首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 974 毫秒
1.
The adenosine triphosphate-sensitive K+ (KATP) channels are gated by several metabolites, whereas the gating mechanism remains unclear. Kir6.2, a pore-forming subunit of the KATP channels, has all machineries for ligand binding and channel gating. In Kir6.2, His175 is the protonation site and Thr71 and Cys166 are involved in channel gating. Here, we show how individual subunits act in proton binding and channel gating by selectively disrupting functional subunits using these residues. All homomeric dimers and tetramers showed pH sensitivity similar to the monomeric channels. Concatenated construction of wild type with disrupted subunits revealed that none of these residues had a dominant-negative effect on the proton-dependent channel gating. Subunit action in proton binding was almost identical to that for channel gating involving Cys166, suggesting a one-to-one coupling from the C terminus to the M2 helix. This was significantly different from the effect of T71Y heteromultimers, suggesting distinct contributions of M1 and M2 helices to channel gating. Subunits underwent concerted rather than independent action. Two wild-type subunits appeared to act as a functional dimer in both cis and trans configurations. The understanding of KATP channel gating by intracellular pH has a profound impact on cellular responses to metabolic stress as a significant drop in intracellular pH is more frequently seen under a number of physiological and pathophysiological conditions than a sole decrease in intracellular ATP levels. Runping Wang, Junda Su contributed equally to this work.  相似文献   

2.
K(ATP) channels couple intermediary metabolism to cellular excitability. Such a property relies on the inherent ATP-sensing mechanism known to be located in the Kir6 subunit. However, the molecular basis for the ATP sensitivity remains unclear. Here we showed evidence for protein domains and amino acid residues essential for the channel gating by intracellular ATP. Chimerical channels were constructed using protein domains of Kir6.2 and Kir1.1, expressed in HEK293 cells, and studied in inside-out patches. The N and C termini, although important, were inadequate for channel gating by intracellular ATP. Full ATP sensitivity also required M1 and M2 helices. Cytosolic portions of the M1 and M2 sequences were crucial, in which six amino acid residues were identified, i.e., Thr76, Met77, Ala161, Iso162, Leu164, and Cys166. Site-specific mutation of any of them reduced the ATP sensitivity. Construction of these residues together with the N/C termini produced ATP sensitivity identical to the wild-type channels. The requirement for specific membrane helices suggests that the Kir6.2 gating by ATP is not shared by even two closest relatives in the K(+) channel family, although the general gating mechanisms involving membrane helices appear to be conserved in all K(+) channels.  相似文献   

3.
The ATP-sensitive K+ (KATP) channels couple chemical signals to cellular activity, in which the control of channel opening and closure (i.e., channel gating) is crucial. Transmembrane helices play an important role in channel gating. Here we report that the gating of Kir6.2, the core subunit of pancreatic and cardiac KATP channels, can be switched by manipulating the interaction between two residues located in transmembrane domains (TM) 1 and 2 of the channel protein. The Kir6.2 channel is gated by ATP and proton, which inhibit and activate the channel, respectively. The channel gating involves two residues, namely, Thr71 and Cys166, located at the interface of the TM1 and TM2. Creation of electrostatic attraction between these sites reverses the channel gating, which makes the ATP an activator and proton an inhibitor of the channel. Electrostatic repulsion with two acidic residues retains or even enhances the wild-type channel gating. A similar switch of the pH-dependent channel gating was observed in the Kir2.1 channel, which is normally pH- insensitive. Thus, the manner in which the TM1 and TM2 helices interact appears to determine whether the channels are open or closed following ligand binding.*These authors contributed equally to this work.  相似文献   

4.
Ion channels play an important role in cellular functions, and specific cellular activity can be produced by gating them. One important gating mechanism is produced by intra- or extracellular ligands. Although the ligand-mediated channel gating is an important cellular process, the relationship between ligand binding and channel gating is not well understood. It is possible that ligands are involved in the interactions of different protein domains of the channel leading to opening or closing. To test this hypothesis, we studied the gating of Kir2.3 (HIR) by intracellular protons. Our results showed that hypercapnia or intracellular acidification strongly inhibited these channels. This effect relied on both the N and C termini. The CO(2)/pH sensitivities were abolished or compromised when one of the intracellular termini was replaced. Using purified N- and C-terminal peptides, we found that the N and C termini bound to each other in vitro. Although their binding was weak at pH 7.4, stronger binding was seen at pH 6.6. Two short sequences in the N and C termini were found to be critical for the N/C-terminal interaction. Interestingly, there was no titratable residue in these motifs. To identify the potential protonation sites, we systematically mutated most histidine residues in the intracellular N and C termini. We found that mutations of several histidine residues in the C but not the N terminus had a major effect on channel sensitivities to CO(2) and pH(i). These results suggest that at acidic pH, protons appear to interact with the C-terminal histidine residues and present the C terminus to the N terminus. Consequentially, these two intracellular termini bound to each other through two short motifs and closed the channel. Thus, a novel mechanism for K(+) channel gating is demonstrated, which involves the N- and C-terminal interaction with protons as the mediator.  相似文献   

5.
The voltage-gated H+ channel (Hv) is a voltage sensor domain-like protein consisting of four transmembrane segments (S1–S4). The native Hv structure is a homodimer, with the two channel subunits functioning cooperatively. Here we show that the two voltage sensor S4 helices within the dimer directly cooperate via a π-stacking interaction between Trp residues at the middle of each segment. Scanning mutagenesis showed that Trp situated around the original position provides the slow gating kinetics characteristic of the dimer''s cooperativity. Analyses of the Trp mutation on the dimeric and monomeric channel backgrounds and analyses with tandem channel constructs suggested that the two Trp residues within the dimer are functionally coupled during Hv deactivation but are less so during activation. Molecular dynamics simulation also showed direct π-stacking of the two Trp residues. These results provide new insight into the cooperative function of voltage-gated channels, where adjacent voltage sensor helices make direct physical contact and work as a single unit according to the gating process.  相似文献   

6.
The M2 protein of influenza A virus forms homotetrameric helix bundles, which function as proton-selective channels. The native form of the protein is 97 residues long, although peptides representing the transmembrane section display ion channel activity, which (like the native channel) is blocked by the antiviral drug amantadine. As a small ion channel, M2 may provide useful insights into more complex channel systems. Models of tetrameric bundles of helices containing either 18 or 22 residues have been simulated while embedded in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine bilayer. Several different starting models have been used. These suggest that the simulation results, at least on a nanosecond time scale, are sensitive to the exact starting structure. Electrostatics calculations carried out on a ring of four ionizable aspartate residues at the N-terminal mouth of the channel suggest that at any one time, only one will be in a charged state. Helix bundle models were mostly stable over the duration of the simulation, and their helices remained tilted relative to the bilayer normal. The M2 helix bundles form closed channels that undergo breathing motions, alternating between a tetramer and a dimer-of-dimers structure. Under these conditions either the channel forms a pocket of trapped waters or it contains a column of waters broken predominantly at the C-terminal mouth of the pore. These waters exhibit restricted motion in the pore and are effectively "frozen" in a way similar to those seen in previous simulations of a proton channel formed by a four-helix bundle of a synthetic leucine-serine peptide (, Biophys. J. 77:2400-2410).  相似文献   

7.
Okada A  Miura T  Takeuchi H 《Biochemistry》2001,40(20):6053-6060
The M2 protein of influenza A virus forms a homotetramer ion channel in the lipid membrane. The channel is specific for proton conductance and is activated by low pH with a transition midpoint at pH 5.7. We have studied the structure of the transmembrane domain of the M2 ion channel by using UV resonance Raman spectroscopy, with special attention to the side chains of histidine (His37) and tryptophan (Trp41) residues. The Raman spectra provide direct evidence that the imidazole ring of His37 is protonated upon channel activation at low pH. Concomitantly, the UV resonance Raman scattering from Trp41 shows an unusual intensity change, which is ascribed to a cation-pi interaction between the protonated (cationic) imidazole ring of His37 and the indole ring of Trp41. The protonation of His37 and the Raman intensity change of Trp41 do not occur in the presence of amantadine that blocks the M2 ion channel. These observations clearly show that the protonation of His37 and concomitant cation-pi interaction with Trp41 is a key step in the activation of the M2 ion channel. The His37-Trp41 interaction associated with the channel activation is explained by assuming a conformational transition of His37 induced by electrostatic repulsion among the protonated imidazole rings of four His37 residues in the tetramer channel. Trp41 may play a role in stabilizing the channel open state through cation-pi interaction with His37. A molecular model for the activation of M2 ion channel is proposed on the basis of the gating mechanism.  相似文献   

8.
N-methyl-D-aspartate (NMDA) receptors are obligate heterotetrameric ligand-gated ion channels that play critical roles in learning and memory. Here, using targeted molecular dynamics simulations, we developed an atomistic model for the gating of the GluN1/GluN2A NMDA receptor. Upon agonist binding, lobe closure of the ligand-binding domain produced outward pulling of the M3-D2 linkers, leading to outward movements of the C-termini of the pore-lining M3 helices and opening of the channel. The GluN2A subunits, similar to the distal (B/D) subunits in the homotetrameric GluA2 α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate receptor, had greater M3 outward movements and thus contributed more to channel gating than the GluN1 subunits. Our gating model is validated by functional studies, including cysteine modification data indicating wider accessibility to the GluN1 M3 helices than to the GluN2A M3 helices from the lumen of the open channel, and reveals why the Lurcher mutation in GluN1 has a stronger ability in maintaining channel opening than the counterpart in GluN2A. The resulting structural model for the open state provides an explanation for the Ca2+ permeability of NMDA receptors, and the structural differences between the closed and open states form the basis for drug design.  相似文献   

9.
The hERG (human ether-à-go-go related gene) channel is a member of the eag voltage-gated K+ channel family. In common with other members of this family, it has a subunit topology of six trans-membrane helices that tetramerise to form a functional ion-channel. In addition, hERG has an N-terminal PAS (Per, Arnt and Sim) domain and a C-terminal cyclic nucleotide binding domain (cNBD). Both these cytosolic domains are involved in regulation of the gating of the ion channel as demonstrated by inheritable mutations in these domains that result in either a loss, or a gain, in function. Here we report near complete backbone and side chain 15N, 13C and 1H assignments for the N-terminal domain (residues 1–135) including the functionally critical first 26 residues. Comparison with the secondary structure of the crystal structure (residues 26–135) suggests that the solution and crystal structures are very similar except that the solution structure contains an additional helix between residues 12–23; a region of the protein important for channel gating.  相似文献   

10.
Specific stimuli such as intracellular H+ and phosphoinositides (e.g., PIP2) gate inwardly rectifying potassium (Kir) channels by controlling the reversible transition between the closed and open states. This gating mechanism underlies many aspects of Kir channel physiology and pathophysiology; however, its structural basis is not well understood. Here, we demonstrate that H+ and PIP2 use a conserved gating mechanism defined by similar structural changes in the transmembrane (TM) helices and the selectivity filter. Our data support a model in which the gating motion of the TM helices is controlled by an intrasubunit hydrogen bond between TM1 and TM2 at the helix-bundle crossing, and we show that this defines a common gating motif in the Kir channel superfamily. Furthermore, we show that this proposed H-bonding interaction determines Kir channel pH sensitivity, pH and PIP2 gating kinetics, as well as a K+-dependent inactivation process at the selectivity filter and therefore many of the key regulatory mechanisms of Kir channel physiology.  相似文献   

11.
Abstract

The role of histidine in channel-forming transmembrane (TM) helices was investigated by comparing the TM helices from Virus protein ‘u' (Vpu) and the M2 proton channel. Both proteins are members of the viroporin family of small membrane proteins that exhibit ion channel activity, and have a single TM helix that is capable of forming oligomers. The TM helices from both proteins have a conserved tryptophan towards the C-terminus. Previously, alanine 18 of Vpu was mutated to histidine in order to artificially introduce the same HXXXW motif that is central to the proton channel activity of M2. Interestingly, the mutated Vpu TM resulted in an increase in helix tilt angle of 11° in lipid bilayers compared to the wild-type Vpu TM. Here, we find the reverse, when histidine 37 of the HXXXW motif in M2 was mutated to alanine, it decreased the helix tilt by 10° from that of wild-type M2. The tilt change is independent of both the helix length and the presence of tryptophan. In addition, compared to wild-type M2, the H37A mutant displayed lowered sensitivity to proton concentration. We also found that the solvent accessibility of histidine-containing M2 is greater than without histidine. This suggests that the TM helix may increase the solvent exposure by changing its tilt angle in order to accommodate a polar/charged residue within the hydrophobic membrane region. The comparative results of M2, Vpu and their mutants demonstrated the significance of histidine in a transmembrane helix and the remarkable plasticity of the function and structure of ion channels stemming from changes at a single amino acid site.  相似文献   

12.
MscL, a bacterial mechanosensitive channel of large conductance, is the first structurally characterized mechanosensor protein. Molecular models of its gating mechanisms are tested here. Disulfide crosslinking shows that M1 transmembrane alpha-helices in MscL of resting Escherichia coli are arranged similarly to those in the crystal structure of MscL from Mycobacterium tuberculosis. An expanded conformation was trapped in osmotically shocked cells by the specific bridging between Cys 20 and Cys 36 of adjacent M1 helices. These bridges stabilized the open channel. Disulfide bonds engineered between the M1 and M2 helices of adjacent subunits (Cys 32-Cys 81) do not prevent channel gating. These findings support gating models in which interactions between M1 and M2 of adjacent subunits remain unaltered while their tilts simultaneously increase. The MscL barrel, therefore, undergoes a large concerted iris-like expansion and flattening when perturbed by membrane tension.  相似文献   

13.
Proton-gated TASK-3 K+ channel belongs to the K2P family of proteins that underlie the K+ leak setting the membrane potential in all cells. TASK-3 is under cooperative gating control by extracellular [H+]. Use of recently solved K2P structures allows us to explore the molecular mechanism of TASK-3 cooperative pH gating. Tunnel-like side portals define an extracellular ion pathway to the selectivity filter. We use a combination of molecular modeling and functional assays to show that pH-sensing histidine residues and K+ ions mutually interact electrostatically in the confines of the extracellular ion pathway. K+ ions modulate the pKa of sensing histidine side chains whose charge states in turn determine the open/closed transition of the channel pore. Cooperativity, and therefore steep dependence of TASK-3 K+ channel activity on extracellular pH, is dependent on an effect of the permeant ion on the channel pHo sensors.  相似文献   

14.
The second tryptophan (W) residue of the conserved WW motif in the pore helix of many K+ channel subunit is thought to interact with the tyrosine (Y) residues of the selectivity filter. A missense mutation causing the replacement of the corresponding residues with an arginine (W309R) occurs in KCNQ3 subunits forming part of M-channels. In this study, we examined the functional consequences of the W309R mutation in heterogously expressed KCNQ channels. Homomeric KCNQ3W309R channels lacked KCNQ currents. Heteromeric KCNQ2/KCNQ3W309R channels displayed a dominant-negative suppression of current and a significant modification in gating properties when compared with heteromeric KCNQ3/KCNQ2 channels mimicking the M-channels. A three-dimensional homology model in the W309R mutant indicated that the R side chain of pore helices is too far from the Y side chain of the selectivity filter to interact via hydrogen bonds with each other and stabilize the pore structure. Collectively, the present results suggest that the second W residues of pore helices and their chemical interaction with the Y residues of the selectivity filter are essential for normal K+ channel function. This pore-helix mutation, if occurs in the brain M channels, could thus lead to a channel dysfunction sufficient to trigger epileptic hyperexcitability.  相似文献   

15.
The tetrameric M2 protein from influenza A is one of the simplest pH-gated H+ channels known, offering the potential of structurally characterizing its gating mechanism. Since the only ionizable groups in the pore are four histidines, we investigated the stability and dynamics of all six possible protonation states of the protein by using molecular dynamics. We show that while all channel protonation states are surprisingly stable, only systems with two or more charged histidines are appreciably conductive. The structural switch, from a uniprotonated to a biprotonated channel, causes an electrostatic repulsion between the charged histidines that pushes the helices apart. This results in the formation of a continuous water file that conducts protons via a H+ wire. pKa calculations place this transition at a pH of 5.6, in remarkable agreement with the experimental value. Since the conversion from uniprotonation to biprotonation occurs during endosome acidification, this explains how M2 is activated in vivo.  相似文献   

16.
GABA(A) receptors mediate fast inhibitory synaptic transmission. The transmembrane ion channel is lined by a ring of five α helices, M2 segments, one from each subunit. An outer ring of helices comprising the alternating M1, M3, and M4 segments from each subunit surrounds the inner ring and forms the interface with the lipid bilayer. The structural rearrangements that follow agonist binding and culminate in opening of the ion pore remain incompletely characterized. Propofol and other intravenous general anesthetics bind at the βM3-αM1 subunit interface. We sought to determine whether this region undergoes conformational changes during GABA activation. We measured the reaction rate of p-chloromercuribenzenesulfonate (pCMBS) with cysteines substituted in the GABA(A) receptor α1M1 and β2M3 segments. In the presence of GABA, the pCMBS reaction rate increased significantly in a cluster of residues in the extracellular third of the α1M1 segment facing the β2M3 segment. Mutation of the β2M2 segment 19' position, R269Q, altered the pCMBS reaction rate with several α1M1 Cys, some only in the resting state and others only in the GABA-activated state. Thus, β2R269 is charged in both states. GABA activation induced disulfide bond formation between β2R269C and α1I228C. The experiments demonstrate that α1M1 moves in relationship to β2M2R269 during gating. Thus, channel gating does not involve rigid body movements of the entire transmembrane domain. Channel gating causes changes in the relative position of transmembrane segments both within a single subunit and relative to the neighboring subunits.  相似文献   

17.
Abstract

Voltage-gated ion (K+, Na+, Ca2+) channels contain a pore domain (PD) surrounded by four voltage sensing domains (VSD). Each VSD is made up of four transmembrane helices, S1–S4. S4 contains 6–7 positively charged residues (arginine/lysine) separated two hydrophobic residues, whereas S1–S3 contribute to two negatively charged clusters. These structures are conserved among all members of the voltage-gated ion channel family and play essential roles in voltage gating. The role of S4 charged residues in voltage gating is well established: During depolarization, they move out of the membrane electric field, exerting a mechanical force on channel gates, causing them to open. However, the role of the intervening hydrophobic residues in voltage sensing is unclear. Here we studied the role of these residues in the prototypical Shaker potassium channel. We have altered the physicochemical properties of both charged and hydrophobic positions of S4 and examined the effect of these modifications on the gating properties of the channel. For this, we have introduced cysteines at each of these positions, expressed the mutants in Xenopus oocytes, and examined the effect of in situ addition of charge, via Cd2+, on channel gating by two-electrode voltage clamp. Our results reveal a face of the S4 helix (comprising residues L358, L361, R365 and R368) where introduction of charge at hydrophobic positions destabilises the closed state and removal of charges from charged positions has an opposite effect. We propose that hydrophobic residues play a crucial role in limiting gating to a physiological voltage range.  相似文献   

18.
Molecular dynamics simulations and KcsA channel gating   总被引:2,自引:0,他引:2  
The gating mechanism of a bacterial potassium channel, KcsA, has been investigated via multi-nanosecond molecular dynamic simulations of the channel molecules embedded in a fully solvated palmitoyloleoylphosphatidylcholine bilayer. Four events are seen in which a cation (K(+) or, in one case, Na(+)) initially present in the central cavity exits through the intracellular mouth (the presumed gate) of the channel. Whilst in the cavity a cation interacts with the sidechain T107 O gamma atom of one of the subunits prior to its exit from the channel. Secondary structure analysis as a function of time reveals a break in the helicity of one of the M2 helices. This break is expected to lend flexibility to the helices, enabling them to "open" (minimum pore radius >0.13 nm) and "close" (minimum pore radius <0.13 nm) the channel. Fluctuations in the pore radius at the intracellular gate region are of the order of 0.05 nm, with an average radius in the region of the gate of ca. 0.1 nm. However, around the time of exit of a cation, the pore widens to about 0.15 nm. The distances between the C alpha atoms of the inner helices M2 reveal a coupled increase and decrease between the opposite pair of helices at about the time of exit of the ion. This suggests a breathing motion of the M2 helices that may form the basis for a gating mechanism.  相似文献   

19.
Isolated pore-lining helices derived from three types of K-channel have been analyzed in terms of their structural and dynamic features in nanosecond molecular dynamics (MD) simulations while spanning a lipid bilayer. The helices were 1) M1 and M2 from the bacterial channel KcsA (Streptomyces lividans), 2) S5 and S6 from the voltage-gated (Kv) channel Shaker (Drosophila melanogaster), and 3) M1 and M2 from the inward rectifier channel Kir6.2 (human). In the case of the Kv and Kir channels, for which x-ray structures are not known, both short and long models of each helix were considered. Each helix was incorporated into a lipid bilayer containing 127 palmitoyloleoylphosphatidylcholine molecules, which was solvated with approximately 4000 water molecules, yielding approximately 20, 000 atoms in each system. Nanosecond MD simulations were used to aid the definition of optimal lengths for the helix models from Kv and Kir. Thus the study corresponds to a total simulation time of 10 ns. The inner pore-lining helices (M2 in KcsA and Kir, S6 in Shaker) appear to be slightly more flexible than the outer pore-lining helices. In particular, the Pro-Val-Pro motif of S6 results in flexibility about a molecular hinge, as was suggested by previous in vacuo simulations (, Biopolymers. 39:503-515). Such flexibility may be related to gating in the corresponding intact channel protein molecules. Analysis of H-bonds revealed interactions with both water and lipid molecules in the water/bilayer interfacial region. Such H-bonding interactions may lock the helices in place in the bilayer during the folding of the channel protein (as is implicit in the two-stage model of membrane protein folding). Aromatic residues at the extremities of the helices underwent complex motions on both short (<10 ps) and long (>100 ps) time scales.  相似文献   

20.
The closed-state crystal structure of prokaryotic inward rectifier, KirBac1.1, has implicated four inner helical phenylalanines near the cytoplasmic side as a possible locus of the channel gate. In the present study, we investigate whether this structural feature corresponds to the physiological pH gate of the renal inward rectifier, Kir1.1 (ROMK, KCNJ1). Kir1.1 is endogenous to the mammalian renal collecting duct and the thick ascending limb of Henle and is strongly gated by internal pH in the physiological range. It has four leucines (L160-Kir1.1b), homologous to the phenylalanines of KirBac1.1, which could function as steric gates near the convergence of the inner (M2) helices. Replacing these Leu-160 residues of Kir1.1b by smaller glycines abolished pH gating; however, replacement with alanines, whose side chains are intermediate in size between leucine and glycine, did not eliminate normal pH gating. Furthermore, a double mutant, constructed by adding the I163M-Kir1.1b mutation to the L160G mutation, also lacked normal pH gating, although the I163M mutation by itself enhanced the pH sensitivity of the channel. In addition to size, side-chain hydrophobicity at 160-Kir1.1b was also important for normal pH gating. Mutants with polar side chains (L160S, L160T) did not gate normally and were as insensitive to internal pH as the L160G mutant. Hence, either small or highly polar side chains at 160-Kir1.1b stabilize the open state of the channel. A homology model of the Kir1.1 closed state, based on the crystal structure of KirBac1.1, was consistent with our electrophysiological data and implies that closure of the Kir1.1 pH gate results from steric occlusion of the permeation path by the convergence of four leucines at the cytoplasmic apex of the inner transmembrane helices. In the open state, K crosses the pH gate together with its hydration shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号