首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Several lines of experiments demonstrated the interplay between the transforming growth factor-beta (TGF-beta) and vitamin D signaling pathways. Recently, we found that Smad3, a downstream component of the TGF-beta signaling pathway, potentiates ligand-induced transactivation of vitamin D receptor (VDR) as a coactivator of VDR (Yanagisawa, J., Yanagi, Y., Masuhiro, Y., Suzawa, M., Watanabe, M., Kashiwagi, K., Toriyabe, T., Kawabata, M., Miyazono, K., and Kato, S. (1999) Science 283, 1317-1321). Here, we investigated the roles of inhibitory Smads, Smad6 and Smad7, which are negative regulators of the TGF-beta/bone morphogenetic protein signaling pathway, on the Smad3-mediated potentiation of VDR function. We found that Smad7, but not Smad6, abrogates the Smad3-mediated VDR potentiation. Interaction studies in vivo and in vitro showed that Smad7 inhibited the formation of the VDR-Smad3 complex, whereas Smad6 had no effect. Taken together, our results strongly suggest that the interplay between the TGF-beta and vitamin D signaling pathways is, at least in part, mediated by the two classes of Smad proteins, which modulate VDR transactivation function both positively and negatively.  相似文献   

2.
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] plays a critical role in maintaining calcium and phosphate homeostasis and bone formation but also exhibits antiproliferative activity on many cancer cells, including prostate cancer. We have shown that the antiproliferative actions of 1,25-(OH)2D3 in the LNCaP human prostate cancer cell line are mediated in part by induction of IGF binding protein-3 (IGFBP-3). The purpose of this study was to determine the molecular mechanism involved in 1,25-(OH)2D3 regulation of IGFBP-3 expression and to identify the putative vitamin D response element (VDRE) in the IGFBP-3 promoter. We cloned approximately 6 kb of the IGFBP-3 promoter sequence and demonstrated its responsiveness to 1,25-(OH)2D3 in transactivation assays. Computer analysis identified a putative VDRE between -3296/-3282 containing the direct repeat motif GGTTCA ccg GGTGCA that is 92% identical with the rat 24-hydroxylase distal VDRE. In EMSAs, the vitamin D receptor (VDR) showed strong binding to the putative IGFBP-3 VDRE in the presence of 1,25-(OH)2D3. Supershift assays confirmed the presence of VDR in the IGFBP-3 VDRE complex. Chromatin immunoprecipitation assay demonstrated that 1,25-(OH)2D3 recruited the VDR/retinoid X receptor heterodimer to the VDRE site in the natural IGFBP-3 promoter in intact cells. In transactivation assays, the putative VDRE coupled to a heterologous simian virus 40 promoter construct was induced 2-fold by 1,25-(OH)2D3. Mutations in the VDRE resulted in a loss of inducibility confirming the critical hexameric sequence. In conclusion, we have identified a functional VDRE in the distal region of the human IGFBP-3 promoter. The induction of IGFBP-3 by 1,25-(OH)2D3 appears to be directly mediated via VDR interaction with this VDRE.  相似文献   

3.
The vitamin D receptor (VDR) is a member of the steroid receptor gene family. In this report, we examine the nature of specific VDR DNA binding utilizing the vitamin D-responsive element derived from the human osteocalcin promoter. Association of the VDR with the human osteocalcin 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) responsive element (VDRE) in vitro was characterized on VDRE affinity columns by both weak and strong interactions. Weak interaction was a property of the VDR itself, monomeric in nature, and determined exclusively by the VDR's DNA-binding domain. Strong interaction, in contrast, was dependent upon an intact receptor molecule as well as a heterologous mammalian cell nuclear accessory factor (NAF). Heteromeric interaction between VDR and NAF was independent of the VDR DNA-binding domain, suggesting the presence of a functional dimerization domain separate from that for DNA binding. Direct association of NAF with immobilized VDR revealed that the interaction does not require the presence of DNA. Most importantly, while occupancy of the VDR by 1,25(OH)2D3 was not required for VDR interactions with either DNA or NAF, the presence of hormone increased the apparent relative affinity of the VDR for NAF approximately 10-fold. These studies suggest that high affinity association of the VDR with DNA requires both the DNA-binding domain as well as an additional independent structure located within the steroid-binding region. This protein subdomain interacts with NAF and is regulated by 1,25(OH)2D3.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
In a previous study, we identified the element which allows the maximum response to 1,25(OH)2D3 in concert with two vitamin D-responsive elements (VDREs) in the rat 25-hydroxyvitamin D3 24-hydroxylase gene promoter, and designated it an accessory element [Ohyama, Y., Ozono, K., Uchida, M., Yoshimura, M., Shinki, T., Suda, T. and Yamamoto, O. Functional assessment of two vitamin D-responsive elements in the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J. Biol. Chem., 1996, 271, 30381-30385]. The accessory element located adjacent to the proximal VDRE is not capable of binding to the vitamin D receptor (VDR), while its nucleotide sequence resembles the consensus sequence of VDREs, direct repeat 3 (DR3). To clarify the difference between the accessory element and VDREs, the function of the accessory element was compared with that of VDREs. The mutated accessory elements with a single nucleotide substitution showed the capability of binding to the VDR in vitro. However, these mutants still did not act as a VDRE when driven by the heterologous SV40 promoter. The accessory element did not enhance the function of a cAMP-responsive element. The corresponding site of the accessory element in the human 24-hydroxylase is a DR4-type element, and this element did not function as an accessory element. These results indicate that a critical nucleotide sequence is necessary for the binding to the VDR and for mediating the vitamin D effect, and suggest the different regulation between the rat and human 24-hydroxylase gene.  相似文献   

12.
13.
The interaction of the vitamin D receptor with a vitamin D-responsive element (VDRE) derived from the human osteocalcin promoter in vitro has been shown to require a nuclear accessory factor (NAF) derived from monkey kidney cells. In this report we show that this factor is widely distributed in cells and tissues, including those that do not express the vitamin D receptor (VDR). NAF is required for VDR binding to a variety of known VDREs. VDR and NAF independently bind the VDRE weakly, as assessed by elution profiles generated during VDRE affinity chromatography. Together, however, both proteins coelute from this column with a profile that indicates a tighter strength of interaction. Analogous chromatography of the VDR derived from ROS 17/2.8 cells treated with 1,25-dihydroxyvitamin D3 in culture also reveals a dual profile of weak and strong binding, suggesting that in vivo modifications are unlikely to alter receptor DNA binding. NAF is a protein of 55 kDa, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and cross-linking experiments suggest that the VDR and NAF together form a heterodimer on a single VDRE with a mol wt of 103 kDa. These data demonstrate that NAF is required for VDR binding to specific DNA in vitro and suggest the possibility that NAF may be required for the transactivation capability of the VDR in vivo.  相似文献   

14.
We recently reported that transforming growth factor (TGF)-beta induced the neural crest stem cell line Monc-1 to differentiate into a spindle-like contractile smooth muscle cell (SMC) phenotype and that Smad signaling played an important role in this phenomenon. In addition to Smad signaling, other pathways such as mitogen-activated protein kinase (MAPK), phosphoinositol-3 kinase, and RhoA have also been shown to mediate TGF-beta actions. The objectives of this study were to examine whether these signaling pathways contribute to TGF-beta-induced SMC development and to test whether Smad signaling cross-talks with other pathway(s) during SMC differentiation induced by TGF-beta. We demonstrate here that RhoA signaling is critical to TGF-beta-induced SMC differentiation. RhoA kinase (ROCK) inhibitor Y27632 significantly blocks the expression of multiple SMC markers such as smooth muscle alpha-actin, SM22alpha, and calponin in TGF-beta-treated Monc-1 cells. In addition, Y27632 reversed the cell morphology and abolished the contractility of TGF-beta-treated cells. RhoA signaling was activated as early as 5 min following TGF-beta addition. Dominant negative RhoA blocked nuclear translocation of Smad2 and Smad3 because of the inhibition of phosphorylation of both Smads and inhibited Smad-dependent SBE promoter activity, whereas constitutively active RhoA significantly enhanced SBE promoter activity. Consistent with these results, C3 exotoxin, an inhibitor of RhoA activation, significantly attenuated SBE promoter activity and inhibited Smad nuclear translocation. Taken together, these data point to a new role for RhoA as a modulator of Smad activation while regulating TGF-beta-induced SMC differentiation.  相似文献   

15.
16.
17.
18.
19.
Activation of the transforming growth factor-beta (TGF-beta) system has been implicated in the pathological changes of diabetic nephropathy such as renal hypertrophy and accumulation of extracellular matrix. Streptozotocin-induced diabetic mice were used to examine whether the Smad pathway, which transduces the TGF-beta signal, is activated in the diabetic kidney, employing Southwestern histochemistry with labeled Smad-binding element (SBE) oligonucleotides and immunoblotting of nuclear protein extracts for Smad3. Mouse mesangial cells were used to study the role of Smads in mediating the effects of high glucose and TGF-beta on fibronectin expression, using transient transfections of Smad expression vectors and TGF-beta-responsive reporter assays. By Southwestern histochemistry, the binding of nuclear proteins to labeled SBE increased in both glomeruli and tubules at 1, 3, and 6 weeks of diabetes. Likewise, immunoblotting demonstrated that nuclear accumulation of Smad3 was increased in the kidney of diabetic mice. Both increases were prevented by insulin treatment. In mesangial cells, high glucose potentiated the effect of low-dose TGF-beta1 (0.2ng/ml) on the following TGF-beta-responsive constructs: 3TP-Lux (containing AP-1 sites and PAI-1 promoter), SBE4-Luc (containing four tandem repeats of SBE sequence), and the fibronectin promoter. Additionally, Smad3 overexpression increased fibronectin promoter activity, an effect that was enhanced by high ambient glucose or treatment with TGF-beta1 (2ng/ml). The TGF-beta-stimulated activity of the fibronectin promoter was prevented by transfection with either a dominant-negative Smad3 or the inhibitory Smad7. We conclude that hyperglycemia activates the intrarenal TGF-beta/Smad signaling pathway, which then promotes mesangial matrix gene expression in diabetic nephropathy.  相似文献   

20.
Nephrin plays a key role in maintaining the structure of the slit diaphragm in the glomerular filtration barrier. Our previous studies have demonstrated potent renoprotective activity for 1,25-dihydroxyvitamin D (1,25(OH)(2)D(3)). Here we showed that in podocytes 1,25(OH)(2)D(3) markedly stimulated nephrin mRNA and protein expression. ChIP scan of the 6-kb 5' upstream region of the mouse nephrin gene identified several putative vitamin D response elements (VDREs), and EMSA confirmed that the VDRE at -312 (a DR4-type VDRE) could be bound by vitamin D receptor (VDR)/retinoid X receptor. Luciferase reporter assays of the proximal nephrin promoter fragment (-427 to +173) showed strong induction of luciferase activity upon 1,25(OH)(2)D(3) treatment, and the induction was abolished by mutations within -312VDRE. ChIP assays showed that, upon 1,25(OH)(2)D(3) activation, VDR bound to this VDRE leading to recruitment of DRIP205 and RNA polymerase II and histone 4 acetylation. Treatment of mice with a vitamin D analog induced nephrin mRNA and protein in the kidney, accompanied by increased VDR binding to the -312VDRE and histone 4 acetylation. 1,25(OH)(2)D(3) reversed high glucose-induced nephrin reduction in podocytes, and vitamin D analogs prevented nephrin decline in both type 1 and 2 diabetic mice. Together these data demonstrate that 1,25(OH)(2)D(3) stimulates nephrin expression in podocytes by acting on a VDRE in the proximal nephrin promoter. Nephrin up-regulation likely accounts for part of the renoprotective activity of vitamin D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号