首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ca2+/phospholipid-dependent protein kinase (protein kinase C) of human neutrophils is converted to a proteolytically modified Ca2+/phospholipid-independent form (Inoue, M., Kishimoto, A., Takai, Y.U., and Nishizuka, Y. (1977) J. Biol. Chem. 252, 7610-7616) on incubation with neutrophil membranes in the presence of micromolar concentrations of Ca2+ and an endogenous Ca2+-requiring proteinase (Melloni, E., Pontremoli, S., Michetti, M., Sacco, O., Sparatore, B., Salamino, F., and Horecker, B. L. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 6435-6439). We have now demonstrated the appearance of a similar Ca2+/phospholipid-independent kinase in intact human neutrophils stimulated by phorbol 12-myristate 13-acetate (PMA). The following evidence supports the conclusion that the Ca2+/phospholipid-independent protein kinase recovered from the PMA-treated cells is a proteolytically modified form of the "native" protein kinase C. 1) In cells exposed to PMA, the rate of disappearance of Ca2+/phospholipid-dependent protein kinase C activity is correlated with the rate of appearance of the Ca2+/phospholipid-independent kinase. 2) The chromatographic behavior of the new protein kinase and its molecular size (approximately 65 kDa) are identical to those previously reported for the proteolytically modified form of protein kinase C. 3) The modified protein kinase no longer binds to the cell membrane and is recovered almost entirely in the cytosol fraction. 4) In neutrophils preloaded with inhibitors of the Ca2+-requiring proteinase, stimulation with PMA results in translocation of protein kinase C from the cytosol fraction to the particulate fraction, but the appearance of the soluble, Ca2+/phospholipid-dependent form is prevented. We conclude that binding of protein kinase C to the plasma membrane and its proteolytic conversion are related, but independent, processes both elicited by exposure of neutrophils to the phorbol ester. Proteolytic cleavage of the membrane-bound protein kinase C provides an alternative mechanism for its activation and may account for certain of the cellular responses observed in PMA-stimulated neutrophils.  相似文献   

2.
A 10 min treatment of human neutrophils with phorbol 12-myristate 13-acetate (PMA) has been reported to induce accumulation of the proteolytically activated Ca2+/phospholipid-independent catalytic fragment of protein kinase C in the cytosol of intact cells [(1986) J. Biol. Chem. 261, 4101-4105]. We investigated the proteolytic conversion of protein kinase C to Ca2+/phospholipid-independent form in the cytosol and membrane fractions of pig neutrophils. The activity of protein kinase C was measured with its specific oligopeptide substrate Ala-Ala-Ala-Ser-Phe-Lys-Ala-Lys-Lys-amide designed previously. In our experiments the short-term treatment of neutrophils with PMA did not induce the accumulation of the proteolytically activated form of protein kinase C in the cytosol of intact cells. However, treatment of cells with PMA enhanced the limited proteolysis of protein kinase C during the preparation of cell extracts.  相似文献   

3.
Abstract. In neutrophils, the phorbol ester 12- O -tetrade-canoylphorbol-l3-acetate (TPA) induced the translocation of the Ca++- and phospholipid-dependent protein kinase, protein kinase C (PK-C) from the soluble to the particulate fraction. At the same time there was a corresponding increase in the amount of Ca++- and phospholipid-independent protein kinase activity recovered in the soluble fraction. This soluble Ca++- and phospholipid-independent protein kinase presumably reflects proteolytic activation of the particulate associated PK-C. Bone marrow and undifferentiated HL-60 cells also translocated PK-C to the particulate fraction in response to TPA but did not accumulate the soluble Ca++- and phospholipid-independent form of the enzyme. Similar results were obtained using HL-60 cells induced to differentiate with dimethyl sulphoxide (DMSO), recombinant human granulocyte-macrophage colony-stimulating factor (rh GM-CSF) or la,25-dihydroxyvitamin D3. There was also no significant change in either the number or time of expression of differentiation-specific cell surface antigens observed on HL-60 cells induced to differentiate with either DMSO, 1α,25-dihydroxyvitamin D3 or TPA in the presence of cyclosporin A, an agent reported to inhibit the proteolytic breakdown of PK-C to the Ca++- and phospholipid-independent form. Likewise, cyclosporin A did not affect the rate or extent of differentiation of primary bone marrow cell cultures. These results suggest that the proteolytically activated and phospholipid-independent form of PK-C is probably not involved in haemopoietic cell differentiation.  相似文献   

4.
Hexamethylene bisacetamide (HMBA) and other polar/apolar chemical agents are potent inducers of erythroid differentiation in murine erythroleukemia cells (MELC), as well as other transformed cell lines. Although the mechanism of action of HMBA is not yet known, evidence has been obtained that protein kinase C (PKC) plays a role in this process. In this study we provide further evidence that establishes this relationship. MELC contain two principal PKC activities, PKC beta and PKC alpha. MELC variants, selected for resistance to vincristine (VC), which display acceleration of their rates of induced differentiation, are enriched in PKC beta activity. When MELC are exposed to HMBA there is a fall in PKC activity, largely accounted for by a decline in PKC beta. This decline in PKC activity is faster in the VC-resistant, rapidly differentiating MELC. We previously demonstrated that VC-resistant MELC are resistant to the inhibition of differentiation by the phorbol ester, phorbol 12-myristate 13-acetate (PMA). In both VC-sensitive and -resistant MELC, PMA causes rapid membrane translocation and then a decline in PKC activity, accompanied by a generation of a Ca2+- and phospholipid-independent protein kinase activity. In VC/PMA-resistant variants, this Ca2+/phospholipid-independent protein kinase activity persists considerably longer than in the VC-sensitive variants. This correlates with the resistance to PMA and provides additional evidence for a role for the Ca2+/phospholipid-independent protein kinase activity during induced differentiation.  相似文献   

5.
We have examined the activities of phospholipid/Ca2+-dependent and cyclic AMP-dependent protein kinases of the parathyroid adenomas and the atrophic glands which were resected from three patients with primary hyperparathyroidism. Phospholipid/Ca2+-dependent protein kinase activity of atrophic parathyroid gland was exclusively present in cytosol fraction (90.7 +/- 12.3%). On the other hand, phospholipid/Ca2+-dependent protein kinase activity of parathyroid adenomas was 66.9 +/- 6.4% in cytosol and 33.1 +/- 6.4% in membrane fraction, suggesting a translocation of the enzyme from the cytosol to the membranes. Cyclic AMP-dependent protein kinase activity appeared to be higher in parathyroid adenoma than in atrophic parathyroid gland in both cytosol and membrane fractions.  相似文献   

6.
To assess the role of protein kinase-C (PK-C) in the growth and differentiation of small intestinal enterocytes, IEC-6 cells (a cell line derived from the crypts of rat small intestine) were incubated with factors known to induce growth (insulin, epidermal growth factor, gastrin, somatostatin and transferrin) or differentiation (transforming growth factor-beta, retinoic acid and phorbol 12-myristate 13-acetate (PMA)). Cell proliferation (3H-thymidine incorporation) and PK-C activity (Ca++/phospholipid dependent) were measured. Among growth promoting factors only epidermal growth factor, insulin and transferrin were associated with increased 3H-thymidine incorporation, and none of these agents induced PK-C activation as measured by its translocation from cytosol to membrane fraction. Of the differentiation inducing factors, only PMA translocated PK-C from cytosol to membrane. PMA also inhibited 3H-thymidine incorporation in a dose dependent manner. These results suggest that growth and proliferation of enterocytes occur independent of PK-C signal transduction.  相似文献   

7.
Effects of phorbol 12-myristate 13-acetate (PMA) on the fate of protein kinase C in two mouse thymoma cell lines, which are either responsive (EL4) or unresponsive (IEL4) to PMA-induced interleukin-2 (IL-2) production, were investigated with polyclonal antibodies raised against rat brain enzyme. These antibodies immunoprecipitated completely the protein kinase C from both cell lines and detected mainly an 82-kDa protein by immunoblot analysis of the crude homogenates as well as the partially purified kinase preparations. PMA elicited a time- and dose-dependent redistribution of protein kinase C from cytosol to the particulate fraction and proteolytic degradation of the kinase from both cell lines. The dose of PMA required for half-maximum protein kinase C translocation and degradation was at least five times lower for EL4 than for IEL4. In the presence of 16 nM PMA the rates of protein kinase C translocation and degradation were faster in EL4 than in IEL4, and the half-lives of protein kinase C in EL4 and IEL4 were less than 5 min and greater than 2 h, respectively. Analysis of the tryptic fragments of the immunoprecipitated enzyme, previously phosphorylated in the presence of [gamma-32P]ATP, revealed minor structural differences between the protein kinase C from these two cell lines. In neither cell line did the PMA-induced degradation of protein kinase C result in an accumulation of the Ca2+/phospholipid-independent kinase (catalytic unit) as analyzed by immunoblotting and gel filtration chromatography. Thus, activation of protein kinase C through the proteolytic conversion to the effector-independent catalytic unit plays little role in IL-2 production. The role of protein kinase C translocation and degradation in the PMA-induced responses in EL4 cells is unknown. However, IL-2 production in EL4 cells was reduced when PMA-induced degradation of protein kinase C was retarded by exogenously added protease inhibitors.  相似文献   

8.
Three classes of activators of human neutrophils that induce the intracellular translocation of protein kinase C from the cytosol to the particulate fraction were compared for their effects on the properties of the particulate (membrane-bound) enzyme. In cells stimulated with 10 ng/ml of phorbol-12-myristate-13-acetate (PMA) the particulate enzyme is almost fully active in the absence of added Ca2+ or phospholipids and this activity is not released by the Ca2+-chelator EDTA. In contrast, binding of protein kinase C to the particulate fraction in cells treated with the chemotactic factor f-Met-Leu-Phe (fMLF) or with the ionophore A-23187 plus Ca2+ is observed only when the cells are lysed in the presence of 1 mM Ca2+. With these stimuli the particulate enzyme retains a nearly absolute requirement for Ca2+ and phospholipids. Thus only the full intercalation of protein kinase C caused by PMA, which is resistant to removal by chelators stabilizes an active form of protein kinase C in the neutrophil membrane. In confirmation of this conclusion, in isolated plasma membranes loaded with partially purified protein kinase C by incubation with 5 microM Ca2+ further incubation with PMA, but not with fMLF, caused a significant fraction of the bound PKC to become resistant to removal by chelators, and to be nearly fully active in the absence of added activators.  相似文献   

9.
Regulation of the increase in inositol phosphate (IP) production and intracellular Ca2+ concentration ([Ca2+]i by protein kinase C (PKC) was investigated in cultured rat vascular smooth muscle cells (VSMCs). Pretreatment of VSMCs with phorbol 12-myristate 14-acetate (PMA, 1 microM) for 30 min almost abolished the BK-induced IP formation and Ca2+ mobilisation. This inhibition was reduced after incubating the cells with PMA for 4 h, and within 24 h the BK-induced responses were greater than those of control cells. The concentrations of PMA giving a half-maximal (pEC50) and maximal inhibition of BK induced an increase in [Ca2+]i, were 7.8 +/- 0.3 M and 1 microM, n = 8, respectively. Prior treatment of VSMCs with staurosporine (1 microM), a PKC inhibitor, inhibited the ability of PMA to attenuate BK-induced responses, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. Paralleling the effect of PMA on the BK-induced IP formation and Ca2+ mobilisation, the translocation and downregulation of PKC isozymes were determined by Western blotting with antibodies against different PKC isozymes. The results revealed that treatment of the cells with PMA for various times, translocation of PKC-alpha, betaI, betaII, delta, epsilon, and zeta isozymes from the cytosol to the membrane were seen after 5 min, 30 min, 2 h, and 4 h of treatment. However, 24-h treatment caused a partial downregulation of these PKC isozymes in both fractions. Treatment of VSMCs with 1 microM PMA for either 1 or 24 h did not significantly change the K(D) and Bmax of the BK receptor for binding (control: K(D) = 1.7 +/- 0.2 nM; Bmax = 47.3 +/- 4.4 fmol/mg protein), indicating that BK receptors are not a site for the inhibitory effect of PMA on BK-induced responses. In conclusion, these results demonstrate that translocation of PKC-alpha, betaI, betaII, delta, epsilon, and zeta induced by PMA caused an attenuation of BK-induced IPs accumulation and Ca2+ mobilisation in VSMCs.  相似文献   

10.
Activation of the neutrophil respiratory burst is thought to involve a translocation and activation of protein kinase C. We report that the presence of Ca2+ during the disruption of unstimulated human neutrophils and cytoplasts resulted in an increase in protein kinase C activity (histone phosphorylation) and immunoreactive protein kinase C species in the particulate (membrane) fraction and a reduction in such activities in the cytosol. This Ca2+-induced translocation of activity was concentration-dependent and occurred at physiologically relevant concentrations of Ca2+ (30-500 nM). The Ca2+-induced membrane association of protein kinase C could be reversed by removal of Ca2+. These findings indicate that the Ca2+ concentration of the extraction buffer can determine the subcellular distribution of protein kinase C in disrupted cells and suggest that the observed location of this enzyme activity in cell fractions may not necessarily reflect the localization in intact cells. These results also raise the possibility that the distribution of protein kinase C between cytosol and membrane is a dynamic equilibrium controlled by levels of free Ca2+. Thus, Ca2+ might regulate distribution as well as activation of protein kinase C.  相似文献   

11.
The ability of isolated rat hepatocytes to respond to phorbol-12-myristate-13-acetate (PMA) with acute stimulation of de novo fatty acid synthesis was markedly depressed at 4, 22 and 48 h after partial hepatectomy (PH). This desensitization was not due to surgical stress as shown by comparison with hepatocytes from sham-operated animals. Moreover, the total activity of protein kinase C (PK-C), the principal phorbol ester receptor, was not down-regulated at 22 h after partial hepatectomy. Partial hepatectomy rather caused a small but distinct shift in subcellular PK-C distribution toward the particulate fraction thereby suggesting a modest activation of PK-C. We conclude that the PH-induced desensitization to PMA occurs at a point beyond PK-C activation.  相似文献   

12.
Treatment of human amniotic cells (UAC) with human interferon-alpha (Hu-IFN alpha) or phorbol myristate acetate (PMA) resulted in translocation of protein kinase C (PK-C) activity from the cytosol fraction to that of the membranes. Analysis of 32P incorporation into phospholipid fractions and studies of alterations in fatty acid content for the major phospholipids of IFN-treated cells suggest that phospholipases C and A2 are activated by Hu-IFN alpha. Addition of neomycin (an inhibitor of phospholipase C), as well as mepacrine (an inhibitor of phospholipase A2) to IFN-treated cells inhibited the antiviral activity of Hu-IFN alpha in the vesicular stomatitis virus (VSV)-UAC system used. These observations indicate that (i) activation of PK-C and (ii) diacylglycerol formation, arachidonic acid and/or lysophosphatidylcholine release are important steps in the mechanism of action of IFN.  相似文献   

13.
The expression of multiple forms of protein kinase C (PK-C) was studied in regenerating rat liver using hydroxyapatite column chromatography. Two forms of the enzyme were found in the cytosolic as well as membrane fraction of livers from partially hepatectomized rats. The kinetic variation in the activation of these two liver isozymes by fatty acids, phosphatidylserine and diacylglycerol was similar to that reported for the PK-C subspecies from rat brain, designated types II and III. Intracellular redistribution of PK-C caused by phorbol 12-myristate 13-acetate (PMA) was concentration-dependent and was due to translocation of isozyme III, because type II was insensitive to 5 x 10(-8) M PMA. The activity ratio of the two isozymes in either the particulate or cytosolic fraction was the same at 22 h as compared to 4 h after partial hepatectomy.  相似文献   

14.
The Na+/K+ pump in rat hepatocytes is stimulated in response to Ca2+-mobilizing hormones such as [arginine]vasopressin (AVP), angiotensin II and adrenaline, as well as tumour promoters such as 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA). The ability of these agents to increase cellular contents of diacylglycerol and activate protein kinase C may be necessary to observe this response. In the present work, ouabain-sensitive 86Rb+ uptake was studied in isolated rat hepatocytes to help to explain why stimulation of the Na+/K+ pump by Ca2+-mobilizing hormones and tumour promoters is not temporally sustained relative to other hormone responses. A transient stimulation (3-4 min) of the Na+/K+ pump was observed in hepatocytes exposed to high (10 nM), but not low (0.1 nM), concentrations of AVP. Experiments with the Ca2+ chelator EGTA and the Na+ ionophore monensin indicate that the rapid secondary decrease in Na+/K+-pump activity which occurs after AVP stimulation is not due to changes in cytosolic Ca2+ and Na+ concentrations. When added after the stimulation and rapid decrease in Na+/K+-pump activity induced in hepatocytes by a high concentration of AVP, a second challenge with AVP or PMA failed to stimulate the pump. Similarly, previous exposure of hepatocytes to angiotensin, adrenaline or PMA attenuated the subsequent Na+/K+-pump responses to AVP and PMA. In contrast, previous exposure to AVP had no significant effect on subsequent stimulation of the Na+/K+-pump by monensin, glucagon, forskolin or 8-p-chlorophenylthio cyclic AMP. In addition, exposure to monensin had no effect on subsequent responses to AVP and PMA. These data indicate that high concentrations of Ca2+-mobilizing hormones and PMA result in heterologous desensitization of the hepatic Na+/K+ pump to subsequent stimulation by Ca2+-mobilizing hormones and PMA, but not by cyclic-AMP-dependent agonists or monensin.  相似文献   

15.
Phorbol ester treatment of intact neutrophils both stimulates protein kinase C (PK-C) and causes the rapid proteolytic conversion to a cytosolic, co-factor independent fragment, protein kinase M (PK-M). In intact neutrophils, phorbol ester treatment activates the NADPH-oxidase, the enzyme responsible for the oxidative burst. Addition of purified PK-M to resting neutrophil light density membranes activated the NADPH-oxidase in the presence of PS, ATP and Mg2+. A 3.5-fold greater stimulation of oxidase (ca. 25 nmoles O2-/min/mg membrane protein) was obtained with comparable PK-M concentrations to that observed with the reconstituted PK-C system, and approximately 1/3 that obtained with arachidonic acid (AA) or SDS. In contrast to the reconstituted system using PK-C, PMA and Ca++ were neither required nor affected activity. The effect of PS was unexpected, since PK-M does not require phospholipids for enzymatic activity, and likely represents the action of PS on the oxidase itself or on another component in the plasma membrane fraction. Our studies demonstrate for the first time that purified PK-M permits reconstitution of a physiologic phorbol ester response.  相似文献   

16.
The present study aimed to identify the presence of protein kinase C-like (PKC-like) in Leishmania amazonensis and to elucidate its possible role in the modulation of the (Na(+)+K(+))ATPase activity. Immunoblotting experiments using antibody against a consensus sequence (Ac 543-549) of rabbit protein kinase C (PKC) revealed the presence of a protein kinase of 80 kDa in L. amazonensis. Measurements of protein kinase activity showed the presence of both (Ca(2+)-dependent) and (Ca(2+)-independent) protein kinase activity in plasma membrane and cytosol. Phorbol ester (PMA) activation of the Ca(2+)-dependent protein kinase stimulated the (Na(+)+K(+))ATPase activity, while activation of the Ca(2+)-independent protein kinase was inhibitory. Both effects of protein kinase on the (Na(+)+K(+))ATPase of the plasma membrane were lower than that observed in intact cells. PMA induced the translocation of protein kinase from cytosol to plasma membrane, indicating that the maximal effect of protein kinase on the (Na(+)+K(+))ATPase activity depends on the synergistic action of protein kinases from both plasma membrane and cytosol. This is the first demonstration of a protein kinase activated by PMA in L. amazonensis and the first evidence for a possible role in the regulation of the (Na(+)+K(+))ATPase activity in this trypanosomatid. Modulation of the (Na(+)+K(+))ATPase by protein kinase in a trypanosomatid opens up new possibilities to understand the regulation of ion homeostasis in this parasite.  相似文献   

17.
Interleukin 2 (IL-2) production and recognition are clearly involved in the age-associated proliferative defect of mitogen-stimulated T lymphocytes. The external signal delivered by mitogens is transmitted across the membrane via the release of two messenger molecules, diacylglycerol and inositol 1,4,5-trisphosphate (IP3), involved in the activation of protein kinase C (PK-C) and the elevation of cytosolic free Ca2+. In that Ca2+ mobilization and PK-C activation appear to be crucial events in the production of IL-2 and the expression of IL-2 receptors, a defect in transmembrane signaling would result in decreased synthesis and response to IL-2. We therefore examined PK-C activity and translocation, generation of inositol 1,4,5-trisphosphate, and cytosolic Ca2+ levels as a function of age in murine G0 T lymphocytes before and after exposure to mitogenic doses of concanavalin A (Con A). The basal levels and distribution of PK-C before and after direct activation of the enzyme by 2 or 20 nM phorbol myristate acetate were comparable in both age groups indicating no inherent age-associated functional defect in the enzyme. However, the Con A-induced PK-C translocation was reduced by 50% in cells from 24-mo-old animals. The Con A stimulation of G0 T lymphocytes increased free cytoplasmic Ca2+ concentration ([Ca2+]i) and the production of inositol phosphates to the same level, irrespective of the age of the donor. However, basal levels of both of these second messengers were consistently higher in lymphocytes derived from old mice. As a result, the net increase in inositol phosphates and [Ca2+]i was reduced by approximately the same extent as that observed for the translocation of PK-C. These results clearly point to an age-associated defect in the generation of phosphoinositide-derived second messengers and indicate that an alteration in signal transduction plays a primary role in the age-related impairment of the mitogen-induced, IL-2-mediated proliferative response of T lymphocytes.  相似文献   

18.
Phorbol 12-myristate 13-acetate (PMA) induces time-dependent changes in protein kinase C subcellular distribution and enzymatic activity in the human osteosarcoma cell line SaOS-2. Short (less than 60 min) incubations with PMA caused decreased cytosolic enzyme activity and a concomitant increase in particulate protein kinase; after 3 h, particulate protein kinase C activity also declined to reach less than 10% of basal activity by 24 h (Krug, E., and Tashjian, Jr., A. H., (1987) Cancer Res. 47, 2243-2246). In order to determine whether the loss in enzyme activity was due to decreased enzyme protein, Western blot analyses were performed using a polyclonal antibody against protein kinase C raised in rabbits. This approach confirmed the previously reported time-related changes: 80-kDa immunoreactive protein kinase C initially translocated from the cytosol to the particulate cell fraction and later disappeared completely from the particulate fraction. Loss of protein kinase C enzymatic activity thus results from actual loss of the 80-kDa protein; we found no evidence for generation of a calcium/phospholipid-independent protein kinase C-like form of the enzyme. Membrane association was confirmed by immunoprecipitation experiments using [35S]methionine-labeled cells. Brief exposure to PMA caused a marked loss in the [35S]methionine-labeled cytosolic protein kinase C band and an increase in the labeled particulate band. Protein kinase C immunoprecipitated from cells treated with PMA for 14 h displayed an increase in [35S]methionine label despite a greater than 80% loss of enzyme activity. The high specific radioactivity of the remaining 80-kDa protein leads us to conclude that long term treatment with PMA causes an increase in the rate of protein kinase C synthesis accompanied by a still greater increase in the rate of enzyme degradation in SaOS-2 cells.  相似文献   

19.
The role of Na+/H+ exchange in protein kinase C-mediated effects in platelets was investigated by studying the effect of removal of extracellular Na+ ([Na+]e) on the different responses induced by phorbol 12-myristate 13-acetate (PMA) and 1,2-dioctanoylglycerol (diC8). None of the responses studied, namely, protein phosphorylation, translocation of enzyme activity to the membrane fraction, potentiatory and inhibitory effect on platelet activation ([Ca2+]i, arachidonate and granule release) showed an absolute dependence on [Na+]e. With the exception of dense-granule release, which was clearly potentiated by the removal of [Na+]e and showed a negative correlation with exchanger activity, the other effects of PMA and diC8 were not affected by [Na+]e removal. It is concluded that Na+/H+ exchange is not essential for protein kinase C activation in platelets.  相似文献   

20.
We have previously shown that recombinant murine interferon-gamma, rIFN-gamma, and recombinant human interleukin-1 alpha, rIL-1 alpha, induce differentiation of murine pre-B-like cell line 70Z/3, a finding associated with stimulation of Na+/H+ exchange across the plasma membrane. The present study was designed to test whether the enhanced Na+/H+ exchange is mediated by Ca2+/phospholipid-dependent protein kinase C. The results show that two structurally different peptides, rIFN-gamma and rIL-1 alpha, induce identical patterns of transient translocation of protein kinase C from the cytosol to the membranes. The increase in membrane-associated protein kinase C activity was first detected 20 min after exposure to the lymphokines. This activity peaked at 30 min and was back to baseline by 2 h. At each time point, the increase in membrane-associated protein kinase C activity corresponded to a decrease in the activity of protein kinase C in the cytoplasmic fraction. The total cellular activity (cytosol + membrane) remained the same. Two series of experiments were carried out to test the role of protein kinase C in mediating the lymphokine-stimulated Na+/H+ exchange. In the first, the effects of rIFN-gamma and rIL-1 alpha on cytoplasmic pH were measured in the presence of a protein kinase C inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, H-7. In the second, rIFN-gamma- and rIL-1 alpha-induced cytoplasmic alkalinization was determined in cells containing decreased protein kinase C activity. Under both experimental conditions, lymphokine-induced cytoplasmic alkalinization was not attenuated. These results indicate that, although both rIFN-gamma and rIL-1 alpha cause association of protein kinase C with membranes, activation of protein kinase C is not required for rIFN-gamma or rIL-1 alpha to stimulate Na+/H+ exchange across the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号