首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study aimed to determine the effects of starvation on lipid content and antioxidant responses in the right and left lobes of liver in large yellow croaker. Fish were divided into three groups: the control fish fed normally and the fish starved for 4 and 12 days. The set of biomarkers were determined, including crude lipid and MDA contents, and mRNA levels and activities of copper and zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR). Starvation for 12 days decreased lipid content and increased MDA content and mRNA levels and activities of antioxidant enzyme genes tested in both lobes of liver. No significant difference in these biomarkers between both lobes of liver was observed in fish starved for 12 days. However, there were significant differences between both lobes of liver in lipid and MDA contents, activities of CAT and GR, and expression levels of Cu/Zn-SOD and GR in fish starved for 4 days. These observed differences between starved and fed fish and between both lobes of liver could be important biomarkers that contributed in separating starved from fed fish and short-term starved from long-term starved fish, respectively. Our study emphasized the same lobe of the liver should be sampled when evaluating biomarkers during starvation in fish.  相似文献   

2.
We investigated the effect of long-term starvation and posterior feeding on energetic reserves, oxidative stress, digestive enzymes, and histology of C. quadricarinatus midgut gland. The crayfish (6.27 g) were randomly assigned to one of three feeding protocols: continuous feeding throughout 80 day, continuous starvation until 80 day, and continuous starvation throughout 50 day and then feeding for the following 30 days. Juveniles from each protocol were weighed, and sacrificed at day 15, 30, 50 or 80. The lipids, glycogen, reduced glutathione (GSH), soluble protein, lipid peroxidation (TBARS), protein oxidation (PO), catalase (CAT), lipase and proteinase activities, and histology were measured on midgut gland. Starved crayfish had a lower hepatosomatic index, number of molts, specific growth rate, lipids, glycogen, and GSH levels than fed animals at all assay times. The starvation did not affect the soluble protein, TBARS, PO levels and CAT. In starved juveniles the lipase activity decreased as starvation time increased, whereas proteinase activity decreased only at day 80. The histological analysis of the starved animals showed several signs of structural alterations. After 30 days of feeding, the starved-feeding animals exhibited a striking recovery of hepatosomatic index, number of molts, lipids and glycogen, GSH, lipase activity and midgut gland structure.  相似文献   

3.
Starvation effects for five weeks on energy reserves, oxidative stress and hematological indices in Nile catfish Clarias gariepinus was studied. The low protein level in starved fish may result from the lowering effect of prolonged starvation on protein synthesis rather than due to its degenerating protein. Moreover, the elevated level of serum amino acids may promote gluconeogenesis in liver. In addition, the lipid depletion in starved fish may be related to the preferential uses of lipids as an energy to starve fish. Also, unchanged glycemic level may introduce a potent evidence for the presence of active gluconeogenesis, depending on both amino and fatty acids precursors. Also, kidney and liver showed disturbances in metabolites associated with oxidative damage such as elevations in total peroxide, carbonyl protein and DNA fragmentation; these may cause dysfunction to these organs after five weeks of starvation. Total peroxide, carbonyl protein and DNA fragmentation were significantly increased in gills, liver and kidney by 29.9, 30.9 and 30.5; 83.6, 84.6 and 53.7; 82.4, 43.3 and 75.7%, respectively. Starvation induced severe anemia and loss of body weight in the fish. However, white muscle did not show any oxidative damage after five weeks of starvation.  相似文献   

4.
Synopsis Chronically starved rainbow trout (Salmo gairdneri) showed a significant fall in liver size, total liver glycogen, liver glycogen concentration and plasma glucose levels. Liver lipid concentration did not differ significantly from controls although total liver lipid reserves fell during the first 40 days of starvation but had partly recovered after 65 days of starvation. Plasma cortisol and T3 levels did not show consistent changes concomitant with food deprivation over the 65 day period of the experiment. However, plasma T4 levels in fish starved for 40 or 65 days were significantly lower than comparably fed animals. The involvement of T4 in intermediate metabolic processes in salmonids is discussed.  相似文献   

5.
This study investigated the effects of cold stress on morphometrical and hematological biomarkers, energy metabolism, and oxidative stress in different tissues of P. mesopotamicus, and the protective role of β-carotene. Fish were fed with a control diet (CD) and the same diet supplemented with 105 mg/kg β-carotene (BD) for 60 days. After the feeding trial, fish fed CD or BD diets were exposed to control (24 °C) and low temperature (14 °C) for 24 h. Fish (CD and BD) exposed to thermal stress showed lower hepatosomatic index. The hemoglobin increased only in CD-fed fish exposed to 14 °C. Increased glycemia, plasmatic protein depletion, and decreased hepatic glycogen were observed in fish fed the CD, while only the lipid levels in liver were augmented in BD-fed fish exposed at 14 °C. Regarding the oxidative stress, increased antioxidant enzymes activity and lipid peroxidation were observed in CD-fed fish exposed to cold. The two-way ANOVA showed an interaction between dietary treatment and temperature for glucose and oxidative stress biomarkers, with the highest values recorded in 14 °C-exposed fish fed with the CD. Our study demonstrated that cold stress had the greatest impact on fish oxidative status, and β-carotene reduces harmful effects induced by cold in P. mesopotamicus.  相似文献   

6.
The effects of long-term starvation and food restriction (49 days), followed by refeeding (21 days) have been studied with respect to antioxidant defense in the liver and gills (branchial tissues) of the brown trout, Salmo trutta. Malondialdehyde levels in both tissues increased in parallel with starvation and food restriction and these values did not return to normal after the refeeding period. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) in liver and gills increased during the 49 days of starvation, but glucose-6-phosphate dehydrogenase (G6PD) activities decreased. Glutathione S-transferase (GST) activity decreased in the liver at the 49th day of starvation, but increased in the branchial tissues. Some of the antioxidant enzyme activities (such as hepatic GST and branchial G6PD) returned to control values of fed fish after the refeeding period, but others (e.g. hepatic SOD and branchial GPx) did not return to normal values. In conclusion, our study indicates that total or partial food deprivation induces oxidative stress in brown trout.  相似文献   

7.
During starvation, muscle glycogen in Boleophthalmus boddaerti was utilized preferentially over liver glycogen. In the first 10 days of fasting, the ratio of the active‘a’form of glycogen phosphorylase to total phosphorylase present in the liver was small. During this period, the active‘I’form of glycogen synthetase increased in the same tissue. In the muscle, the phosphorylase‘a’activity declined during the first 7 days and increased thereafter while the total glycogen synthetase activity showed a drastic decline during the first 13 days of fasting. The glycogen level in the liver and muscle of mudskippers starved for 21 days increased after refeeding. After 6 and 12 h refeeding, liver glycogen level was 8·5 ± 2·3 and 6·9 ± 4·5 mg·g wet wt 1, respectively, as compared to 5·8 ± l·6mg·g wet wt 1 in unfed fish. Muscle glycogen level after 6 and 12 h refeeding was 0·96±0·76 and 0·82 ± 0·50 mg·g wet wt 1, respectively, as opposed to 0·21 ± 0·12 mg·g wet wt 1 in the 21-days fasted fish. At the same time, activities of glycogen phosphorylase in the muscle and liver increased while the active‘I’form of glycogen synthetase showed higher activity in the liver. Since glycogen was resynthesized upon refeeding, this eliminated the possibility that glycogen depletion during starvation was due to stress or physical exhaustion after handling by the investigator. Throughout the experimental starvation period, the body weight of the mudskipper decreased, with a maximum of 12% weight loss after 21 days. Liver lipid reserves were utilized at the onset of fasting but were thereafter resynthesized. Muscle proteins were also metabolized as the fish were visibly thinner. However, no apparent change in protein content expressed as per gram wet weight was detected as the tissue hydration state was maintained constant. The increased degradation of liver and muscle reserves was coupled to an increase in the activities of key gluconeogenic enzymes in the liver (G6Pase, FDPase, PEPCK, MDH and PC). The increase in glucose synthesis was possibly necessary to counteract hypoglycemia brought about by starvation in B. boddaerti.  相似文献   

8.
The aim of this work was to evaluate the effects of prolonged starvation and refeeding on antioxidant status and some metabolic-related parameters in common dentex (Dentex dentex) liver. Fish deprived of food for 5 weeks showed a significant increase in lipid peroxidation, measured as malondialdehyde (MDA) levels. The activity of the antioxidative enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) in starved fish significantly increased (by 42%, 22%, and 52%, respectively), whereas glutathione reductase (GR) activity was significantly depressed by 53% compared to controls. No qualitative changes in the SOD isoenzymatic pattern were detected by nondenaturing PAGE analysis, but the isoforms corresponding to CuZn-SOD I and II were enhanced in starved fish. The activity of the enzymes indicative of oxidative metabolism, beta-hydroxyacyl CoA dehydrogenase (HOAD) and citrate synthase (CS), significantly increased (by 123% and 28%, respectively), and that of glucose-6-phosphate dehydrogenase (G6PDH) was inhibited by 56%. Oxidative damage under these circumstances is reversible since all biomarkers assayed returned to control values after refeeding. Our results show that prolonged starvation leads to a pro-oxidant situation and oxidative stress despite activation of antioxidant defense mechanisms, and that inhibition of G6PDH activity might be responsible for this failure in cellular antioxidant defenses.  相似文献   

9.
The effect of dietary composition (high-protein, high-carbohydrate and high-fat diets) and starvation on in totum gluconeogenesis from L-(U-14C)glutamate was studied in the rainbow trout. High-fat and high-carbohydrate diets produced a significant hyperglycaemia. Lower blood glucose values were obtained in trout fed on a high-protein diet. Liver glycogen levels were significantly lower in trout fed on carbohydrate-free diets (high-protein and high-fat diets) and in starved fish. Gluconeogenesis from L-(U-14C)glutamate was markedly reduced in fish given the high-carbohydrate diet and significantly enhanced in starved fish. Radioactive liver glycogen was higher in starved fish, although the amount of radioactivity incorporated into glycogen was very low.  相似文献   

10.
This study investigated the influence of feeding frequency on the activities of important degradative enzymes and potentially rate-limiting enzymes in glycolysis and gluconeogenesis in the liver and white epaxial muscle of Macquaria ambigua . Adult animals were either fed daily to satiety (fed), deprived of food for up to 180 days (starved), or starved for 150 days then fed daily to satiety for 30 days (starved/fed). The activities of lipolytic, glycogenolytic and glycolytic enzymes in the livers of starved fish were maintained as long as liver energy stores were available, but became significantly reduced following their exhaustion indicating a decline in metabolism in response to prolonged starvation. The response of epaxial muscle metabolism to changes in food availability was different to that of the liver, as no significant change in the activities of muscle lipolytic or glycogenolytic enzymes were observed in response to starvation. Muscle tissue metabolism was reduced after 60–90 days of starvation, but then returned to prestarvation levels.  相似文献   

11.
Adult golden perch Macquaria ambigua were fed to satiety, starved for up to 210 days, or starved for 150 days then fed to satiety for 60 days to investigate the utilization of energy stores in response to food deprivation and re-feeding. Golden perch sequentially mobilize energy from hepatic tissue, extra-hepatic lipid, and finally muscle components in response to food deprivation. The relative size of the liver was significantly reduced by 30 days after the onset of food deprivation due to the simultaneous mobilization of lipid, protein and glycogen reserves. These stores were renewed rapidly within 30 days by satiety feeding. Mobilization of lipid stores in perivisceral fat bodies occurred between 30 and 60 days of food deprivation. These deposits were also renewed upon re-feeding, although not as rapidly as liver reserves. The glycogen content of the epaxial muscle was reduced by the 60th day of food deprivation but subsequently increased indicating the mobilization of other energy reserves. The concentration of muscle lipid decreased after 90 days of food deprivation. The only significant response in body composition observed in the fish fed to satiety throughout the study was an increase in the relative size of the perivisceral fat bodies. The results of this study suggest that golden perch are well adapted to cope with extended periods of food deprivation, storing energy as perivisceral fat when food is readily available and having a clearly sequential process for mobilizing energy when food is scarce which largely protects the integrity of the musculature.  相似文献   

12.
The present study aimed to investigate in Hoplosternum littorale (Hancock, 1828) the effects of different water temperatures (10 °C, 25 °C-control group- and 33 °C) on physiologic and metabolic traits following acute (1 day) and chronic (21 days) exposures. We analyzed several biomarker responses in order to achieve a comprehensive survey of fish physiology and metabolism under the effect of this natural stressor. We measured morphological indices, biochemical and hematological parameters as well as oxidative stress markers. To evaluate energy consumption, muscle and hepatic total lipid, protein and glycogen concentrations were also quantified. Extreme temperatures exposures clearly resulted in metabolic adjustments, being liver energy reserves and plasma metabolites the most sensitive parameters detecting those changes. We observed reduced hepatosomatic index after acute and chronic exposure to 33 °C while glycogen levels decreased at both temperatures and time of exposure tested. Additionally, acute and chronic exposures to 10 °C increased liver lipid content and plasma triglycerides. Total protein concentration was higher in liver and lower in plasma after chronic exposures to 10 °C and 33 °C. Acute exposition at both temperatures caused significant changes in antioxidant enzymes tested in the different tissues without oxidative damage to lipids. Antioxidant defenses in fish failed to protect them when they were exposed for 21 days to 10 °C, promoting higher lipid peroxidation in liver, kidney and gills. According to multivariate analysis, oxidative stress and metabolic biomarkers clearly differentiated fish exposed chronically to 10 °C. Taken together, these results demonstrated that cold exposure was more stressful for H. littorale than heat stress. However, this species could cope with variations in temperature, allowing physiological processes and biochemical reactions to proceed efficiently at different temperatures and times of exposure. Our study showed the ability of H. littorale to resist a wide range of environmental temperatures and contributes for the understanding of how this species is adapted to environments with highly variable physicochemical conditions.  相似文献   

13.
Crustaceans are forced to fast during molting. Several physiological, metabolic and behavioral changes have been associated with starvation. Although some of these changes have been well studied, knowledge of the dynamics of fuel reserves during the molting process is limited. To understand the effects of short-term hunger stress on energy reserves, intermolt shrimp Litopenaeus vannamei were starved up to five days. This period corresponds to the normal time that juvenile shrimp starve during molting, since they can not eat. Glucose, glycogen, total soluble protein, total lipids, sterols, and acylglycerides were measured in plasma and hepatopancreas. The same metabolic substrates were measured in organisms that were fed after 96 h of starvation. It is widely accepted that protein is the main energy reserve used by shrimp to deal with starvation. However, under short-term starvation a rapid decrease of plasma and hepatopancreas glucose and an important decrease in hepatopancreatic glycogen were detected. Additionally, acylglycerides content in hepatopancreas decreased significantly at later times, while protein in plasma and hepatopancreas remained fairly constant during the experiment. This study may help understand some aspects of the nutrition physiology of the Pacific white shrimp related to its biology.  相似文献   

14.
The activities of alanine and aspartate transaminases, adenylate deaminase, glutamine synthetase and glutamate and xanthine dehydrogenases have been measured in liver, yolk sac membrane, intestine and breast and leg muscle of domestic fowl hatchlings receiving for 3 or 5 days either a standard diet or hard boiled eggwhite as well as in 3 or 5 days starved animals. The patterns of activation of amino acid metabolism enzymes were fully comparable in protein-fed and starved groups with respect to fed controls; the differences with respect to the latter became more marked in 5- than in 3-days old chicks. In 5-days old chicks intestine alanine transaminase activity increased in parallel to that of liver in protein-fed animals but not in those starved, in agreement with an enhanced alanine transfer between both organs under this situation. Both, starvation and protein-feeding, induced a general decrease in the amino acid metabolizing ability of muscle. Glutamine (but not alanine) synthetizing capabilities were enhanced.  相似文献   

15.
In this study, the protective effects of diphenyl diselenide [(PhSe)2] on quinclorac- induced toxicity were investigated in silver catfish (Rhamdia quelen). The fish were fed for 60 days with a diet in the absence or in the presence of 3.0 mg/Kg (PhSe)2. Animals were further exposed to 1 mg/L quinclorac for 8 days. At the end of experimental period, fish were euthanized and biopsies from liver and gills, as well as blood samples, were collected. The cortisol and metabolic parameters were determined in plasma, and those enzyme activities related to osmoregulation were assayed in the gills. In liver, some important enzyme activities of the intermediary metabolism and oxidative stress-related parameters, such as thiobarbituric acid-reactive substance (TBARS), protein carbonyl, catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), nonprotein thiols (NPSH) and ascorbic acid contents were also evaluated. Compared to the control group, quinclorac exposure significantly decreased hepatosomatic index and increased cortisol and lactate values in plasma. Moreover, the activities of fructose biphosphatase (FBPase), glucose-6-phosphate dehydrogenase (G6Pase), glycogen phosphorilase (GPase) and aspartate aminotransferase (AST) were significantly increased in liver. Quinclorac also induced lipid peroxidation while the activity of SOD, NPSH and ascorbic acid levels decreased in the liver. However, dietary (PhSe)2 reduced the herbicide-induced effects on the studied parameters. In conclusion, (PhSe)2 has beneficial properties based on its ability to attenuate toxicity induced by quinclorac by regulating energy metabolism and oxidative stress-related parameters.  相似文献   

16.
The effects of short-term food deprivation (7 days) and refeeding (2 days) on different biochemical and neuroendocrine parameters were studied in tench. A 7-days fast resulted in a significant reduction of plasma glucose and glycogen hepatic content, supporting the key role of liver glycogen as energy depot for being consumed during fasting. The rapid recovery of normal values of blood glucose and glycogen stores by refeeding indicates a rapid replenishment of liver glycogen stores. The short-term starvation decreased circulating thyroid hormones (both T3 and T4) and T4 release from thyroid, supporting an interaction between nutritional state and thyroid function in tench. All these metabolic and hormonal changes were partial or totally reversed under refeeding conditions. An increase in hypothalamic content of norepinephrine and dopamine was found in fasted fish. This result might be a consequence of stress induced by starvation.  相似文献   

17.
  • 1.1. The effects of feeding, food deprivation (14 and 28 days) and refeeding (starved 14 then fed 14 days) on the fatty acid composition of white muscle, liver and brain of pond-raised channel catfish (Ictalurus punctatus) were investigated.
  • 2.2. Levels of n-3 fatty acids were significantly higher (P < 0.05) in white muscle of fish starved 28 days (10.7%) than in fish fed throughout the study (8.0%), due primarily to an increase in 22:6(n-3) docosahexaenoic acid or DHA.
  • 3.3. Significantly higher levels of 20:5(n-3) (eicosapentaenoic acid or EPA) were found in livers offish starved 28 days (P < 0.05) compared to fish fed throughout the study.
  • 4.4. Results suggest that the fatty acid compositions of channel catfish white muscle and liver are subject to only limited perturbation during periods of starvation and refeeding and that the brain is extremely well protected.
  相似文献   

18.
The influence of high stocking density (HSD) and food deprivation was assessed on carbohydrate metabolism of several tissues of gilthead sea bream Sparus auratus for 14 days. Fish were randomly assigned to one of four treatments: (1) fed fish under normal stocking density (NSD) (4 kg m(-3)); (2) fed fish under HSD (70 kg m(-3)); (3) food-deprived fish under NSD; and (4) food-deprived fish under HSD. After 14 days, samples were taken from the plasma, liver, gills, kidney and brain for the assessment of plasma cortisol, levels of metabolites and the activity of several enzymes involved in carbohydrate metabolism. HSD conditions alone elicited important changes in energy metabolism of several tissues that in some cases were confirmatory (5-fold increase in plama cortisol, 20% increase in plasma glucose, 60% decrease in liver glycogen and 20% increase in gluconeogenic potential in the liver) whereas in others provided new information regarding metabolic adjustments to cope with HSD in the liver (100% increase in glucose phosphorylating capacity), gills (30% decrease in capacity for phosphorylating glucose), kidney (80% increase in the capacity of phosphorylating glucose) and brain (2.5-fold increase in ATP levels). On the other hand, food deprivation alone resulted in increased plasma cortisol, and metabolic changes in the liver (enhanced gluconeogenic and glycogenolytic potential of 13% and 18%, respectively) and brain (10% increase in glycolytic capacity), confirmatory of previous studies, whereas new information regarding metabolic adjustments during food deprivation was obtained in the gills and kidney (decreased lactate levels in both tissues of 45% and 55%, respectively). Furthermore, the results obtained provided, for the first time in fish, information indicating that food deprivation increased the sensitivity of gilthead sea bream to the stress induced by HSD compared with the fed controls, as demonstrated by increased plasma cortisol levels (50% increase vs. fed fish) and a further increase in the capacity to export glucose mobilized from liver glycogen stores (70% decrease vs. fed fish). These results lend support for a cumulative effect of both stressors on plasma cortisol and parameters assessed on carbohydrate metabolism in the present experiments, and provide information regarding reallocation of metabolic energy to cope with simultaneous stressors in fish.  相似文献   

19.
We assessed the daily patterns of parameters involved in energy metabolism in liver, white muscle, and gills of rainbow trout. Where daily rhythms were found, we analyzed the potential influence of feeding. Immature rainbow trout were randomly distributed in 3 groups: fish fed for 7 days, fish fasted for 7 days, and fish fasted for 7 days and refed for 4 days. On sampling day, fish of fed and refed groups were fed at 11.00 h, and all fish were sampled from each treatment group using the following time schedule: 14.00, 18.00, 21.00, 00.00, 04.00, 07.00, 10.00 and 14.00 h. The results obtained from metabolic parameters can be grouped into four different categories, such as i) those displaying no daily changes in any group assessed in liver (acetoacetate and lactate levels), white muscle (protein levels, and low Km (glucose) hexokinase (HK) and HK-IV activities) and gills (protein levels), ii) those displaying no 24 h changes in fed fish but in refed or fasted fish in liver (glucose, glycogen, amino acid and protein levels, and HK-IV activity), white muscle (glycogen and amino acid levels) and gills (glucose levels), iii) those displaying 24 h changes that were apparently dependent on feeding since they disappear in fasted fish in liver (Low Km (glucose) HK, lactate dehydrogenase (LDH-O), glucose 6-phosphatase (G6Pase), fructose 1,6-bisphosphatase (FBPase) , alpha-glycerophosphate dehydrogenase (G3PDH), glutamate dehydrogenase (GDH) and aspartate aminotransferase (Asp-AT) activities), white muscle (glucose levels, and pyruvate kinase (PK), LDH-O, G3PDH and Asp-AT activities) and gills (glycogen and lactate levels, and Low Km (glucose) HK, HK-IV, LDH-O and Asp-AT activities), and iv) those parameters displaying 24 h changes apparently not dependent on feeding in liver (lactate levels and PK activity) and gills (amino acid levels, and PK and GDH activities). In general, most 24 h changes observed were dependent on feeding and can be also related to daily changes in activity.  相似文献   

20.
The effects of food deprivation on the hepatic level growth hormone receptor (GHR) were investigated in black seabream (Acanthopagrus schlegeli) both at the protein level (by radioreceptor assay) and at the mRNA level (by ribonuclease protection assay). Serum levels of growth hormone (GH) and triiodothyronine (T3) were also measured. Condition factor and hepatic proximate composition of the fish were also assessed. Significant decrease in hepatic GHR binding was recorded as early as on day 2 of starvation. On day 30 this decrease was even more pronounced, with the level in the starved fish reaching less than 20% the fed control level. A concomitant decrease in the hepatic GHR mRNA content was also noted during this period, with a progressive decrease from day 2 to day 30 of starvation. The extent of decrease in the mRNA content was less pronounced than the decrease in receptor binding, with the hepatic GHR mRNA content in the day 30 starved fish representing approximately 30% of the level in the fed control. In large contrast, serum GH level increased progressively during starvation. After 30 days of starvation, serum GH levels in the starved fish were more than three times the concentration found in the fed control. Serum T3 levels, on the other hand, decreased during starvation, with the difference reaching significance on day 15 and day 30. After 30 days of starvation, serum T3 levels in the starved fish were only approximately 40% the concentration found in the fed control. The hepatic lipid content exhibited an increasing trend during starvation. On day 30 the hepatic lipid content of the starved fish had doubled the level found in the fed control. However, the hepatic protein content did not exhibit much change during starvation. There was also a minor decrease in the moisture content of the liver during starvation, but the condition factor of the fish as a whole registered a gradual decrease during the course of food deprivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号