated with several media have been estimated from NMR relaxation rates in the presence of applied field gradients. A model has been developed to account for the contributions to the observed reduction in D/Do from small organic solutes, and from the hydration and obstruction effect of both soluble macromolecules and myofilament proteins. Intracellular ions do not affect D/Do, but all tested organic solutes do. Solute effects are additive. When artificially combined in the proportions found in barnacle muscle ultracentrifugate (measured D/Do = 0.77), organic acids, small nitrogenous solutes, and proteins give D/Do = 0.77. After correcting the D/Do measured in fibers for this value, we calculate the myofilament hydration, Hm, in fresh muscle to be 0.65 g H2O/g macromolecule. Only in membrane-damaged fibers, highly swollen by salt-rich media, was this significantly increased. Because our earlier NMR relaxation measurements indicate only 0.07 g H2O bound/g myofilament protein, we conclude that the "hydration" water measured by reduction of D/Do cannot be described by stationary layers of water molecules; instead, we propose that nonpolar groups on the proteins cause extensive, hydrophobically-induced interactions among a large fraction of solvent molecules, slowing their translational motion.  相似文献   

10.
Nuclear magnetic resonance and dielectric data on hydrated collagen are interpreted in terms of Ramachandran's hydration model. It is found that all data are compatible with this model, indicating two specific binding sites per three amino acids in the threefold collagen helix. Sorption data have been interpreted according to the multilayer theory of Guggenheim and used to derive the fraction of bound water in the primary sites. From magnetic resonance anisotropies structural details of the position of the water molecules can be derived under the assumption that both sites are equally occupied. The residence time of a water molecule in one of these sites in moderately hydrated collagen (45 g H2O/100 g collagen) is 1.2 × 10?6 sec. The remainder of the water is weakly bound and consists of rapidly exchanging species with rotational correlation time shorter than 10?10 sec. The sites are 50% occupied at a water content of 10 g/100 g collagen and may contribute significantly to the stability of the collagen threefold helix.  相似文献   

11.
The dormant cysts of Artemia undergo cycles of hydration-dehydration without losing viability. Therefore, Artemia cysts serve as an excellent intact cellular system for studying the dynamics of water-protein interactions as a function of hydration. Deuterium spin-lattice (T1) and spin-spin (T2) relaxation times of water in cysts hydrated with D2O have been measured for hydrations between 1.5 and 0.1 g of D2O per gram of dry solids. When the relaxation rates (I/T1, I/T2) of 2H and 17O are plotted as a function of the reciprocal of hydration (1/H), an abrupt change in slope is observed near 0.6 g of D2O (or H2 17O)/gram of dry solids, the hydration at which conventional metabolism is activated in this system. The results have been discussed in terms of the two-site and multisite exchange models for the water-protein interaction as well as protein dynamics models. The 2H and 17O relaxation rates as a function of hydration show striking similarities to those observed for anisotropic motion of water molecules in protein crystals.

It is suggested here that although the simple two-site exchange model or n-site exchange model could be used to explain our data at high hydration levels, such models are not adequate at low hydration levels (<0.6 g H2O/g) where several complex interactions between water and proteins play a predominant role in the relaxation of water nuclei. We further suggest that the abrupt change in the slope of I/T1 as a function of hydration in the vicinity of 0.6 g H2O/g is due to a change in water-protein interactions resulting from a variation in the dynamics of protein motion.

  相似文献   

12.
Protein-water dynamics in mixtures of water and a globular protein, bovine serum albumin (BSA), was studied over wide ranges of composition, in the form of solutions or hydrated solid pellets, by differential scanning calorimetry (DSC), thermally stimulated depolarization current technique (TSDC) and dielectric relaxation spectroscopy (DRS). Additionally, water equilibrium sorption isotherm (ESI) measurements were performed at room temperature. The crystallization and melting events were studied by DSC and the amount of uncrystallized water was calculated by the enthalpy of melting during heating. The glass transition of the system was detected by DSC for water contents higher than the critical water content corresponding to the formation of the first sorption layer of water molecules directly bound to primary hydration sites, namely 0.073 (grams of water per grams of dry protein), estimated by ESI. A strong plasticization of the T(g) was observed by DSC for hydration levels lower than those necessary for crystallization of water during cooling, i.e. lower than about 0.3 (grams of water per grams of hydrated protein) followed by a stabilization of T(g) at about -80°C for higher water contents. The α relaxation associated with the glass transition was also observed in dielectric measurements. In TSDC a microphase separation could be detected resulting in double T(g) for some hydration levels. A dielectric relaxation of small polar groups of the protein plasticized by water, overlapped by relaxations of uncrystallized water molecules, and a separate relaxation of water in the crystallized water phase (bulk ice crystals) were also recorded.  相似文献   

13.
A comparison of 17O and 2H NMR relaxation rates of water in lysozyme solutions as a function of concentration, pH/pD, and magnetic field suggests that only 17O monitors directly the hydration of lysozyme in solution. NMR measurements are for the first time extended to 11.75 T. Lysozyme hydration data are analyzed in terms of an anisotropic, dual-motion model with fast exchange of water between the "bound" and "free" states. The analysis yields 180 mol "bound" water/mol lysozyme and two correlation times of 7.4 ns ("slow") and 29 ps ("fast") for the bound water population at 27 degrees C and pH 5.1, in the absence of salt, assuming anisotropic motions of water with an order parameter value for bound water of 0.12. Under these conditions, the value of the slow correlation time of bound water (7.4 ns) is consistent with the value of 8 ns obtained by frequency-domain fluorescence techniques for the correlation time associated with the lysozyme tumbling motion in solutions without salt. In the presence of 0.1 M NaCl the hydration number increases to 290 mol/mol lysozyme at pD 4.5 and 21 degrees C. The associated correlation times at 21 degrees C in the presence of 0.1 M NaCl are 4.7 ns and 15.5 ps, respectively. The value of the slow correlation time of 4.7 ns is consistent with the calculated value (4.9 ns) for the lysozyme monomer tumbling in solution. The systematic deviations of the relaxation rates, estimated with the single-exponential approximation, from the theoretical, multiexponential nuclear (I' + 1/2) spin relaxation are evaluated at various frequencies for 17O (I = 5/2) with the first-order, linear approximation (25). All NMR relaxation data for hydrated lysozymes are affected by protein activity and are sensitive both to the ionization of protein side chains and to the state of protein aggregation.  相似文献   

14.
B M Fung  J Witschel  L L McAmis 《Biopolymers》1974,13(9):1767-1776
The spin-lattice relaxation time (T1) of water adsorbed on collagen fibers was determined at six frequencies and temperatures varying from 25° to ?80°C. Care was taken to eliminate the contributions to the signal of protons other than those in the adsorbed water. Quantitative calculations were made on T1 and the results were compared with the experimental data. It is suggested that a maximum of about 0.50–0.55 g water per g collagen forms a hydration layer, which cannot be frozen down to ?90°C and exhibits a distribution of motional correlation times. For collagen samples containing a larger quantity of adsorbed water, the additional water molecules behave like ordinary isotropic water, having a single correlation time and a freezing temperature of about ?10°C.  相似文献   

15.
Experiments were done on fully grown Xenopus oocytes to determine the extent and the properties of cellular water of hydration. The studies involved the osmotic shrinking and swelling of the oocytes under known osmotic pressure as well as proton NMR spectral, titration, and free induction decay analyses. Studies were done both on whole oocytes and on subcellular fractions. The results show that little if any of the oocyte water in situ has the motional or osmotic properties expected of pure "bulk" water. Four distinct water of hydration compartments were found and defined on the basis of distinct hydrogen bounding mechanisms. Some of the water in yolk platelets was found not to be in fast exchange with other water compartments. Osmotic shrinkage of oocytes caused an adaptive decrease in the bound water of hydration compartments. This osmotically induced decrease is attributed to decreased surface area available for the hydrogen bounding of water molecules on cellular proteins.  相似文献   

16.
An evaluation of the hydration of lysozyme by an NMR titration method   总被引:2,自引:0,他引:2  
In this study a new titration method is proposed to study the motional properties of water molecules in conjunction with globular proteins using proton NMR relaxation measurements. The method was applied to the study of the interaction of water with lysozyme and allowed identification of four water fractions-superbound water, polar-bound water, structured water and bulk water - in exchanged equilibrium. The titration demonstrated that 193 water molecules are hydrogen bonded directly to the lysozyme molecule. The combination of structured and bound water extends to 1.4 g H2O per g lysozyme and approx. two to three layers from the surface of the macromolecule. It is proposed that this structured water is related to non-isotropic water rotation in conjunction with hydrophobic patches and directly related to 'hydrophobic bonding' changes. Water amounts greater than 1.4 g H2O per g lysozyme are sufficiently distant from the macromolecule for motion to revert to that typical of water in bulk. The typical correlation times for water motion in the four fraction are: over 10(-6) s (superbound); 10(-9) s (polar bound); 10(-11) s (structured) and 10(-12) s (bulk). These results correlate well with results from other measurement techniques found in the literature.  相似文献   

17.
Hydration is essential for the structural and functional integrity of globular proteins. How much hydration water is required for that integrity? A number of techniques such as X-ray diffraction, nuclear magnetic resonance (NMR) spectroscopy, calorimetry, infrared spectroscopy, and molecular dynamics (MD) simulations indicate that the hydration level is 0.3-0.5 g of water per gram of protein for medium sized proteins. Hydrodynamic properties, when accounted for by modeling proteins as ellipsoids, appear to give a wide range of hydration levels. In this paper we describe an alternative numerical technique for hydrodynamic calculations that takes account of the detailed protein structures. This is made possible by relating hydrodynamic properties (translational and rotational diffusion constants and intrinsic viscosity) to electrostatic properties (capacitance and polarizability). We show that the use of detailed protein structures in predicting hydrodynamic properties leads to hydration levels in agreement with other techniques. A unified picture of protein hydration emerges. There are preferred hydration sites around a protein surface. These sites are occupied nearly all the time, but by different water molecules at different times. Thus, though a given water molecule may have a very short residence time (approximately 100-500 ps from NMR spectroscopy and MD simulations) in a particular site, the site appears fully occupied in experiments in which time-averaged properties are measured.  相似文献   

18.
Samples of PAAH1, a cross-linked polymer belonging to the family of poly(amidoamine)s, were investigated at different hydration levels by means of 13C and 1H NMR techniques in order to obtain information on water/polymer interactions. Carbonyl oxygens and amine nitrogens were identified as the main sites of interaction giving hydrogen bonding with water molecules. The polymer turned out to be uniformly plasticized already at moderate degrees of swelling. The hydration process was found to occur in a stepwise manner, with the first batch of water saturating a hydration layer and additional water filling the polymer meshes. The proportion of water in the different states was quantitatively determined.  相似文献   

19.
Hydration, protons and onset of physiological activities in maize seeds   总被引:1,自引:0,他引:1  
Dry maize ( Zea mays L.) seed components, namely, embryo and endosperm, provide model materials for studies on water-dependent mechanisms in cellular function. We explored the thermodynamics of hydration for both tissues, along with their dielectric behavior, as a function of water content. In addition, we evaluated the direct current (DC) conductivity due to water protons. Our data on embryo tissue show large enthalpic and entropic peaks at water content [h, in g H2O (g dry sampie)−1] around 0.08 g g−1, indicating very tight binding and ordering of water molecules. With increasing water content both enthalpy and entropy decrease, and the completion of primary hydration requires h ∼ 0.26 g g−1. Data for endosperm tissue show the absence of such an enthalpic peak and a reduced degree of ordering for h < 0.10 g g−1. The DC protonic conductivity shows explosive growth above a threshold hydration level hc= 0.082 g g−1 and hc= 0.12 g g−1, for embryo and endosperm, respectively. Protonic conduction can be considered within the framework of a percolation modell characterized by a hydration threshold and by a power law increase in conductivity with further hydration. The critical exponent of the power law is in agreement with theory for a two-dimensional percolative process. This percolative water-assisted behavior reflects the presence of an extended network of water molecules adsorbed on the surface of proteins and/or membranes inside cells. We consider this percolative protonic conduction as being a prerequisite to respiration processes.  相似文献   

20.
The temperature and cell volume dependence of the NMR water proton linewidth, spin-lattice, and spin-spin relaxation times have been studied for normal and sickle erythrocytes as well as hemoglobin A and hemoglobin S solutions. Upon deoxygenation, the spin-spin relaxation time (T2) decreases by a factor of 2 for sickle cells and hemoglobin S solutions but remains relatively constant for normal cells and hemoglobin A solutions. The spin-lattice relaxation time (T1) shows no significant change upon dexygenation for normal or sickle packed red cells. Studies of the change in the NMR linewidth, T1 and T2 as the cell hydration is changed indicate that these parameters only slightly by a 10–20% cell dehydration. This result suggests that the reported 10% cell dehydration observed with sickling is not important in the altered NMR properties. Low temperature studies of the linewidth and T1 for oxy and deoxy hemoglobin A and hemoglobin S solutions suggest that the “bound” water possesses similar properties for all four species. The low temperature linewidth ranges from about 250 Hz at ?15°C to 500 Hz at ?36°C and analysis of the NMR curves yield hydration values near 0.4 g water/g hemoglobin for all four species. The low temperature T1 data go through a minimum at ?35°C for measurements at 44.4 MHz and ?50°C for measurements at 17.1 MHz and are similar for oxy and deoxy hemoglobin A and hemoglobin S. These similarities in the low temperature NMR data for oxy and deoxy hemoglobin A and hemoglobin S suggest a hydrophobically driven sickling mechanism. The room temperature and low temperature relaxation time data for normal and sickle cells are interpreted in terms of a three-state model for intracellular water. In the context of this model the relaxation time data imply that type III, or irratationally bound water, is altered during the sickling process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号