首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
During growth on glycerol two marine Desulfovibrio strains that can grow on an unusually broad range of substrates contained high activities of glycerol kinase, NAD(P)-independent glycerol 3-phosphate dehydrogenase and the other enzymes necessary for the conversion of dihydroxyacetone phosphate to pyruvate. Glycerol dehydrogenase and a specific dihydroxyacetone kinase were absent. During growth on dihydroxyacetone, glycerol kinase is involved in the initial conversion of this compound to dihydroxyacetone phosphate which is then further metabolized. Some kinetic properties of the partially purified glycerol kinase were determined. The role of NAD as electron carrier in the energy metabolism during growth of these strains on glycerol and dihydroxyacetone is discussed.Glycerol also supported growth of three out of four classical Desulfovibrio strains tested. D. vulgaris strain Hildenborough grew slowly on glycerol and contained glycerol kinase, glycerol 3-phosphate dehydrogenase and enzymes for the dissimilation of dihydroxyacetone phosphate. In D. gigas which did not grow on glycerol the enzymes glycerol kinase and glycerol 3-phosphate dehydrogenase were absent in lactate-grown cells.Abbreviations DHA dihydroxyacetone - DHAP dihydroxyacetone phosphate - G3P glycerol 3-phosphate - GAP glyceraldehyde 3-phosphate - 3-PGA 3-phosphoglycerate - 2-PGA 2-phosphoglycerate - 2,3-DPGA 2,3-diphosphoglycerate - PEP phosphoenolpyruvate - DH dehydrogenase - GK glycerol kinase - DHAK dihydroxyacetone kinase - TIM triosephosphate isomerase - PGK 3-phosphoglycerate kinase - PK pyruvate kinase - LDH lactate dehydrogenase - DTT dithiotreitol - HEPES 4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid - PIPES piperazine-1,1-bis(2-ethane sulfonic acid) - BV2+/BV+ oxidized/reduced benzylviologen - PMS phenazine methosulfate - DCPIP 2,6-dichlorophenolindophenol - MTT 3-(4,5-dimethylthiazol-2-yl)-2,4-diphenyltetrazolium bromide  相似文献   

2.
The only species of fission yeasts capable of growing on glycerol or dihydroxyacetone were Schizosaccharomyces pombe and S. malidevorans. When growing on glycerol or grown on glucose until it was exhausted, these species contained glycerol:NAD+ 2-oxidoreductase and dihydroxyacetone kinase but no glycerol kinase, consistent with utilization of glycerol via dihydroxyacetone. When grown to exhaustion of glucose, S. octosporus, S. slooffiae and S. japonicus contained dihydroxyacetone kinase but no glycerol:NAD+ 2-oxidoreductase or glycerol kinase. Prior to exhaustion of glucose in the medium, all species contained dihydroxyacetone kinase, all species except S. japonicus contained glycerol:NADP+ 2-oxidoreductase, and only S. pombe and S. malidevorans contained glycerol:NAD+ 2-oxidoreductase. Possible roles for the glycerol:NAD+ 2-oxidoreductase, glycerol:NADP+ 2-oxidoreductase and dihydroxyacetone kinase in metabolism of glycerol and dihydroxyacetone are discussed.Non-standard abbreviations DHA dihydroxyacetone - DHAK dihydroxyacetone kinase - DHAP dihydroxyacetone phosphate - GK glycerol kinase - G2DH-NAD glycerol - NAD+ 2-oxidoreductase - G2DH-NADP glycerol - NADP+ 2-oxidoreductase - MEA malt extract agar - YEP yeast extract phosphate medium  相似文献   

3.
Dihydroxyacetone (DHA) kinase was purified to electrophoretic homogeneity from methanol-grown Hansenula polymorpha CBS 4732. The enzyme was a dimer with a molecular weight of 150,000, and had an isoelectric point of 4.9. The enzyme was active toward DHA, and D- and L-glyceraldehydes as phosphorylation acceptors, and only ATP served as a donor. ADP inhibited the enzyme at a physiological concentration. Magnesium ion was essential for the activity and stability. Some other divalent cations can substitute in part the magnesium ion. The DHA kinases found in cells grown on methanol and glycerol were immunologically identical, but were different from those of other methylotrophic yeasts as shown by immunotitration. A mutant (204D) derived from the yeast, which could not grow on methanol or DHA but could so on glycerol, was deficient in DHA kinase. Glycerol kinase activity was found in glycerol-grown 204D cells as well as the parent strain.Abbreviation DHA dihydroxyacetone  相似文献   

4.
A study of enzyme profiles in Hansenula polymorpha grown on various carbon substrates revealed that the synthesis of the methanol dissimilatory and assimilatory enzymes is regulated in the same way, namely by catabolite repression and induction by methanol. Mutants of H. polymorpha blocked in dihydroxyacetone (DHA) synthase (strain 70 M) or DHA kinase (strain 17 B) were unable to grow on methanol which confirmed the important role attributed to these enzymes in the biosynthetic xylulose monophosphate (XuMP) cycle. Both mutant strains were still able to metabolize methanol. In the DNA kinase-negative strain 17 B this resulted in accumulation of DHA. Although DHA kinase is thought to be involved in DHA and glycerol metabolism in methylotrophic yeasts, strain 17 B was still able to grow on glycerol at a rate similar to that of the wild type. DHA on the other hand only supported slow growth of this mutant when relatively high concentrations of this compound were provided in the medium. This slow but definite growth of strain 17 B on DHA was not based on the reversible DHA synthase reaction but on conversion of DHA into glycerol, a reaction catalyzed by DNA reductase. The subsequent metabolism of glycerol in strain 17 B and in wild type H. polymorpha, however, remains to be elucidated.Abbreviations XuMP xylulose monophosphate - DHA dihydroxyacetone - EMS ethyl methanesulphonate  相似文献   

5.
Summary Enzyme analyses indicated that the metabolism of glycerol by Zygosaccharomyces rouxii occurred via either glycerol-3-phosphate (G3P) or dihydroxyacetone (DHA). The route via DHA is significant in osmoregulation. The specific activities of glycerol dehydrogenase (GDHG) and DHA kinase, which metabolize glycerol via DHA, increased nine- and fourfold respectively during osmotic stress [0.960 water activity (aw) adjusted with NaCl] when compared to non-stressed conditions (0.998 aw). Both pathways are under metabolic regulation. Glycerol kinase, mitochondrial G3P dehydrogenase and DHA kinase are induced by glycerol while the latter is also repressed by glucose. Cells treated with cycloheximide prior to osmotic upshock showed significantly lower DHA kinase and GDHG levels and lower intracellular glycerol concentrations when compared to untreated control cells. Thus protein synthesis is essential for osmotic adaptation. Offprint requests to: B. A. Prior  相似文献   

6.
The NAD-dependent glycerol-3-phosphate dehydrogenase (glycerol-3-phosphate:NAD+ oxidoreductase; EC 1.1.1.8; G3P DHG) was purified 178-fold to homogeneity from Saccharomyces cerevisiae strain H44-3D by affinity- and ion-exchange chromatography. SDS-PAGE indicated that the enzyme had a molecular mass of approximately 42,000 (+/- 1,000) whereas a molecular mass of 68,000 was observed using gel filtration, implying that the enzyme may exist as a dimer. The pH optimum for the reduction of dihydroxyacetone phosphate (DHAP) was 7.6 and the enzyme had a pI of 7.4. NADPH will not substitute for NADH as coenzyme in the reduction of DHAP. The oxidation of glycerol-3-phosphate (G3P) occurs at 3% of the rate of DHAP reduction at pH 7.0. Apparent Km values obtained were 0.023 and 0.54 mM for NADH and DHAP, respectively. NAD, fructose-1,6-bisphosphate (FBP), ATP and ADP inhibited G3P DHG activity. Ki values obtained for NAD with NADH as variable substrate and FBP with DHAP as variable substrate were 0.93 and 4.8 mM, respectively.  相似文献   

7.
S. Boag  A. R. Portis Jr. 《Planta》1985,165(3):416-423
The levels of stromal photosynthetic intermediates were measured in isolated intact spinach (Spinacia oleracea L.) chloroplasts exposed to reduced osmotic potentials. Stressed chloroplasts showed slower rates of metabolite accumulation upon illumination than controls. Relative to other metabolites sedoheptulose-1,7-bisphosphate (SBP) and fructose-1,6-bisphosphate (FBP) accumulated in the stroma in the stressed treatments. Under these conditions 3-phosphoglycerate (3-PGA) efflux to the medium was restricted. Chloroplasts previously incubated with [32P]KH2PO4 and [32P]dihydroxyacetone phosphate ([32P]DAP) in the dark were characterized by very high FBP and SBP levels prior to illumination. Metabolism of these pools upon illumination increased with increasing pH of the medium but was consistently inhibited in osmotically stressed chloroplasts. The responses of stromal FBP and SBP pools under hypertonic conditions are discussed in terms of both inhibited light activation of fructose-1,6-bisphosphatase (EC 3.1.3.11) and sedoheptulose-1,7-bisphosphatase (EC 3.1.3.37), and likely increases in stromal ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) active-site concentrations.Abbreviations and symbols DAP dihydroxyacetone phosphate - FBP fructose-1,6-bisphosphate - PGA 3-phosphoglycerate - RuBP ribulose-1,5-bisphosphate - SBP sedoheptulose-1,7-bisphosphate - s osmotic potential  相似文献   

8.
The activity of some enzymes of intermediary metabolism, including enzymes of glycolysis, the hexose monophosphate shunt, and polyol cryoprotectant synthesis, were measured in freeze-tolerant Eurosta solidaginis larvae over a winter season and upon entry into pupation. Flexible metabolic rearrangement was observed concurrently with acclimatization and development. Profiles of enzyme activities related to the metabolism of the cryoprotectant glycerol indicated that fall biosynthesis may occur from two possible pathways: 1. glyceraldehyde-phosphate glyceraldehyde glycerol, using glyceraldehyde phosphatase and NADPH-linked polyol dehydrogenase, or 2. dihydroxyacetonephosphate glycerol-3-phosphate glycerol, using glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase. Clearance of glycerol in the spring appeared to occur by a novel route through the action of polyol dehydrogenase and glyceraldehyde kinase. Profiles of enzyme activities associated with sorbitol metabolism suggested that this polyol cryoprotectant was synthesized from glucose-6-phosphate through the action of glucose-6-phosphatase and NADPH-linked polyol dehydrogenase. Removal of sorbitol in the spring appeared to occur through the action of sorbitol dehydrogenase and hexokinase. Glycogen phosphorylase activation ensured the required flow of carbon into the synthesis of both glycerol and sorbitol. Little change was seen in the activity of glycolytic or hexose monophosphate shunt enzymes over the winter. Increased activity of the -glycerophosphate shuttle in the spring, indicated by greatly increased glycerol-3-phosphate dehydrogenase activity, may be key to removal and oxidation of reducing equivalents generated from polyol cryoprotectan catabolism.Abbreviations 6PGDH 6-Phosphogluconate dehydrogenase - DHAP dihydroxy acetone phosphate - F6P fructose-6-phosphate - F6Pase fructose-6-phospha-tase - FBPase fructose-bisphosphatase - G3P glycerol-3-phosphate - G3Pase glycerol-3-phosphate phophatase - G3PDH glycerol-3-phosphate dehydrogenase - G6P glucose-6-phosphate - G6Pase glucose-6-phosphatase - G6PDH glucose-6-phosphate dehydrogenase - GAK glyceraldehyde kinase - GAP glyceraldehyde-3-phosphate - GAPase glyceraldehyde-3-phosphatase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - GDH glycerol dehydrogenase - GPase glycogen phosphorylase - HMS hexose monophosphate shunt - LDH lactate dehydrogenase - NADP-IDH NADP+-dependent isocitrate dehydrogenase - PDHald polyol dehydrogenase, glyceraldehyde activity - PDHgluc polyol dehydrogenase, glucose activity - PFK phosphofructokinase - PGI phosphoglucoisomerase - PGK phosphoglycerate kinase - PGM phosphoglucomutase - PK pyruvate kinase - PMSF phenylmethylsulfonylfluoride - SoDH sorbitol dehydrogenase - V max maximal enzyme activity - ww wet weight  相似文献   

9.
Cloning of the glycerol kinase gene of Bacillus subtilis   总被引:1,自引:0,他引:1  
A 3.5 kb fragment of Bacillus subtilis DNA which contains wild type alleles of mutations in glpK (glycerol kinase) and glpD (glycerol-3-phosphate [G3P] dehydrogenase) was cloned in plasmid pHV32 in Escherichia coli. The cloned fragment expresses glycerol kinase in B. subtilis mutants carrying the mutations glpK11 and recE4 after induction with glycerol or G3P whereas it does not express G3P dehydrogenase. The cloned fragment thus contains the complete glpK but probably only part of glpD.  相似文献   

10.
Mature boar spermatozoa oxidized glycerol to carbon dioxide in the absence of any detectable activity of glycerol kinase. With triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase inhibited by the presence of 3-chloro-1-hydroxypropanone (CHOP), dihydroxyacetone phosphate accumulated in incubates when glycerol-3-phosphate was the substrate, but not when it was glycerol. Both dihydroxyacetone and glyceraldehyde could be used as substrates; in the presence of CHOP, dihydroxyacetone phosphate and fructose-1,6-bisphosphate accumulated when dihydroxyacetone was the substrate, but not when it was glyceraldehyde. The metabolic pathways glycerol----glyceraldehyde----glyceraldehyde 3-phosphate and dihydroxyacetone----dihydroxyacetone phosphate have been shown to operate in these cells.  相似文献   

11.
The influence of the product inhibition by dihydroxyacetone (DHA) on Gluconobacter oxydans for a novel semi-continuous two-stage repeated-fed-batch process was examined quantitatively. It was shown that the culture was able to grow up to a DHA concentration of 80 kg m−3 without any influence of product inhibition. The regeneration capability of the reversibly product inhibited culture from a laboratory-scale bioreactor system was observed up to a DHA concentration of about 160 kg m−3. At higher DHA concentrations, the culture was irreversibly product inhibited. However, due to the robust membrane-bound glycerol dehydrogenase of G. oxydans, product formation was still active for a prolonged period of time. The reachable maximum final DHA concentration was as high as 220 kg m−3. The lag phases for growth increased exponentially with increasing DHA threshold values of the first reactor stage. These results correlated well with fluorescence in situ hybridization (FISH) measurements confirming that the number of active cells decreased exponentially with increasing DHA concentrations.  相似文献   

12.
Fifteen yeast strains of the genera Candida, Lodderomyces, Endomycopsis, Saccharomyces, Hansenula, Pichia and Torulopsis were investigated with respect to their ability to grow on methanol, glycerol and glucose as sole carbon and energy source. Eight of them can grow on both methanol and glycerol.Methanol is assimilated via triosephosphate (dihydroxyacetone) pathway. The dihydroxyacetone kinase is a key enzyme in methanol metabolism.The assimilation of glycerol can take place in bacteria via a phosphorylative or/and oxidative pathways. In general, the phosphorylative pathway is found in eucaryotes. In the present paper it is shown that in yeasts, which can utilize methanol and glycerol, too, glycerol is assimilated via an oxidative pathway, Dihydroxyacetone is a central intermediate in the assimilation of methanol as well as glycerol. It is metabolized by means of the dihydroxyacetone kinase.The enzyme formed during growth of Candida methylica on methanol does not differ from that of Candida valida H 122 after growing on glycerol as far as the regulatory properties are concerned.  相似文献   

13.
14.
Most microorganisms can metabolize glycerol when external electron acceptors are available (i.e. under respiratory conditions). However, few can do so under fermentative conditions owing to the unique redox constraints imposed by the high degree of reduction of glycerol. Here, we utilize in silico analysis combined with in vivo genetic and biochemical approaches to investigate the fermentative metabolism of glycerol in Escherichia coli. We found that E. coli can achieve redox balance at alkaline pH by reducing protons to H2, complementing the previously reported role of 1,2-propanediol synthesis under acidic conditions. In this new redox balancing mode, H2 evolution is coupled to a respiratory glycerol dissimilation pathway composed of glycerol kinase (GK) and glycerol-3-phosphate (G3P) dehydrogenase (G3PDH). GK activates glycerol to G3P, which is further oxidized by G3PDH to generate reduced quinones that drive hydrogenase-dependent H2 evolution. Despite the importance of the GK-G3PDH route under alkaline conditions, we found that the NADH-generating glycerol dissimilation pathway via glycerol dehydrogenase (GldA) and phosphoenolpyruvate (PEP)-dependent dihydroxyacetone kinase (DHAK) was essential under both alkaline and acidic conditions. We assessed system-wide metabolic impacts of the constraints imposed by the PEP dependency of the GldA-DHAK route. This included the identification of enzymes and pathways that were not previously known to be involved in glycerol metabolisms such as PEP carboxykinase, PEP synthetase, multiple fructose-1,6-bisphosphatases and the fructose phosphate bypass.  相似文献   

15.
Enterococcus faecalis NCTC 775 was grown anaerobically in chemostat culture with pyruvate as the energy source. At low culture pH values, high in vivo and in vitro activities were found for both pyruvate dehydrogenase and lactate dehydrogenase. At high culture pH values the carbon flux was shifted towards pyruvate formate lyase. Some mechanisms possibly involved in this metabolic switch are discussed. In particular attention is paid to the NADH/NAD ratio (redox potential) and the fructose-1,6-bisphosphate-dependent lactate dehydrogenase activity as possible regulatory factors.Abbreviations PDH pyruvate dehydrogenase complex (EC 1.2.2.2) - PFL pyruvate formate lyase (EC 2.3.1.54) - LDH lactate dehydrogenase (EC 1.1.1.27) - FBP fructose-1,6-bisphosphate - MTT 3-(4,5-dimethyl-thiazoyl-2)-2,5-diphenyltetrazolium bromide - TPP thiamine pyrophosphate  相似文献   

16.
The effects of AMP, ATP, inorganic phosphate and fructose-1, 6-bisphosphate on glycerol-3-phosphate dehydrogenase (NADH) from Dunaliella tertiolecta were investigated. In addition the salt effects and the influence of different anions were studied. The results support the assumption that concentration changes of intermediates and salts by cell shrinkage during osmotic stress can account for the control of glycerol synthesis.  相似文献   

17.
Summary Microbial conversion of glycerol into dihydroxyacetone (DHA) byGluconobacter oxydans was subjected to inhibition by excess substrate. Comparison of cultures containing increasing initial DHA contents (0 to 100 g l–1) demonstrated that DHA also inhibited this fermentation process. The first effect was on bacterial growth (cellular development stopped when DHA concentration reached 67 gl–1), and then on oxidation of glycerol (DHA synthesis only occurred when the DHA concentration in the culture medium was lower than 85 g l–1). Productivity, specific rates and, to a lesser extent, conversion yields decreased as initial concentrations of DHA increased. The changes in the specific parameters according to increasing initial DHA contents were described by general equations. These formulae satisfactorily express the concave aspect of the curves and the reduction in biological activity when the cells were in contact with DHA concentrations of up to 96 g l–1.Abbreviations X, S, P biomass, substrate, product concentrations - r x,r s,r p rates of growth, consumption and production - ,q s,q p specific rates of growth, glycerol consumption and DHA production - Y x/s, Yp/s conversion yields of substrate into biomass and product - K s constant of affinity of cells to the substrate - K ip product inhibition constant - P m threshold concentration of DHA in substrate  相似文献   

18.
When exponentially growing Saccharomyces cerevisiae was transferred from a normal high water activity growth medium (aw 0.997) to a medium containing 8% NaCl low water activity growth medium (aw 0.955), glycerol accumulation during the first eight hours of the adaptation was both retarded and greatly diminished in magnitude. Investigation of the underlying reasons for the slow onset of glycerol accumulation revealed that not only was overall glycerol production reduced by salt transfer, but also the rates of ethanol production and glucose consumption were reduced. Measurement of glycolytic intermediates revealed an accumulation of glucose-6-phosphate, fructose-6-phosphate, fructose 1,6 bisphosphate and phosphoenolpyruvate in S. cerevisiae 3 to 4 h after transfer to salt, suggesting that one or more glycolytic enzymes were inhibited. Potassium ions accumulated in S. cerevisiae after salt transfer and reached a maximum about 6 h after transfer, whereas the sodium ion content increased progressively during the adaptation period. The trehalose content also increased in adapting cells. It is suggested that inhibition of glycerol production during the initial period of adaptation could be due to either the inhibition of glycerol-3-phosphate dehydrogenase by increased cation content or the inhibitin of glycolysis, glycerol being produced glycolytically in S. cerevisiae. The increased accumulation of glycerol towards the end of the 8-h period suggests that the osmoregulatory response of S. cerevisiae involves complex sets of adjustments in which inhibition of glycerol-3-phosphate dehydrogenase must be relieved before glycerol functions as a major osmoregulator.  相似文献   

19.
The glycerol-3-phosphate dehydrogenase (NAD-dependent) reaction was studied in a chloroplast-enriched fraction fromDunaliella tertiolecta. The reaction has widely separated pH optima for each direction. Reduction of dihydroxyacetone phosphate proceeded with Michaelis-Menten kinetics but sigmoidal double reciprocal plots were obtained with glycerol phosphate as variable substrate. NADP served as an alternative substrate but it was somewhat less effective than NAD. The reaction was inhibited by inorganic orthophosphate and by adenine nucleotides in a manner indicative of anion inhibition. Inhibition by inorganic phosphate was competitive with DHAP and possibly also with NADH. The enzyme was activated by Na+ at concentrations below 200 m and inhibited at higher concentrations, the region of maximum activation being affected by substrate concentration. Inhibition by Na+, present as a counterion of the substrate, was evidently responsible for apparent substrate inhibition by glycerol phosphate. Several important differences were apparent between the reaction in the unfractionated chloroplast-enriched fraction and the properties of a partly purified enzyme described by Haus and Wegmann (1984a, b).In toto, the results suggest that the regulatory potential of the reaction is probably more relevant to homeostatic control of glycerol content under steady state conditions than to controlling response to water stress.Abbreviations DHAP Dihydroxyacetone phosphate - CHES 2-(N-cyclohexylamino)ethanesulphonic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid  相似文献   

20.
Summary The course of glycerol biosynthesis, initiated by exposure to –4°C, was monitored in larvae of the goldenrod gall moth,Epiblema scudderiana, and accompanying changes in the levels of intermediates of glycolysis, adenylates, glycogen, glucose, fructose-2,6-bisphosphate, and fermentative end products were characterized. Production of cryoprotectant was initiated within 6 h after a switch from +16° to –4°C, with halfmaximal levels reached in 30 h and maximal content, 450–500 mol/g wet weight, achieved after 4 days. Changes in the levels of intermediates of the synthetic pathway within 2 h at –4°C indicated that the regulatory sites involved glycogen phosphorylase, phosphofructokinase, and glycerol-3-phosphatase. A rapid increase in fructose-2,6-bisphosphate, an activator of phosphofructokinase and inhibitor of fructose-1,6-bisphosphatase, appeared to have a role in maintaining flux in the direction of glycerol biosynthesis. Analysis of metabolite changes as glycerol production slowed suggested that the inhibitory restriction of the regulatory enzymes was slightly out of phase. Inhibition at the glycerol-3-phosphatase locus apparently occurred first and resulted in a build-up of glycolytic intermediates and an overflow accumulation of glucose. Glucose inhibition of phosphorylase, stimulating the conversion of the activea to the inactiveb forms, appears to be the mechanism that shuts off phosphorylase function, counteracting the effects of low temperature that are the basis of the initial enzyme activation. Equivalent experiments carried out under a nitrogen gas atmosphere suggested that the metabolic make-up of the larvae in autumn is one that obligately routes carbohydrate flux through the hexose monophosphate shunt. The consequence of this is that fermentative ATP production during anoxia is linked to the accumulation of large amounts of glycerol as the only means of maintaining redox balance.Abbreviations G6P glucose-6-phosphate - F6P fructose-6-phosphate - F1, 6P fructose-1,6-bisphosphate - F2,6P 2 fructose-2,6-bisphosphate - G3P grycerol-3-phosphate - DHAP dinydroxyacetonephosphate - GAP glyceraldehyde-3-phosphate - PEP phosphoenolpyruvate - PFK phosphofructokinase - FBPase fructose-1,6-bisphosphatase - PK pyruvate kinase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号