首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
Single-stranded phage DNAs containing thymine glycols were prepared by oxidation with osmium tetroxide (OsO4) and were used as templates for DNA synthesis by E. coli DNA polymerase I. The induction of thymine glycol lesions in DNA, as measured by immunoassay, quantitatively accounted for an inhibition of in vitro DNA synthesis on modified templates. Analysis of termination sites for synthesis by DNA polymerase I (Klenow fragment) showed that DNA synthesis terminated at most template thymine sites in OsO4-treated DNA, indicating that incorporation occurred opposite putative thymine glycols in DNA. Nucleotides 5' and 3' to putative thymine glycol sites affect the reaction, however, since termination was not observed at thymines in the sequence 5'-CTPur-3'. Conversion of thymine glycols to urea residues in DNA by alkali treatment caused termination of DNA synthesis one nucleotide 3' to template thymine sites, including thymines in the 5'-CTPur-3' sequence, showing that the effect of surrounding sequence is on the elongation reaction by DNA polymerase rather than differential damage induction by OsO4.  相似文献   

2.
Oxidative damage in DNA. Lack of mutagenicity by thymine glycol lesions   总被引:10,自引:0,他引:10  
Thymine glycol (5,6-dihydroxy-5,6-dihydrothymine) is a base damage common to oxidative mutagens and the major stable radiolysis product of thymine in DNA. We assessed the mutagenic potential of thymine glycols in single-stranded bacteriophage DNA during transfection of Escherichia coli wild-type and umuC strains. cis-Thymine glycols were induced in DNA by reaction with the chemical oxidant, osmium tetroxide (OsO4); modification of thymines was quantitated by using anti-thymine glycol antibody. Inactivation of transfecting molecules showed that one lethal hit corresponded to 1.5 to 2.1 thymine glycols per phage DNA in normal cells, whereas conditions of W-reactivation (SOS induction) reversed 60 to 80% of inactivating events. Forward mutations in the lacI and lacZ' (alpha) genes of f1 and M13 hybrid phage DNAs were induced in OsO4-treated DNA in a dose-dependent manner, in both wild-type and umuC cells. Sequence analysis of hybrid phage mutants revealed that mutations occurred preferentially at cytosine sites rather than thymine sites, indicating that thymine glycols were not the principal pre-mutagenic lesions in the single-stranded DNA. A mutagenic specificity for C----T transitions was confirmed by OsO4-induced reversion of mutant lac phage. Pathways for mutagenesis at derivatives of oxidized cytosine are discussed.  相似文献   

3.
The present study demonstrates the usefulness of immunochemical assays for quantitating modified bases in oxidized and X-irradiated DNA. Escherichia coli, phi X174 RF I, PM2, and M13 DNA containing thymine glycols introduced by OsO4 oxidation were used as antigens in a direct enzyme-linked immunosorbent assay (ELISA). The number of thymine glycols per DNA molecule was determined by reactivity with antithymine glycol antibody standardized either to the acetol fragment assay or to the number of Escherichia coli endonuclease III-sensitive sites. The number of thymine glycols was also determined in phi X174 RF I DNA X-irradiated in either phosphate or Tris buffer under air. Using a direct ELISA with phi X174 RF I DNA irradiated in a phosphate buffer solution, the anti-thymine glycol antibody detected damage at the level of 40 Gy. The immunochemical assay was sensitive, specific, quantitative, and independent of DNA structure.  相似文献   

4.
Mechanism of action of Micrococcus luteus gamma-endonuclease   总被引:5,自引:0,他引:5  
Micrococcus luteus extracts contain gamma-endonuclease, a Mg2+-independent endonuclease that cleaves gamma-irradiated DNA. This enzyme has been purified approximately 1000-fold, and the purified enzyme was used to study its substrate specificity and mechanism of action. gamma-Endonuclease cleaves DNA containing either thymine glycols, urea residues, or apurinic sites but not undamaged DNA or DNA containing reduced apurinic sites. The enzyme has both N-glycosylase activity that releases thymine glycol residues from OsO4-treated DNA and an associated apurinic endonuclease activity. The location and nature of the cleavage site produced has been determined with DNA sequencing techniques. gamma-Endonuclease cleaves DNA containing thymine glycols or apurinic sites immediately 3' to the damaged or missing base. Cleavage results in a 5'-phosphate terminus and a 3' baseless sugar residue. Cleavage sites can be converted to primers for DNA polymerase I by subsequent treatment with Escherichia coli exonuclease III. The mechanism of action of gamma-endonuclease and its substrate specificity are very similar to those identified for E. coli endonuclease III.  相似文献   

5.
Single-strand circular DNA from bacteriophage M13mp9 was chemically modified with osmium tetroxide to introduce specifically cis-thymine glycol lesions, a major type of DNA damage produced by ionizing radiation. An oligonucleotide primer was extended on damaged and undamaged templates using either the large fragment of E. coli pol I or T4 DNA polymerase. The reaction products were analysed by electrophoresis alongside a DNA sequence ladder. Synthesis on the damaged templates terminated at positions opposite thymine bases in the template. These results indicate that cis-thymine glycol lesions in single-strand DNA constitute blocks to synthesis by DNA polymerases in vitro. Surprisingly, replication halts after the correct nucleotide, dAMP, is inserted opposite the lesion. These results imply that the primary effect of the thymine glycol lesion is suppression of DNA synthesis and that the lesion is not a potent mutagen.  相似文献   

6.
Functional effects of cis-thymine glycol lesions on DNA synthesis in vitro   总被引:8,自引:0,他引:8  
J M Clark  G P Beardsley 《Biochemistry》1987,26(17):5398-5403
  相似文献   

7.
Human DNA polymerase N (POLN or pol nu) is the most recently discovered nuclear DNA polymerase in the human genome. It is an A-family DNA polymerase related to Escherichia coli pol I, human POLQ, and Drosophila Mus308. We report the first purification of the recombinant enzyme and examination of its biochemical properties, as a step toward understanding the functions of POLN. Unusual for an A-family DNA polymerase, POLN is a low fidelity enzyme incorporating T opposite template G with a frequency of 0.45 and G opposite template T with a frequency of 0.021. The frequency of misincorporation of T opposite template G is higher than any other known DNA polymerase. POLN has a processivity of DNA synthesis (1-100 nucleotides) similar to the exonuclease-deficient Klenow fragment of E. coli pol I, is inhibited by dideoxynucleotides, and resistant to aphidicolin. The strand displacement activity of POLN was higher than exonuclease-deficient Klenow fragment. Furthermore, POLN can perform translesion synthesis past thymine glycol, a common endogenous and radiation-induced product of reactive oxygen species damage to DNA. Thymine glycol blocks DNA synthesis by most DNA polymerases, but POLN was particularly adept at efficient and accurate translesion synthesis past a 5S-thymine glycol.  相似文献   

8.
9.
Gene 5 protein (gp5) of bacteriophage T7 is a non-processive DNA polymerase, which acquires high processivity by binding to Escherichia coli thioredoxin. The gene 5 protein-thioredoxin complex (gp5/trx) polymerizes thousands of nucleotides before dissociating from a primer-template. We have engineered a disulfide linkage between the gene 5 protein and thioredoxin within the binding surface of the two proteins. The polymerase activity of the covalently linked complex (gp5-S-S-trx) is similar to that of gp5/trx on poly(dA)/oligo(dT). However, gp5-S-S-trx has only one third the polymerase activity of gp5/trx on single-stranded M13 DNA. gp5-S-S-trx has difficulty polymerizing nucleotides through sites of secondary structure on M13 DNA and stalls at these sites, resulting in lower processivity. However, gp5-S-S-trx has an identical processivity and rate of elongation when E. coli single-stranded DNA-binding protein (SSB protein) is used to remove secondary structure from M13 DNA. Upon completing synthesis on a DNA template lacking secondary structure, both complexes recycle intact, without dissociation of the processivity factor, to initiate synthesis on a new DNA template. However, a complex stalled at secondary structure becomes unstable, and both subunits dissociate from each other as the polymerase prematurely releases from M13 DNA.  相似文献   

10.
Hypoxanthine?xanthine oxidase?Fe3+?ethylenediaminetetraacetate (EDTA) was used to modify ss M13 mp18 phage DNA. The dominant base modifications found by GC/IDMS-SIM were FapyGua, FapyAde, 8-hydroxyguanine, and thymine glycol. Analysis of in vitro DNA synthesis on oxidatively modified template by three DNA polymerases revealed that T7 DNA polymerase and Klenow fragment of polymerase I from Escherichia coli were blocked mainly by oxidized pyrimidines in the template whereas some purines that were easily bypassed by the prokaryotic polymerases constituted a block for DNA polymerase beta from calf thymus. DNA synthesis by T7 polymerase on poly(dA) template, where FapyAde content increased 16-fold on oxidation, yielded a final product with a discrete ladder of premature termination bands. When DNA synthesis was performed on template from which FapyAde, FapyGua, and 8OHGua were excised by the Fpg protein new chain terminations at adenine and guanine sites appeared or existing ones were enhanced. This suggests that FapyAde, when present in DNA, is a moderately toxic lesion. Its ability to arrest DNA synthesis depends on the sequence context and DNA polymerase. FapyGua might possess similar properties.  相似文献   

11.
SOS processing of unique oxidative DNA damages in Escherichia coli   总被引:2,自引:0,他引:2  
phi X174 replicative form (RF) I transfecting DNA containing thymine glycols (5,6-dihydroxy-5,6-dihydrothymine), urea glycosides or apurinic (AP) sites was used to study SOS processing of unique DNA damages in Escherichia coli. All three lesions can be found in DNA damaged by chemical oxidants or radiation and are representative of several common structural modifications of DNA bases. When phi X DNA containing thymine glycols was transfected into host cells that were ultraviolet-irradiated to induce the SOS response, a substantial increase in survival was observed compared to transfection into uninduced hosts. Studies with mutants demonstrated that both the activated form of RecA and UmuDC proteins were required for this reactivation. In contrast, no increase in survival was observed when DNA containing urea glycosides or AP sites was transfected into ultraviolet-induced hosts. These data suggest that SOS-induced reactivation does not reflect a generalized repair system for all replication-blocking, lethal lesions but rather that the efficiency of reactivation is damage dependent. Further, we found that a significant fraction of potentially lethal thymine glycols could be ultraviolet-reactivated in an umuC lexA recA-independent manner, suggesting the existence of an as yet uncharacterized damage-inducible SOS-independent mode of thymine glycol repair.  相似文献   

12.
A 32-P-postlabeling assay has been developed that permits detection of several radiogenic base and sugar lesions of DNA at the femtomole level. The technique is based on the inability of DNase I and snake venom phosphodiesterase to cleave the internucleotide phosphodiester bond immediately 5' to the site of damage so that complete digestion of irradiated DNA with these nucleases and alkaline phosphatase yields lesion-bearing "dinucleoside" monophosphates. Because these fragments contain an unmodified nucleoside at the 5'-end of each molecule, they can be readily phosphorylated by T4 polynucleotide kinase and [gamma-32P]ATP and analyzed by polyacrylamide gel electrophoresis and reverse-phase HPLC. We observed a linear induction of total damage in DNA irradiated with 5-50 Gy. Virtually no damage was detected when the DNA was irradiated in solution containing 1 M DMSO, implicating hydroxyl radicals in the formation of these lesions. Evidence for the presence of thymine glycols and phosphoglycolate groups came from (i) a comparison of the radiation-induced products with those produced by OsO4 and KMnO4 and (ii) incubation of irradiated DNA with Escherichia coli endonuclease III and exonuclease III before analysis by the postlabeling procedure. This was confirmed by comigration of the radiogenic products with chemically synthesized markers. G values of 0.0022 and 0.0105 mumol J-1 were obtained for thymine glycol and phosphoglycolate production, respectively. The identity of the 5'-nucleotide of each isolated compound was obtained by nuclease P1 digestion. This analysis of nearest-neighbor bases to thymine glycols and phosphoglycolates indicated a nonrandom interaction between radiation-induced hydroxyl radicals and DNA.  相似文献   

13.
Mechanism of action of Escherichia coli endonuclease III   总被引:12,自引:0,他引:12  
Y W Kow  S S Wallace 《Biochemistry》1987,26(25):8200-8206
Endonuclease III isolated from Escherichia coli has been shown to have both N-glycosylase and apurinic/apyrimidinic (AP) endonuclease activities. A nicking assay was used to show that the enzyme exhibited a preference for form I DNA when DNA containing thymine glycol was used as a substrate. This preference was reduced or eliminated either when the DNA was relaxed or when the type of damage was altered to urea residues or AP sites. The combined N-glycosylase/AP endonuclease activity was at least 10-fold higher than the AP endonuclease activity alone when urea-containing DNA was used as a substrate as compared to AP DNA. When DNA containing thymine glycol was used as a substrate, the combined N-glycosylase/AP endonuclease activity was about 2-fold higher than the AP endonuclease activity. Yet, when DNA containing thymine glycol or urea was used as substrate, no apurinic sites remained. Furthermore, magnesium selectively inhibited endonuclease III activity when AP DNA was used as a substrate but had no effect when DNA containing either urea or thymine glycol was used as substrate. These data suggest that both the N-glycosylase and AP endonuclease activities of endonuclease III reside on the same molecule or are in very tight association and that these activities act in concert, with the N-glycosylase reaction preceding the AP endonuclease reaction.  相似文献   

14.
OsO4 selectively forms thymine glycol lesions in DNA. In the past, OsO4-treated DNA has been used as a substrate in studies of DNA repair utilizing base-excision repair enzymes such as DNA glycosylases. There is, however, no information available on the chemical identity of other OsO4-induced base lesions in DNA. A complete knowledge of such DNA lesions may be of importance for repair studies. Using a methodology developed recently for characterization of oxidative base damage in DNA, we provide evidence for the formation of cytosine glycol and 5,6-dihydroxycytosine moieties, in addition to thymine glycol, in DNA on treatment with OsO4. For this purpose, samples of OsO4-treated DNA were hydrolysed with formic acid, then trimethylsilylated and analysed by capillary gas chromatography-mass spectrometry. In addition to thymine glycol, 5-hydroxyuracil (isobarbituric acid), 5-hydroxycytosine and 5,6-dihydroxyuracil (isodialuric acid or dialuric acid) were identified in OsO4-treated DNA. It is suggested that 5-hydroxyuracil was formed by formic acid-induced deamination and dehydration of cytosine glycol, which was the actual oxidation product of the cytosine moiety in DNA. 5-Hydroxycytosine obviously resulted from dehydration of cytosine glycol, and 5,6-dihydroxyuracil from deamination of 5,6-dihydroxycytosine. This scheme was supported by the presence of 5-hydroxyuracil, uracil glycol and 5,6-dihydroxyuracil in OsO4-treated cytosine. Treatment of OsO4-treated cytosine with formic acid caused the complete conversion of uracil glycol into 5-hydroxyuracil. The implications of these findings relative to studies of DNA repair are discussed.  相似文献   

15.
An interesting property of the Escherichia coli DNA polymerase II is the stimulation in DNA synthesis mediated by the DNA polymerase III accessory proteins beta,gamma complex. In this paper we have studied the basis for the stimulation in pol II activity and have concluded that these accessory proteins stimulate pol II activity by increasing the processivity of the enzyme between 150- and 600-fold. As is the case with pol III, processive synthesis by pol II requires both beta,gamma complex and SSB protein. Whereas the intrinsic velocity of synthesis by pol II is 20-30 nucleotides per s with or without the accessory proteins, the processivity of pol II is increased from approximately five nucleotides to greater than 1600 nucleotides incorporated per template binding event. The effect of the accessory proteins on the rate of replication is far greater on pol III than on pol II; pol III holoenzyme is able to complete replication of circular single-stranded M13 DNA in less than 20 s, whereas pol II in the presence of the gamma complex and beta requires approximately 5 min. We have investigated the effect of beta,gamma complex proteins on bypass of a site-specific abasic lesion by E. coli DNA polymerases I, II, and III. All three polymerases are extremely inefficient at bypass of the abasic lesion. We find limited bypass by pol I with no change upon addition of accessory proteins. pol II also shows limited bypass of the abasic site, dependent on the presence of beta,gamma complex and SSB. pol III shows no significant bypass of the abasic site with or without beta,gamma complex.  相似文献   

16.
17.
Understanding the response of DNA polymerase to the encountered damage in a template is a key to assessing lethal and mutagenic events of cells exposed to genotoxic agents. In the present study M13 (or f1) DNA templates containing 4 types of thymine damages were prepared, and DNA synthesis was carried out in vitro with the templates. The extent of inhibition of DNA synthesis by the damages was evaluated by measuring [3H]dTMP incorporation. Furthermore, newly synthesized DNA was analyzed on a sequencing gel to determine termination sites of DNA synthesis. The results showed that DNA synthesis was differentially inhibited by the damages, and the termination sites of DNA synthesis were dependent on the structures of the damages and the 3'-5' exonuclease activity of DNA polymerase used.  相似文献   

18.
19.
A single-strand initiation (ssi) signal was detected on the Lactococcus lactis plasmid pGKV21 containing the replicon of pWV01 by its ability to complement the poor growth of an M13 phage derivative (M13 delta lac182) lacking the complementary-strand origin in Escherichia coli. This ssi signal was situated at the 229-nucleotide (nt) DdeI-DraI fragment and located within the 109 nt upstream of the nick site of the putative plus origin. SSI activity is orientation specific with respect to the direction of replication. We constructed an ssi signal-deleted plasmid and then examined the effects of the ssi signal on the conversion of the single-stranded replication intermediate to double-stranded plasmid DNA in E. coli. The plasmid lacking an ssi signal accumulated much more plasmid single-stranded DNA than the wild-type plasmid did. Moreover, deletion of this region caused a great reduction in plasmid copy number or plasmid maintenance. These results suggest that in E. coli, this ssi signal directs its lagging-strand synthesis as a minus origin of plasmid pGKV21. Primer RNA synthesis in vitro suggests that E. coli RNA polymerase directly recognizes the 229-nt ssi signal and synthesizes primer RNA dependent on the presence of E. coli single-stranded DNA binding (SSB) protein. This region contains two stem-loop structures, stem-loop I and stem-loop II. Deletion of stem-loop I portion results in loss of priming activity by E. coli RNA polymerase, suggesting that stem-loop I portion is essential for priming by E. coli RNA polymerase on the SSB-coated single-stranded DNA template.  相似文献   

20.
N3-Ethylthymidine (N3-Et-dT) was site specifically incorporated into a 17-nucleotide oligomer to investigate the significance of DNA ethylation at the central hydrogen-bonding site (N3) of thymine. The 5'-(dimethoxytrityl)-protected N3-Et-dT was converted to the corresponding 3'-phosphoramidite and used to incorporate N3-Et-dT at a single site in the oligonucleotide during synthesis by the phosphite triester method. The purified N3-Et-dT-containing oligomer was ligated to a second 17-mer to yield a 34-nucleotide template with N3-Et-dT present at position 26 from the 3'-end. The template DNA, which corresponds to a specific sequence at gene G of bacteriophage phi X174, was used to study the specificity of nucleotide incorporation opposite N3-Et-dT. At 10 microM dNTP and 5 mM Mg2+, N3-Et-dT blocked DNA synthesis by Escherichia coli polymerase I (Klenow fragment): 96% immediately 3' to N3-Et-dT and 4% after incorporation of a nucleotide opposite N3-Et-dT (incorporation-dependent blocked product). DNA replication past the lesion (postlesion synthesis) was negligible. Incorporation opposite N3-Et-dT increased with increased dNTP concentrations, reaching 35% at 200 microM. Postlesion synthesis remained negligible. DNA sequencing of the incorporation-dependent blocked product revealed that dA is incorporated opposite N3-Et-dT consistent with the "A" rule in mutagenesis. Formation of the N3-Et-dT.dA base pair at the 3'-end of the growing chain terminated DNA synthesis. These results implicate N3-Et-dT as a potentially cytotoxic lesion produced by ethylating agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号