首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 373 毫秒
1.
Marine benthic macrofauna communities are considered a good indicator of subtle environmental long-term changes in an ecosystem. In 1997/1998 and 2006, soft-bottom fauna of an Arctic glacial fjord Kongsfjorden was extensively sampled and major communities were identified along the fjord axis, which were related to the diminishing influence of glacial activity. Spatial patterns in community structure and species diversity were significantly different in the central basin of Kongsfjorden between periods while there was no change in the inner part of the fjord. In 1997/98, three faunal associations were distinguished with significant differences in species richness and diversity (H′) while in 2006 only two faunal associations were identified and there were no differences any more between the two formerly distinct associations in the central fjord. The increased input of Atlantic water due to a stronger West Spitsbergen Current may be the reason for unification of previous clear faunal division. The faunal association in the inner, well separated glacial part of the fjord, characterized by strong glacier influence, was protected from Atlantic water inflow and, hence, the macrobenthic fauna essentially remained unaffected. Reduced abundance of species typical for glacial bays in the central part of the fjord in 2006 may result from the decreasing effect of Blomstrandbreen glacier, strong increase of input of Atlantic water into the fjord and increased temperature of West Spitsbergen Current. Higher values of POC in 2006 than in 1998 are likely the effect of increased primary production resulting from warmer water temperatures.  相似文献   

2.
Although it is well known that the Paleocene/Eocene thermal maximum (PETM) coincided with a major benthic foraminiferal extinction event, the detailed pattern of the faunal turnover has not yet been clarified. Our high-resolution benthic foraminiferal and carbon isotope analyses at the low latitude Pacific Ocean Shatsky Rise have revealed the following record of major faunal transitions: (1) An initial turnover which involved the benthic foraminiferal extinction event (BFE). The BFE, marked by a sharp transition from Pre-extinction fauna to Disaster fauna represented by small-sized Bolivina gracilis, expresses the onset of the PETM and the abrupt extinction of about 30% of taxa. This faunal transition lasted about 45-74 kyr after the initiation of the PETM and was followed by: (2) the appearance of Opportunistic fauna represented by Quadrimorphina profunda, which existed for about 74-91 kyr after the initiation of the PETM. These two faunas, which appeared after the extinction event, are characterized by low diversity and dwarfism, possibly due to lowered oxygen condition and decreased surface productivity. The second pronounced turnover involved the gradual recovery from Opportunistic Fauna to the establishment of Recovery fauna, which coincided with the recovery about 83-91 kyr after its initiation.  相似文献   

3.
The Kongsfjord (west Spitsbergen) hosts the most active glacier on the island. Therefore the glacial impact on the marine ecosystem is very pronounced and easily recognisable. The study examines the influence of the steep glacier-derived environmental gradients on dominant macrofaunal species distributions and faunal associations in the fjord. The macrobenthic fauna was sampled by van Veen grab at 30 stations situated throughout the fjord (at depths 38–380 m). Two major communities were recognised. An inner basin receives the outflows from three glaciers and is occupied by a Glacial Bay Community dominated by small, surface detritus-feeders, with Chone paucibranchiata and a set of thyasirid and nuculanid bivalves (Thyasira dunbari, Yoldiella solidula, Y. lenticula) as characteristic species. An outer basin of the fjord is characterised by a common set of dominant species, including Heteromastus filiformis, Maldane sarsi, Levinsenia gracilis, Lumbrineris sp. and Leitoscoloplos sp. Three associations may be distinguished within the Outer Basin Community. Association TRANS is of transitional character, with Nuculoma tenuis and Terebellides stroemi. Association CENTR is the most typical for the community. It is dominated by tube-dwelling Prionospio sp., Clymenura polaris, Galathowenia oculata and Spiochaetopterus typicus. Association ENTR contains shelf benthos elements, e.g. Ophiura robusta and Lepeta caeca. An opportunistic eurytopic Chaetozone group is present throughout the fjord and its density and dominance increase with proximity to the glaciers. Dominant species distribution is discussed in relation to environmental factors, of which sediment stability, inorganic particle concentration, sedimentation rate and amount of organic matter in sediments are considered to be most important in structuring the communities.  相似文献   

4.
High-resolution biostratigraphic and quantitative studies of subtropical Pacific planktonic foraminiferal assemblages (Ocean Drilling Program, Leg 198 Shatsky Rise, Sites 1209 and 1210) are performed to analyse the faunal changes associated with the Paleocene–Eocene Thermal Maximum (PETM) at about 55.5 Ma. At Shatsky Rise, the onset of the PETM is marked by the abrupt onset of a negative carbon isotope excursion close to the contact between carbonate-rich ooze and overlying clay-rich ooze and corresponds to a level of poor foraminiferal preservation as a result of carbonate dissolution. Lithology, planktonic foraminiferal distribution and abundances, calcareous plankton and benthic events, and the negative carbon isotope excursion allow precise correlation of the two Shatsky Rise records. Results from quantitative analyses show that Morozovella dominates the assemblages and that its maximum relative abundance is coincident with the lowest δ13C values, whereas subbotinids are absent in the interval of maximum abundance of Morozovella. The excursion taxa (Acarinina africana, Acarinina sibaiyaensis, and Morozovella allisonensis) first appear at the base of the event. Comparison between the absolute abundances of whole specimens and fragments of genera demonstrate that the increase in absolute abundance of Morozovella and the decrease of Subbotina are not an artifact of selective dissolution. Moreover, the shell fragmentation data reveal Subbotina to be the more dissolution-susceptible taxon. The upward decrease in abundance of Morozovella species and the concomitant increase in test size of Morozovella velascoensis are not controlled by dissolution. These changes could be attributed to the species' response to low nutrient supply in the surface waters and to concomitant changes in the physical and chemical properties of the seawater, including increased surface stratification and salinity.Comparison of the planktonic foraminiferal changes at Shatsky Rise to those from other PETM records (Sites 865 and 690) highlights significant similarities, such as the decline of Subbotina at the onset of the event, and discrepancies, including the difference in abundance of the excursion taxa. The observed planktonic foraminifera species response suggests a warm–oligotrophic scenario with a high degree of complexity in the ocean structure.  相似文献   

5.
Changes in the Miocene deep-sea benthic foraminifera at DSDP Site 289 closely correlate to the climatically induced variations in deep and bottom waters in the Pacific Ocean. In early Miocene time, oxygen and carbon isotopes indicate that bottom waters were relatively warm and poorly oxygenated. Benthic foraminiferal assemblages are characterized by various species inherited from the Oligocene. Expansion of the Antarctic icecap in the early middle Miocene, 14–16 m.y. ago, increased oxygen isotope values, produced cold, more oxygenated bottom waters and lead to a turnover in the benthic foraminifera. An Oligocene—early Miocene assemblage was replaced by a cibicidoid-dominated assemblage. Some species became extinct and benthic faunas became more bathymetrically restricted with the increased stratification of deep waters in the ocean. In mid-Miocene time, Epistominella exigua and E. umbonifera, indicative of young, oxygenated bottom waters, are relatively common at DSDP Site 289. Further glacial expansion 5–9 m.y. ago lowered sealevel, increased oceanic upwelling and associated biological productivity and intensified the oxygen minima. Abundant hispid and costate uvigerines become a dominant faunal element at shallow depths above 2500 m as E. umbonifera becomes common to abundant below 2500 m. By late Miocene time, benthic faunas similar in species composition and proportion to modern faunas on the Ontong-Java plateau, had become established.  相似文献   

6.
Common species of intertidal agglutinated benthic foraminifera in salt marshes in Massachusetts and Connecticut live predominantly at the marsh surface and in the topmost sediment (0–2.5 cm), but a considerable part of the fauna lives at depths of 2.5–15 cm. Few specimens are alive at depths of 15–25 cm, with rare individuals alive between 25–50 cm in the sediments. Specimens living between the sediment surface and 25 cm deep occur in all marsh settings, whereas specimens living deeper than 25 cm are restricted to cores from the lower and middle marsh, and have an irregular distribution-with-depth. Lower and middle marsh areas are bioturbated by metazoa, suggesting that living specimens reach these depths at least in part by bioturbation. High-marsh sediments in New England consist of very dense mats of Spartina patents or Distichlis spicata roots and are not bioturbated by metazoa. In this marsh region bioturbation by plant roots and vertical fluid motion may play a role in moving the foraminifera into the sediment. The depth-distribution of living specimens varies with species: living specimens of Trochammina inflata consistently occur at the deepest levels. This suggests that species have differential rates of survival in the sediment, possibly because of differential adaptation to severe dysoxia to anoxia, or because of differing food preferences. There is no simple correlation between depth-in-core and faunal diversity, absolute abundance, and species composition of the assemblages. It is therefore possible to derive a signal of faunal changes and thus the environmental changes that may have caused them from the complex faunal signal of fossil assemblages.  相似文献   

7.
The Sulu Sea in the western equatorial Pacific is presently a shallowly-silled, dysaerobic, deep-marine basin. Deep waters in the Sulu Sea are ventilated through a single sill at 420 m depth which connects it to the China Sea. Benthic and planktonic foraminiferal oxygen and carbon isotope records, benthic and planktonic foraminiferal census data and total organic carbon measurements have been used to evaluate changes in water mass conditions in the Sulu Sea between the last glacial maximum (18,000 yrs. B.P.) and the present day.An increase in the abundance of the planktonic foraminiferaNeogloboquadrina dutertrei and relatively light planktonic foraminiferal δ18O values suggest that during the last glacial maximum surface water salinities were reduced in the Sulu Sea. Enhanced isolation of the basin due to glacio-eustatic lowering of sea level and reduced surface salinities resulted in stagnation of deep water and an expansion of the mid-water oxygen minimum layer. Increased organic carbon preservation at mid-water depths occurs at this time. Benthic carbon isotope data and an increase in the abundance of benthic foraminiferal species considered to prefer low oxygen environments support the conclusion of an oxygen-minimum expansion at mid-water depths during the last glacial maximum. At water depths greater than 4000 m, bottom waters appear to have maintained some degree of oxygenation during the last glacial maximum. Stronger Pacific Ocean trade winds at this time may have caused the influx of denser Celebes Sea surface water into the southern part of the Sulu Sea. The slow sinking of this water would have then ventilated bottom waters in this part of the basin.At the transition from glacial to interglacial conditions, rising sea level caused denser water to flow over the deepest sill into the Sulu Sea. Vertical circulation increased, resulting in a greater downward flux of oxygen and a dissipation of the oxygen minimum. Continued post-glacial sea level rise caused periodic ventilation of deep water until the present dysaerobic conditions were established.  相似文献   

8.
Middle Miocene (14.8–11.9 Ma) deep-sea sediments from ODP Hole 747A (Kerguelen Plateau, southern Indian Ocean) contain abundant, well-preserved and diverse planktonic foraminiferal assemblages. A detailed study of the climatic and hydrographic changes that occurred in this region during the Middle Miocene Climatic Transition led to the identification of an intense cooling phase (the Middle Miocene Shift). Abundance fluctuations of planktonic foraminiferal species with different paleoclimatic affinities, and oxygen and carbon stable isotopes have been integrated in a multi-proxy approach. Reconstruction of changes in foraminiferal faunal composition and diversity through time were the basis for identification of three foraminiferal biofacies. The most prominent faunal change took place at 13.8 Ma, when a fauna with warm-water affinity (marked by high abundance of Globorotalia miozea group and Globoturborotalita woodi plexus) was replaced by an oligotypic, opportunistic fauna with typical polar characters and dominated by neogloboquadrinids. This faunal change is interpreted as the result of foraminiferal migration from adjacent bioprovinces, caused by modifications in climate and hydrography. A positive 2.0‰ shift in δ18O (interpreted as the Mi3 event) and a related positive 1.0‰ shift in δ13C (corresponding to the CM6 event) accompanied this faunal turnover. These are interpreted to reflect substantial reorganization of Southern Ocean waters, the northward migration of the Polar Front and a strong increase in primary productivity. The second faunal change took place at 12.9 Ma and was characterized by the gradual decrease in abundance of the neogloboquadrinids and the recovery of Globorotalia praescitula/scitula group and Globigerinita glutinata. A positive 1.5‰ shift in δ18O (interpreted as the Mi4 event) and a concurrent gradual negative shift in δ13C accompanied this faunal change, witnessing further modifications of the climate/ocean system. Variations in sea surface temperature, considered as the main factor causing changes of surface hydrography at the Kerguelen Plateau, seem to have been driven by obliquity and long-term eccentricity, thus suggesting a key role played by the astronomical forcing on the evolution of Southern Ocean dynamics during the Middle Miocene. Also an evident 1.2 Myr modulation of the δ13C record suggests a main control of the long-term obliquity cycles on the carbon cycle dynamics. Particularly, the Mi3/CM6 events exactly fit with a node of the 1.2 Myr modulation cycles. This confirms the key role played by orbital parameters on high-latitude temperatures and Antarctic ice volume, and indirectly on global carbon burial and/or productivity. This climatic transition was marked also by changes in surface hydrography. From 14.8 to 13.8 Ma an intermediate-strength thermocline controlled by seasonality developed just below the photic zone. Weaker seasonality characterized the interval from 13.8 to 12.9 Ma, when the thermocline became shallower and sharper and favored intermediate-water foraminifers. From 12.9 Ma, seasonality increased again and an intermediate-strength thermocline re-developed.  相似文献   

9.
Environmental conditions and productivity changes in the southeastern Okhotsk Sea have been reconstructed for the last 20 ka using planktonic and benthic foraminiferal oxygen isotope records and calcium carbonate, organic carbon and opal content data from two sediment cores. Species variability in benthic foraminiferal and diatom assemblages provides additional palaeoceanographic evidence. AMS radiocarbon dating of the sediments and oxygen isotope stratigraphy serve as the basis for the age models of the cores for the last 20 14C kyr and for correlation between environmental variations in the Okhotsk Sea, and regional and global climate changes. Benthic foraminiferal assemblages in the two cores (depth 1590 and 1175 m) varied with time, so that we could recognise seven zones with different species composition. Changes in the benthic foraminiferal assemblages parallel major environmental and productivity variations. During the last glaciation, fluxes of organic matter to the sea floor showed strong seasonal variations, indicated by the presence of abundant A. weddellensis and infaunal Uvigerina spp. Benthic foraminiferal assemblages changed with warming at 12.5–11 and 10–8 14C kyr BP, when productivity blooms and high organic fluxes were coeval with global meltwater pulses 1A and 1B. Younger Dryas cooling caused a decline in productivity (11–10 kyr BP) affecting the benthic faunal community. Subsequent warming triggered intensive diatom production, opal accumulation and a strong oxygen deficiency, causing significant changes in benthic fauna assemblages from 5.26–4.4 kyr BP to present time.  相似文献   

10.
The aim of this study was to determine the amount of organic and inorganic carbon in foraminifera specimens and to provide quantitative data on the contribution of foraminifera to the sedimentary carbon pool in Adventfjorden. The investigation was based on three calcareous species that occur commonly in Svalbard fjords: Cassidulina reniforme, Elphidium excavatum and Nonionellina labradorica. Our results show that the species investigated did not contribute substantially to the organic carbon pool in Adventfjorden, because they represented only 0.37% of the organic carbon in the sediment. However, foraminiferal biomass could have been underestimated as it did not include arenaceous or monothalamous taxa. Foraminiferal carbonate constituted up to 38% of the inorganic carbon in the sediment, which supports the assumption that in fjords where non‐calcifying organisms dominate the benthic fauna foraminifera are among the major producers of calcium carbonate and that they play crucial roles in the carbon burial process. The results presented in this study contribute to estimations of changes in foraminiferal carbon levels in contemporary environments and could be an important reference for palaeoceanographic studies.  相似文献   

11.
While much evidence indicates that certain benthic foraminifera are facultative anaerobes, little is known regarding the physiologic response of foraminifera to anoxia. In order to assess their response, specimens of four foraminiferal species, collected from a typically dysoxic area of Drammensfjord, Norway (45 m water depth), were incubated in seawater purged with nitrogen. Over a time course of > 3 weeks, the specimens were extracted for adenosine triphosphate (ATP) in a nitrogen-flushed glove bag to assess their survival and ATP reserve under such conditions. For comparative purposes, similar extractions were done on conspecifics one week after their collection from the seafloor, as well as on other conspecifics, obtained from the same site, incubated in aerated conditions. The survival rates of nitrogen-treatedAdercotryma glomeratum, Psammosphaera bowmanni, and Stainforthia fusiformis were not significantly lower than those of the control specimens. However, the ATP concentrations of nitrogen-incubated A. glomeratum and S. fusiformis were significantly lower than those of their aerated conspecifics, while there was no significant difference between the [ATP] of P. bowmanni from the two treatments. Both the survival rate and the ATP concentrations of nitrogen-incubated Bulimina marginata were significantly lower than those of control specimens. The ultrastructure of B. marginata and S. fusiformis incubated in N2 for 18 days were compared with those of specimens fixed within 15 minutes of collection. For both species, the specimens that survived the experimental treatment had ultrastructures indistinguishable from those fixed just after field collection. However, the ultrastructure of B. marginata differed from that of S. fusiformis in that it lacked the numerous peroxisome-endoplasmic reticulum (ER) complexes and what appeared to be algal chloroplasts observed in S. fusiformis. Copious arrays of paracrystals were observed in both species from the experimental treatment as well as the shipboard-fixed specimens, suggesting that neither population had extensive pseudopodial networks. When considered in combination, our results indicate that the four species respond to and survive anoxia differently, with responses including dormancy and, as yet unidentified, anaerobic metabolic pathways.  相似文献   

12.
We studied Upper Cretaceous and Lower Paleogene benthic foraminifera from the Agost section (southeastern Spain) to infer paleobathymetrical changes and paleoenvironmental turnover across the Cretaceous/Paleogene (K/P) transition. Benthic foraminifera indicate uppermost bathyal depths at Agost during the Abathomphalus mayaroensis Biochron (from about 400 kyr before the K/P boundary) through the early Plummerita hantkeninoides Biochron (about 120–150 kyr before that boundary). The depth increased to middle bathyal for the remainder of the Cretaceous, and remained so for the Danian part of the studied section (Parasubbotina pseudobulloides Biochron, at least 200 kyr after the K/P boundary). There were no perceivable bathymetrical changes at the K/P boundary, where 5% of the species became extinct, and the species composition of the benthic foraminiferal fauna changed considerably. Below the boundary, infaunal morphogroups constitute up to 65–73% of the faunas. Directly above the boundary, in the black clays of the lower Guembelitria cretacea Biozone, benthic foraminifera are rare. Several opportunistic taxa (e.g. the agglutinant Haplophragmoides sp.) have short peaks in relative abundance, possibly reflecting low-oxygen conditions as well as environmental instability, with benthos receiving food from short-lived, local blooms of primary producers. Above the clays through the end of the studied interval, epifaunal morphogroups dominate (up to 70% of the assemblages) or there is an even mixture or epifaunal and infaunal morphogroups. Infaunal groups do not recover to pre-extinction relative abundances, indicating that the food supply to the benthos did not recover fully over the studied interval (about 200 kyr after the K/P boundary). The benthic foraminiferal faunal changes are compatible with the direct and indirect effects of an asteroid impact, which severely destabilized primary producers and the oceanic food web that was dependent upon them.  相似文献   

13.
Chironomidae (Diptera) of Baldwin Lake,Illinois, a cooling reservoir   总被引:1,自引:1,他引:0  
The chironomid fauna of Baldwin Lake, a closed-cycle cooling reservoir for a power plant, was sampled monthly to semi-monthly for one year at four stations, two in the discharge channel and two in the main basin. Qualitative samples were also taken elsewhere and with multiple-plate samplers. Twenty-four species were collected. Annual mean population density was less than 100 larvae m–2 in the channel, 1037 M–2 in the main basin. Three species of Tanypodinae formed over 96 percent of the larval population in the main basin: Tanypus stellatus Coquillett, Procladius bellus (Loew), and Coelotanypus concinnus (Coquillett). The principal species on the multiple-plate samplers were Dicrotendipes nervosus (Staeger), Glyptotendipes lobiferus (Say), and Parachironomus monochromus (Wulp). Temperatures of 35°C or more in the channel virtually eliminated the chironomids, whereas temperatures up to 32°C in the main basin increased the number of generations of T. stellatus from the usual two to four at Station 3 and three at Station 4. Station 3 had almost 1,000 degree-days more heat than Station 4.  相似文献   

14.
Lake Bogoria, in the Rift Valley of Kenya is an extreme saline lake (conductivity 40–80 mS cm–1, alkalinity 1500 m equ l–1). It is hydrologically more stable than the other, endorheic lakes in Kenya, because it is deep – maximum depth at present just over 10 m in an area of 3000 ha – and so does not have periods when it is dry. It is ecologically simple, with only one species dominating the phytoplankton – the cyanobacterium `spirulina', Arthrospira fusiformis. Its biomass and productivity were very high – biomass between 38 and 365 g l–1 chlorophyll `a' and 3.4–21 × 103 coils ml–1 and net production between 0.24 and 1 gm C m3 h, the latter in a narrow zone of less than a metre. There were no macro-zooplankton in the plankton and the only grazer of A. fusiformis was the lesser flamingo, Phoeniconaias minor,which occurred irregularly in very high concentrations (in excess of 1 × 106). Detritivory in the benthos was effected by a single chironomid species, Paratendipes sp., at a maximum density of 4 × 104 m–2. The mean daily emergence of adult chironomids was estimated to be 1 × 103 m–2, the maximum 3. There was no littoral plant community within the lake but 44 dicotyledonous and 31 monocotyledonous plant species in the drawn-down zone and adjacent to it. A diverse draw-down terrestrial invertebrate fauna, only superficially described here, processed the flamingo feathers and carcasses, with other detritus such as chironomid pupal exuviae and decaying A. fusiformis scum. About 50 bird species depended upon the chironomids, either as they emerged through the water column as flying adults or later on the shoreline as floating pupal exuvia and dead adults. The lake has high conservation value because of three bird species in particular – lesser flamingo, Cape teal and black-necked grebe. The former provides real economic value in a region otherwise impoverished, because of the spectacle of tens of thousands of flamingos set against the landscape of hot springs and fumaroles at the lake edge, which draws 15000 visitors per annum. P. minor has experienced three periods during the past ten years when major mortalities have occurred, the last of which killed 700 birds day–1. This could have involved as many as 200000 birds (about 1/5th of the maximum population at this lake) if mortality was at a constant rate for the nine months it was observed. Causes of mortality have been suggested as avian tuberculosis, poisoning from cyanobacterial toxins or from heavy metal contamination at Lake Nakuru, but it is still not yet clear what contribution each makes to the problem.  相似文献   

15.
Twenty-nine surface sediment samples from Effingham Inlet, a small fjord on the west coast of Vancouver Island, British Columbia, were analyzed for diatoms. This fjord has been selected for paleoceanographic investigation due to the presence of laminated sediments resulting from the dysoxic to anoxic bottom water conditions in the inner and outer basins of the inlet. Distributional patterns of the diatom microflora reflected proximity to littoral regions, phytoplankton production, and marine influence from outside the fjord. Principal components and cluster analyses of the microflora established four diatom assemblages with a clear separation between the inner and outer basin diatom floras. Inner basin stations were characterized by elevated absolute abundance with assemblages dominated by spring–early summer bloom taxa including Skeletonema costatum, Thalassiosira nordenskioeldii, and Thalassiosira pacifica. Chaetoceros spp. resting spores were abundant throughout Effingham Inlet, with the exception of the stations closest to the fjord head. Stations located in the outer basin and towards the fjord mouth had relatively lower absolute abundance yet showed a higher relative and absolute abundance of Thalassionema nitzschioides, Rhizosolenia setigera, Coscinodiscus radiatus, Ditylum brightwellii, Odontella longicruris, and Paralia sulcata in relation to the inner basin. Many of these latter taxa are often associated with late summer and autumn conditions in fjords along coastal British Columbia. Oceanographic data for Effingham Inlet suggest that increased offshore penetration is more likely to occur from summer to early fall, with a more restricted offshore influence in the inner basin. Diatom surface sediment assemblages in Effingham Inlet appear to reflect incursions of offshore waters into the fjord. Absolute abundance estimates and the preservation of lightly silicified taxa suggest excellent preservation of fossil material in the sediments of the predominantly anoxic inner basin. Preservation in the outer basin is reduced, reflecting more frequent recharge by oxygenated waters spilling over the outer sill into the basin. Our findings suggest the inner basin should be an optimal site for reconstruction of diatom production, with records from the outer basin providing more consistent information about offshore influence and coastal upwelling conditions over the Holocene. Estimates of diatom abundance within the inner basin sediment may serve as a good proxy of production, although proxy tracers of bottom water conditions and sedimentological analyses must be coupled to the diatom record to ensure depositional conditions were not influencing valve preservation or abundance. Our results suggest that fjords can serve as good environments for paleoceanographic reconstructions of both inshore and offshore conditions although careful site selection and understanding of processes affecting the microfossil record are essential.  相似文献   

16.
《Palaeoworld》2014,23(2):125-142
A Foliomena fauna is reported for the first time from the Tarim paleoplate, and stratigraphically from the Yinpingshan Formation (upper Katian, Upper Ordovician) of Querqueke, Kuruktag region, northeastern Tarim, southern Xinjiang, Northwest China. The fauna includes seven species of brachiopods, amongst which three are new and four indeterminate: Anomaloglossa? sp., Orbiculoidea? sp., Foliomena xinjiangensis n. sp., Sericoidea minuta n. sp., Kassinella tarimensis n. sp., Rostricellula? sp., and Anazyga? sp. These species formed a Sericoidea-Kassinella Association, characterized by very small and well-preserved brachiopods, and well-developed laminations in its hosted mudstone, indicating a deep water environment (corresponding to lower BA5 to BA6). The faunal and sedimentological features suggest its affinity to the typical Foliomena faunal group of deep water origin. Numerical analyses show that the Foliomena fauna in late Katian time differentiated into two major paleogeographically related groups, and the Tarim association has a close faunal affinity to the representatives of this fauna in South China, indicating an active faunal exchange between Tarim and South China before the end-Ordovician mass extinction.  相似文献   

17.
Oxygen and carbon isotope values of single benthic foraminiferal tests in a core from the Shatsky Rise, NW Pacific Ocean, show greater intra-horizon variance during the Holocene than during the Last Glacial Maximum (LGM). This greater variance is caused by the introduction of glacial specimens some 20 cm upward from their original deposition layer due to bioturbation. In contrast, foraminiferal populations belonging to glacial layers do not include Holocene specimens. The difference in direction of bioturbation greatly modifies climate information in horizons formed during and after deglacial events. After omitting glacial specimens from Holocene sediments, the glacial–interglacial difference in δ18O suggests that Pacific deep-water temperature changed by 2.4–3.8°C at the most. The δ13C values suggest that nutrient concentration was higher during the LGM than the Holocene. The glacial deep North Pacific Ocean apparently was influenced by cold deep waters of southern origin.  相似文献   

18.
Detailed analyses of the benthic foraminiferal assemblages extracted with the cold acetolyse method together with high resolution geochemical and mineralogical investigations across the Paleocene/Eocene (P/E) boundary of the classical succession at Contessa Road (western Tethys), allowed to recognize and document the Paleocene–Eocene Thermal Maximum (PETM) interval, the position of the Benthic Extinction Event (BEE) and the early recovery of benthic faunas in the aftermath of benthic foraminiferal extinction. The stratigraphical interval spanning the P/E boundary consists of dominantly pelagic limestones and two prominent marly beds. Benthic foraminifera indicate that these sediments were deposited at lower bathyal depth, not deeper than 1000–1500 m. The Carbon Isotope Excursion (CIE) interval is characterized by high barite abundance with a peak at the base of the same stratigraphic interval, indicating a complete, although condensed record of the early CIE. A succession of events and changes in the taxonomic structure of benthic foraminifera has been recognized that may be of use for supra-regional stratigraphic correlation across the P/E boundary interval. The composition of the benthic foraminiferal assemblages, dominated by infaunal taxa, indicates mesotrophic and changing conditions on the sea floor during the last  45 kyr of the Paleocene. The BEE occurs at the base of the CIE within the lower marly bed and it is recorded by the extinction of several deep-water cosmopolitan taxa. Then, the lysocline/CCD rose and severe carbonate dissolution occurred. Preservation deteriorated, the faunal density and simple diversity dropped to minimum values and a peak of Glomospira spp. has been observed. Stress-tolerant and opportunistic groups, represented mainly by bi-and triserial taxa, dominate the low-diversity post-extinction assemblages, indicating a benthic foraminiferal recovery under environmental unstable conditions, probably within a context of sustained food transfer to the bottom. A three-phase pattern of faunal recovery is recognizable. At first the lysocline/CCD started to descend and then recovered. Small-sized “Bulimina”, Oridorsalis umbonatus, and Tappanina selmensis rapidly repopulated the severely stressed environment. Later on, Siphogenerinoides brevispinosa massively returns, dominating the assemblage together with other buliminids, Nuttallides truempyi, and Anomalinoides sp.1. Finally, a marked drop in abundance of S. brevispinosa is followed by a bloom of the opportunistic and recolonizer agglutinated Pseudobolivina that, for the first time, is recorded within the main CIE. A second interval of dissolution, but less severe than the previous one, has been recognized within the upper marly bed (uppermost part of the main CIE interval) and it is interpreted as a renewed, less pronounced shoaling of the lysocline/CCD that interrupted the recovery of benthic faunas. This further rise likely represents a response to persistent instability of ocean geochemistry in this sector of the Tethys before the end of the CIE. In the CIE recovery and post CIE intervals, the composition of the benthic foraminiferal assemblages suggests mesotrophic and unstable conditions at the sea floor. According to the geochemical proxy for redox conditions, the deposition of the PETM sediments at Contessa Road occurred in well-oxygenated waters, leading out a widespread oxygen depletion as major cause of the BEE. Changing oceanic productivity, carbonate corrosivity and global warming appear to have played a much more important role in the major benthic foraminiferal extinction at the P/E boundary.  相似文献   

19.
The distribution and diversity of copepods of the genus Calanus were investigated in Hornsund Fjord (on the southwest coast of Spitsbergen) in summer 2001. The Bhattacharya method was used to sort individuals by species based on their prosome length. The established prosome length boundary values for the Calanus copepodid stages coincided with those defined for the Calanus species from Kongsfjorden (on the northwest coast of Spitsbergen). The predominant species in the main and inner fjord basins was Calanus glacialis, whereas Calanus finmarchicus was the prevailing species outside Hornsund. Younger copepodid stages (CI–CIII) of both species concentrated in the surface water layers (0–50∼70 m), while older copepodids (CIV–CVI females) that were ready for wintering stayed in deep layers (50∼70 m to bottom). Calanus hyperboreus was present in low numbers, predominantly as CIV, and in Hornsund deep water layers. The distribution and diversity of Calanus species complied with the notion that the marine fauna in Hornsund is of a more Arctic character than in Kongsfjorden, a fjord 260 km to the north on the west coast of Spitsbergen.  相似文献   

20.
Spirulina platensis (= Arthrospira fusiformis) was isolated from Lake Chitu, a saline, alkaline lake in Ethiopia, where it forms an almost unialgal population. Optimum growth conditions were studied in a turbidostat. Cultures grown in modified Zarrouk's medium and exposed to a range of light intensities (20–500 µmol photons m–2s–1) showed a maximum specific growth rate (µmax) of 1.78 d–1. Quantum yield for growth (µ) was 3.8% at the optimum light for growth of 330 µmol photons m–2s–1, and ranged from 2.8 to 9.4%. With increase in irradiance, the chlorophyll a concentration decreased, and the carotenoids/chlorophyll a ratio increased by a factor of 2.4. The phosphorus to carbon ratio (P/C) showed some variation, while the nitrogen to carbon ratio (N/C) remained relatively constant, thus causing fluctuations in the N:P ratio (7–11) of cells. An optimum N:P ratio of about 7 was attained in cells growing at the optimum light for growth. Results from the continuous culture experiments agreed well with maximum values of photosynthetic efficiency given in the literature for natural populations of S. platensis in the soda lakes of East Africa, Lake Arenguade (Ethiopia), and Lake Simbi (Kenya).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号