首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The membrane-bound acetylcholinesterase (AChE) from the electric organ of Torpedo marmorata was solubilized by Triton X-100 or by treatment with proteinase K and purified to apparent homogeneity by affinity chromatography. Although the two forms differed only slightly in their subunit molecular weight (66,000 and 65,000 daltons, respectively), considerable differences existed between native and digested detergent-soluble AChE. The native enzyme sedimented at 6.5 S in the presence of Triton X-100 and formed aggregates in the absence of detergent. The digested enzyme sedimented at 7.5 S in the absence and in the presence of detergent. In contrast to the detergent-solubilized AChE, the proteolytically derived form neither bound detergent nor required amphiphilic molecules for the expression of catalytic activity. This led to the conclusion that limited digestion of detergent-soluble AChE results in the removal of a small hydrophobic peptide which in vivo is responsible for anchoring the protein to the lipid bilayer.  相似文献   

2.
A prostaglandin F2 alpha receptor localized in plasma membranes of bovine corpus luteum cells was solubilized by treatment with Triton X-100. Sepharose chromatographies of ([3H]prostaglandin F2 alpha)-receptor complex gave a Stokes' radius of 630 nm. In the absence of detergent, aggregated forms of the receptor appeared. Sedimentation experiments of solubilized receptor in sucrose/H2O and sucrose/2H2O density gradients gave the following values: sedimentation coefficient (S20, w) 4.6 S; partial specific volume (VB) 0.78 cm3/g and frictional ratio (f/fo) 1.6. Based on the sedimentation coefficient and the Stokes' radius and assuming that the receptor is a non-glycosylated protein the molar mass of the receptor-(Triton X-100) complex was 144000 g/mol. The VB value indicated that ca. 26% of the weight represented bound detergent and that the molecular weight of the prostaglandin F2 alpha receptor is approximately 107000.  相似文献   

3.
1. Human erythrocyte acetylcholinesterase was solubilized by Triton X-100 and purified by affinity chromatography to a specific activity of 3800 IU/mg of protein. The yield of the purified enzyme was 25--45%. 2. Gel filtration on Sepharose 4-B in the presence of Triton X-100 revealed one peak of enzyme activity with a Stokes' radius of 8.7 nm. Density gradient centrifugation in 0.1% Triton X-100 showed one peak of enzyme activity with an S4 value of 6.3S. 3. Isoelectric focusing in Triton X-100 resolved the enzyme into five molecular forms with isoelectric points of 4.55, 4.68, 4.81, 4.98 and 5.18. Upon incubation with neuraminidase the enzyme activity in the first four forms was decreased with a concommitant increase in activity in the form with the higher isoelectric point. 4. After removal of excess Triton X-100 on Bio-Gel HTP, polyacrylamide gel electrophoresis showed seven bands of protein and corresponding bands of enzyme activity. Density gradient centrifugation of the detergent-depleted enzyme at high ionic strength revealed five multiple molecular forms with S4 values of 6.3 S, 10.2 S, 12.2 S, 14.2 S and 16.3 S. At low ionic strength, higher aggregates were observed in addition to the other forms. Dodecylsulfate-polyacrylamide gel electrophoresis gave one subunit only with an apparent molecular weight of 80 000. 5. These results suggest that human erythrocyte acetylcholinesterase, solubilized by Triton X-100, exists in various forms differing in net charge but of apparently similar molecular dimensions. After removal of the detergent, forms with different molecular sizes are observed.  相似文献   

4.
5-Hydroxytryptamine3 (5-HT3) receptor-type binding sites were solubilised from NG108-15 mouse neuroblastoma x rat glioma hybrid cells using five different detergents [n-octyl-beta-D-glucoside, Triton X-100, 3-[3-(cholamidopropyl)dimethylammonio]-1-propanesulphonate (CHAPS), sodium cholate, and deoxycholate] and the solubilisation efficiencies compared. The equilibrium binding, kinetic properties, and pharmacological profile of solubilised binding sites were similar to those of 5-HT3 receptor-type binding sites (5-HT3R) in membrane preparations determined using [3H]GR65630. The solubilised binding sites were purified using an affinity column constructed by coupling the high-affinity antagonist GR119566X to an Affi-Gel 15 resin. The affinity of purified 5-HT3R for [3H]-GR65630 was reduced threefold compared to the crude soluble preparation, but the pharmacological profile was similar. The sedimentation coefficient of the purified protein (11S, detergent: CHAPS) was determined by sucrose density gradient centrifugation. The apparent molecular mass of the detergent/binding site complex (370 kDa) was determined by size exclusion chromatography in the presence of n-dodecyl-beta-D-maltoside. Gel electrophoresis of the purified protein revealed bands at apparent molecular masses of 36, 40, 50, and 76 kDa. Electron microscopy of the negatively stained purified protein showed the presence of round particles of 8-9 nm diameter with a 2-nm stained pit in the centre, closely resembling the doughnut shapes described for nicotinic acetylcholine receptors.  相似文献   

5.
Phosphatidylinositol (PtdIns)-glycan-specific phospholipase D was purified from bovine and human serum by phase separation in Triton X-114 and by chromatography on DEAE-cellulose, octyl-Sepharose, concanavalin-A-Sepharose, and hydroxyapatite. The purification of the two enzymes was approximately 1200-fold with a recovery of 3-5%. Bovine serum contained about 40 micrograms/ml of PtdIns-glycan-specific phospholipase D, about 10 times more than the amount determined in human serum. PtdIns-glycan-specific phospholipase D is also present in mammalian cerebrospinal fluid and in mammalian milk but to a much lesser extent than in serum. Enzyme from bovine and human serum displayed amphiphilic properties as revealed by sucrose density gradient centrifugation and gel filtration in the absence and presence of detergent. On density gradient centrifugation, both enzymes sedimented with an apparent sedimentation coefficient of about 6.0 S in the presence of 0.1% Triton X-100, and formed aggregates up to 14.5 S in the absence of detergent. Upon gel filtration, the bovine and human enzymes migrated with a Stokes' radius of 6.5 nm and 6.6 nm, respectively, in the presence of Triton X-100. In the absence of Triton X-100, both enzymes gave a Stokes' radius of 8.8 nm. Serial centrifugation of serum at increasing NaBr concentrations revealed that the majority of the enzyme is contained in the high-density lipoprotein fraction. PtdIns-glycan-specific phospholipase D from bovine and human serum contained 27 and 28 N-acetylglucosamine residues, respectively. Treatment with N-glycosidase F decreased the apparent molecular mass of the bovine and human enzyme from 115 and 123 kDa to 91 and 87 kDa, respectively. Sequence analysis of peptides derived from PtdIns-glycan-specific phospholipase D of bovine serum by CNBr cleavage gave 100% identity to the sequence published for the bovine liver enzyme while there was 83% similarity and 74% identity to the sequence of peptides obtained from the human serum enzyme.  相似文献   

6.
Rat lung membrane vasoactive intestinal peptide (VIP) receptors were covalently labeled with 125I-VIP, extracted in Triton X-100 and n-octyl-beta-D-glucopyranoside, and analyzed by gel filtration and sucrose density gradient sedimentation. The fractions were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography, and the identity of the 125I-VIP.receptor complex was demonstrated by its co-migration with the covalently labeled 55-kDa receptor unit identified previously. Furthermore, the radioactivity in the peak corresponding to the 125I-VIP.receptor complex was displaced in the presence of unlabeled VIP in a dose-dependent manner. The following hydrodynamic properties were determined for VIP receptors in each detergent solution: in Triton X-100, Stokes radius of 6.1 +/- 0.4 nm, sedimentation coefficient (S20,w) of 7.35 +/- 0.45 S, and partial specific volume (v) of 0.809 +/- 0.015 ml/g; in n-octyl-beta-D-glucopyranoside, Stokes radius of 5.6 +/- 0.00 nm, S20,w of 10.87 +/- 0.22 S, and partial specific volume of 0.783 +/- 0.020 ml/g. The apparent molecular weight of the 125I-VIP.receptor.detergent complex was calculated as 270,000 +/- 36,000 in Triton X-100 and 320,000 +/- 32,000 in n-octyl-beta-D-glucopyranoside. The amount of detergent bound to the receptor was estimated by using the two sets of hydrodynamic data and the significantly different partial specific volumes of the two detergents. Thus, the molecular weight of the receptor alone was calculated as 54,600 daltons, indicating that approximately 3.9 g of Triton X-100 and 4.9 g of n-octyl-beta-D-glucopyranoside were bound per g of receptor. This species contained the 55-kDa binding unit and appeared to be glycosylated as evidenced by its specific binding to wheat germ agglutinin-Sepharose. These results indicate that the rat lung VIP receptor is a glycoprotein with a single polypeptide chain of 55 kDa. The large amount of detergent bound suggests that the receptor is extensively embedded in the membrane.  相似文献   

7.
Porcine enteropeptidase (EC 3.4.21.9) purified from acetone powders of fresh duodenal fluid shows a molecular weight, as determined on Ultragel AcA-34, of 190000. Enteropeptidase has been solubilised from pig intestinal mucosa using 1% (v/v) Triton X-100. When Triton X-100 extracts of freeze-dried mucosa after partial fractionation on DEAE-cellulose were chromatographed on Sephadex G-200, the bulk of the activity eluted in the void volume rather than with an expected Ve/V0 ratio of about 1.24 corresponding to a molecular weight of around 200000. Gel filtration of aqueous mucosal extracts obtained in the absence of Triton X-100 showed two regions of enzymic activity in approximately equal proportions, one in the void volume, and the other with the expected Ve/V0 ratio of 1.24, whereas the Triton X-100 extracts of the residue from the above extract showed the presence of only the macromolecular species of enteropeptidase. This species was excluded from Sepharose 4B. It was confirmed that aminopeptidase was also extracted by Triton X-100 in a molecular form which was excluded from Sepharose 4B. The results suggest that Triton X-100 extracts enteropeptidase with a membrane component attached and in agreement with this it was found that proteolysis rapidly converted the macromolecular form to a stable smaller molecular species corresponding in size to that found in solution in the duodenal fluid. There was full recovery of the enzymic activity following this conversion. Papain and trypsin brought about an almost complete conversion to the smaller form of enteropeptidase whereas chymotrypsin, pancreatin and an intestinal peptidase preparation were only partially effective. It is concluded that membrane bound enzymes such as enteropeptidase and aminopeptidase are bound to the intestinal brush border membrane in a similar manner and are not actively secreted into the lumen but rather are largely released or solubilised by the combined action of the bile and pancreatic secretions.  相似文献   

8.
Purification of protochlorophyllide holochrome   总被引:17,自引:16,他引:1       下载免费PDF全文
Phototransformable protochlorophyllide holochrome was prepared from etiolated bean leaves. The detergent Triton X-100 in the presence of glycerol and tricine-KOH buffer (pH 8) enhanced the extractability, specific activity, and phototransformability of the holochrome. Purification was achieved by polyethylene glycol-6000 precipitation and hydroxyl-apatite, DEAE-cellulose, and agarose chromatography. The presence of Triton X-100 permitted removal of the carotenoid contamination from the holochrome. The 678-nm absorption maximum of newly formed chlorophyllide a holochrome shifts to 672 nm in a temperature-dependent manner. The purified holochrome contains 0.24 g of protein per μmole of protochlorophyllide. Estimation of the molecular weight of the holochrome by gel filtration on agarose revealed the presence of aggregates of approximately 550,000 and 300,000. There are at least 2 chromophores per 550,000 molecular weight.  相似文献   

9.
The membrane-bound acetylcholinesterase (AchE) from human peripheral blood lymphocyte gives only one symmetrical peak on sucrose density gradient centrifugation in the presence of Triton X-100 detergent, with the calculated sedimentation coefficient of 6.5 S. However, this dimeric form of AchE was converted to a monomeric 3.8 S form when treated with 2-mercaptoethanol and iodoacetic acid. The results are consistent with studies which have shown by sodium dodecyl sulfate gel electrophoresis that the enzyme is built up of two identical monomers inter-linked by disulfide bond(s). Under reducing conditions, revealed a single species of 70,000 molecular weight, whereas under non-reducing conditions, another species of 140,000 molecular weight of the AchE was found. Polyacrylamide gel electrophoresis indicated a single band with AchE activity in the presence of Triton X-100. In contrast, in the absence of the same detergent multiple band pattern could be observed. These results suggest that membrane-bound AchE enzyme is present in homogenous dimeric form on human lymphocyte membrane.  相似文献   

10.
Staphylococcus aureus mutants resistant to the nonionic detergent Triton X-100, isolated from the wild-type strain H and the autolysin-deficient strain RUS3, could grow and divide in broth containing 5% (vol/vol) Triton X-100, while growth of the parental strains was markedly inhibited above the critical micellar concentration (0.02%) of the detergent. Growth-inhibitory concentrations of Triton X-100 killed wild-type cells without demonstrable cellular lysis. Triton X-100 stimulated autolysin activity of S. aureus cells under nongrowing conditions, and this lytic response was markedly reduced in energy-poisoned cells. In contrast, the detergent had no effect on the activity of autolysins in cell-free systems, and growth in the presence of Triton X-100 did not alter either the cellular autolysin activity or the susceptibility of cell walls to exogenous lytic enzymes. Treatment with either Triton X-100 or penicillin G in the growth medium stimulated release of predominantly acylated intracellular lipoteichoic acid and sensitized staphylococci to Triton X-100-induced autolysis. There was no significant difference in the cell wall and membrane compositions or Triton X-100 binding between the parental strains and the resistant mutants. The resistant mutant TXR1, derived from S. aureus H, had a higher level of L-alpha-glycerophosphate dehydrogenase activity, and its oxygen uptake was more resistant to inhibition by a submicellar concentration (0.008%) of Triton X-100. Growth in the presence of subinhibitory concentrations of Triton X-100 rendered S. aureus H cells phenotypically resistant to the detergent and greatly stimulated the level of oxygen uptake. Membranes isolated from such cells exhibited enhanced activity of the respiratory enzymes succinic dehydrogenase and L-alpha-glycerophosphate dehydrogenase.  相似文献   

11.
The hydrogenase from Paracoccus denitrificans is an integral membrane protein and has been solubilised by Triton X-100. The membrane-bound and detergent-solubilised forms of the enzyme have been compared. Both forms of the enzyme show a pH optimum for reduction of benzyl viologen at pH 8.5--9.0 and are both inhibited by concentrations of NaCl greater than 30 mM. An Arrhenius plot of the activity of hydrogenase in the membrane shows no 'break'. The form of the Arrhenius plot and the activation energy are not significantly changed on solubilisation of the enzyme. The Km and V values for benzyl viologen, methyl viologen and H2 are unaltered when the enzyme is extracted from the membrane. Therefore, solubilisation of hydrogenase from the membrane by Triton X-400 is unlikely to disrupt the native conformation of the enzyme. The detergent-solubilised hydrogenase has subsequently been purified using ammonium sulphate precipitation, sucrose density gradient centrifugation and chromatography on hydroxyapatite. The overall yield of activity is 23%, with a final purification of over 100-fold.  相似文献   

12.
Studies are reported on the influence of Triton X-100 on the molecular weight and functional properties of the acetylcholine receptor. Results are presented principally for receptors purified from Torpedo californica and Torpedo marmorata with a limited number of observations on the receptor from Electrophorus electricus. In equilibrium dialysis measurements Trito, X-100 greatly reduced acetylcholine binding to the high affinity sites of the receptor from T. californica, but had only a small effect on the sites of lower affinity. Sedimentation equilibrium experiments on receptor in the absence of added Triton X-100 revealed average apparent molecular weight values of 510,000 for receptor from T. californica and 665,000 for T. marmorata. Under those conditions 0.113 mg of residual Triton X-100 were found per mg of protein as determined by using 3H-labeled Triton X-100. The sedimentation data indicated the presence of more than one molecular species, involving a unit with an apparent molecular weight of 330,000 and higher aggregates. Upon addition of Triton X-100, the higher aggregates were reduced, and above 0.1 percent Triton X-100 the 330,000 unit was the principal component present for receptor from all three species examined. Various structural models are considered in the light of this value, the polypeptide size from Na dodecyl sulfate-gel electrophoresis, and the protomer size determined by the molecular weight of an acetylcholine binding site.  相似文献   

13.
Plasma membrane vesicles derived from corn (Zea mays L.) roots retain a membrane-bound H+-ATPase that is able to form a H+ gradient across the vesicle membranes. The activity of this ATPase is enhanced 2- to 3-fold when Triton X-100 or lysophosphatidylcholine is added to the medium at a protein:detergent ratio of 2:1 (w/w). In the absence of detergent, the ATPase exhibits only one Km for ATP (0.1-0.2 mM), which is the same as for the pumping of H+. After the addition of either Triton X-100 or lysophosphatidylcholine, two Km's for ATP are detected, one in the range of 1 to 3 [mu]M and a second in the range of 0.1 to 0.2 mM. The Vmax of the second Km for ATP increases as the temperature of the assay medium is raised from 15[deg]C to 38[deg]C. The Arrhenius plot reveals a single break at 30[deg]C, both in the absence and in the presence of detergents. In the presence of Triton X-100 the H+-ATPase catalyzes the cleavage of glucose-6-phosphate when both hexokinase and ADP are included in the assay medium. There is no measurable cleavage when the apparent affinity for ATP of the H+-ATPase is not enhanced by Triton X-100 or when 1 mM glucose is included in the assay medium. These data indicate that when the high-affinity Km for ATP is unmasked with the use of detergent, the ATPase can use glucose-6-phosphate and hexokinase as an ATP-regenerating system.  相似文献   

14.
The physical properties of the cardiac muscarinic acetylcholine receptor (mAcChR) purified from porcine atria as recently described [Peterson, G.L., Herron, G.S., Yamaki, M., Fullerton, D.S., & Schimerlik, M.I. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 4993-4997] have been examined by D2O/H2O sucrose gradient sedimentation and Sephacryl S-300 gel filtration in Triton X-405 and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). From the sedimentation experiments the partial specific volume and sedimentation constant for the mAcChR-Triton X-405 complex were determined to be 0.813 cm3/g and 5.30 S, respectively, which lead to an estimate of the molecular weight of the complex of 143 000. Gel filtration in Triton X-405 gave an estimate of the Stokes radius (4.29 nm) and an apparent molecular weight of 116 000. Combination of sedimentation and gel filtration gave an apparent molecular weight of 137 000 and a frictional ratio (f/f0) of 1.21 for the complex. The partial specific volume of the receptor calculated from composition was 0.717 cm3/g assuming 26.5% by weight carbohydrate. The amount of bound Triton X-405 was estimated at 1.011 g/g of mAcChR, which gave an apparent molecular weight of 70 900 (sedimentation) or 68 200 (sedimentation plus gel filtration) for the uncomplexed receptor. SDS-PAGE experiments at acrylamide concentrations ranging from 6% T [monomer plus bis(acrylamide)] to 17% T gave a linear range of apparent molecular weight from 67 600 (6% T) to 98 600 (17% T), and calibration against the retardation coefficient, Kr, determined from Ferguson plots gave an apparent molecular weight of 89 100 +/- 6700. From a newly developed, novel evaluation scheme the anomalous migration of the mAcChR in SDS-PAGE was found to be due to both an excess charge density and an abnormally large shape parameter (Kr), and the true molecular weight of the protein portion of the mAcChR ligand binding polypeptide was estimated to be between 50 000 and 60 000.  相似文献   

15.
The enzyme, alkyldihydroxyacetone-P synthase, has been solubilized and partially purified from microsomal preparations of Ehrlich ascites cells after treatment with Triton X-100 and phospholipase C, followed by chromatography on Sepharose 4B. When the Triton X-100 was removed after solubilization the enzyme was still active but eluted in the void volume of the Sepharose 4B column, whereas in the presence of detergent it eluted much later as a single peak of activity, indicating that the solubilized enzyme tends to aggregate unless detergent is present. The lower molecular weight form of alkyldihydroxyacetone-P synthase (in detergent) had an estimated molecular mass of 250,000–300,000 daltons.  相似文献   

16.
Solubilisation of a Glutamate Binding Protein from Rat Brain   总被引:2,自引:2,他引:0  
Rat brain synaptic plasma membranes were solubilised in either 1% Triton X-100 or potassium cholate and subjected to batch affinity adsorption on L-glutamate/bovine serum albumin reticulated glass fibre. The fibre was extensively washed, and bound proteins eluted with 0.1 mM L-glutamate in 0.1% detergent, followed by repeated dialysis to remove the glutamate from the eluted proteins. Aliquots of the dialysed extracts were assayed for L-[3H]glutamate binding activity in the presence or absence of 0.1 mM unlabelled L-glutamate (to define displaceable binding). Incubations were conducted at room temperature and terminated by rapid filtration through nitrocellulose membranes. Binding to solubilised fractions could be detected only following affinity chromatography. Binding was saturable and of relatively low affinity: KD = 1.0 and 1.8 microM for Triton X-100 and cholate extracts, respectively. The density of binding sites was remarkably high: approximately 18 nmol/mg protein for Triton X-100-solubilised preparations, and usually double this when cholate was employed. Analysis of structural requirements for inhibition of binding revealed that only a very restricted number of compounds were effective, i.e., L-glutamate, L-aspartate, and sulphur-containing amino acids. Binding was not inhibited significantly by any of the selective excitatory amino acid receptor agonists--quisqualate, N-methyl-D-aspartate, or kainate. The implication from this study is that the glutamate binding protein is similar if not identical to one previously isolated and probably is not related to the pharmacologically defined postsynaptic receptor subtypes, unless solubilisation of synaptic membranes resulted in major alterations to binding site characteristics. Since solubilisation with Triton X-100 is known to preserve synaptic junctional complexes, it seems likely that the origin of the glutamate binding protein may be extrajunctional, although its functional role is unknown.  相似文献   

17.
Succinate dehydrogenase (SDH) was solubilized from membranes of Mycobacterium phlei by Triton X-100 with a recovery of about 90%. The solubilized SDH was purified about 90-fold by Sephacryl S-300, DEAE-cellulose, hydroxylapatite, and isoelectric focusing in the presence of Triton X-100 with a 20% recovery. SDH was homogeneous, as determined by polyacrylamide gel electrophoresis in nondenaturing gels containing Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme revealed two subunits with molecular weights of 62,000 and 26,000. SDH is a flavoprotein containing 1 mol of flavin adenine dinucleotide, 7 to 8 mol of nonheme iron, and 7 to 8 mol of acid-labile sulfide per mol of protein. Using phenazine methosulfate and 2,6-dichloroindophenol as electron acceptors, the enzyme had an apparent Km of 0.12 mM succinate. SDH exhibited a sigmoidal relationship of rate to succinate concentration, indicating cooperativity. The enzyme was competitively inhibited by fumarate with a Ki of 0.15 mM. In the absence of Triton X-100, the enzyme aggregated, retained 50% of the activity, and could be resolubilized with Triton X-100 with full restoration of activity. Cardiolipin had no effect on the enzyme activity in the absence of Triton X-100, but it stimulated the activity by about 30% in the presence of 0.1% Triton X-100 in the assay mixture. Menaquinone-9(2H), isolated from M. phlei, had no effect on the enzyme activity either in the presence or absence of Triton X-100.  相似文献   

18.
L C Seefeldt  D J Arp 《Biochimie》1986,68(1):25-34
Azotobacter vinelandii hydrogenase has been purified to homogeneity from membranes. The enzyme was solubilized with Triton X-100 followed by ammonium sulfate-hexane extractions to remove lipids and detergent. The enzyme was then purified by carboxymethyl-Sepharose and octyl-Sepharose column chromatography. All purification steps were performed under anaerobic conditions in the presence of dithionite and dithiothreitol. The enzyme was purified 143-fold from membranes to a specific activity of 124 mumol of H2 uptake . min-1 . mg protein-1. Nondenaturing polyacrylamide gel electrophoresis of the hydrogenase revealed a single band which stained for both activity and protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two bands corresponding to peptides of 67,000 and 31,000 daltons. Densitometric scans of the SDS-gel indicated a molar ratio of the two bands of 1.07 +/- 0.05. The molecular weight of the native enzyme was determined by three different methods. While gel permeation gave a molecular weight of 53,000, sucrose density gradient centrifugation and native polyacrylamide gel electrophoresis gave molecular weights of 98,600 +/- 10,000 and 98,600 +/- 2,000, respectively. We conclude that the A. vinelandii hydrogenase is an alpha beta dimer (98,000 daltons) with subunits of 67,000 and 31,000 daltons. Analyses for nickel and iron indicated 0.68 +/- 0.01 mol Ni/mol hydrogenase and 6.6 +/- 0.5 mol Fe/mol hydrogenase. The isoelectric point of the enzyme was 6.1 +/- 0.01. In addition, several catalytic properties of the enzyme have been examined. The Km for H2 was 0.86 microM, and H2 evolution was observed in the presence of reduced methyl viologen. The pH profile of enzyme activity with methylene blue as the electron acceptor has been determined, along with the Km and Vmax for various electron acceptors.  相似文献   

19.
Hydrodynamic, crosslinking and immunoprecipitation studies were performed on detergent solubilized cytochrome b to demonstrate that the two copurifying polypeptides of molecular weight 91,000 (glycosylated) and 22,000 [1,2] formed a molecular complex. The hydrodynamic studies indicated that the cytochrome b/detergent complex had a sedimentation coefficient, partial specific volume and Stokes radius of 5.25 S, 0.82 cm3/g and 6.2 nm in Triton X-100 and 6.05 S, 0.80 cm3/g and 5.6 nm in octylglucoside, respectively. These studies also indicated that the detergent-protein complex has a molecular mass of 202 and 188 kDa in Triton X-100 and octylglucoside, respectively, is asymmetric in shape with a frictional coefficient of 1.3-1.4 and binds significant amounts of detergent. The molecular mass of the protein portion of the detergent-cytochrome complex was estimated to be between 100 and 127 kDa. Crosslinking studies with disuccinimidyl suberate and alkaline cleavable bis[2-(succinimidooxy-carbonyloxy)ethyl]sulfone revealed that the Mr = 91,000 and Mr = 22,000 components of purified cytochrome b are closely associated and can be covalently bound to form a polypeptide which, by SDS-polyacrylamide gel electrophoresis, has Mr values of 110,000-120,000 and 120,000-135,000 on 8% and 11% (w/v) SDS-polyacrylamide gels, respectively. Cleavage of the crosslinked species resulted in the reappearance of the Mr = 91,000 and Mr = 22,000 species. Sedimentation profiles of crosslinked cytochrome b in linear sucrose density gradients made up in H2O were identical to those of non-crosslinked controls. A close association of the two protein species was further confirmed by the ability of antibody specific for the smaller subunit to immunoprecipitate the larger one also. Experiments aimed at identifying the heme-carrying subunit(s) were inconclusive, since dissociation of the complex resulted in loss of cytochrome b spectrum. These results, in combination with our SDS-polyacrylamide gel electrophoresis molecular-weight estimates, provide strong evidence for the cytochrome b being an alpha-beta-type heterodimer composed of a glycosylated Mr = 91,000 and non-glycosylated Mr = 22,000 polypeptide.  相似文献   

20.
In order to study the erythropoietin receptor in its native state, we solubilized erythropoietin-receptor complexes from spleen cell membranes of mice infected with the anemia strain of Friend virus using mild detergents. Among 11 tested detergents, Triton X-100 and Lubrol PX were the most effective. Triton X-100 was therefore selected for this study. The solubilized complexes appeared to be well representative of the total membrane receptor population as indicated by cross-linking experiments and affinity measurements. The hydrodynamic characteristics of the complexes were determined by gel filtration chromatography and ultracentrifugation through sucrose gradients prepared with H2O or D2O. Although erythropoietin-receptor-detergent complexes exhibited some heterogeneity, we determined the following minimal hydrodynamic values: sedimentation coefficient (s20,w): 11.7 +/- 0.8 S, Stokes radius: 7.7 +/- 0.2 nm, partial specific volume: 0.774 +/- 0.017 ml/g, giving a molecular mass of 458 +/- 66 kDa. The contribution of the detergent was estimated to be 28% from the measured partial specific volume, giving an estimated molecular mass of 330 +/- 48 kDa for the erythropoietin-receptor complex. The minimal molecular mass value was significantly greater than those obtained by polyacrylamide gel electrophoresis under denaturing conditions, strongly suggesting that the erythropoietin receptors were present as multimeric complexes. The nature of these complexes is discussed. Beside this major component our results revealed the presence of higher-molecular-mass erythropoietin binding components. We also demonstrated that erythropoietin-receptor complexes could be precipitated with anti-erythropoietin antibodies. This property should greatly improve the purification of erythropoietin receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号