首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.

Background

Cyanobacteria are an ancient lineage of photosynthetic bacteria from which hundreds of natural products have been described, including many notorious toxins but also potent natural products of interest to the pharmaceutical and biotechnological industries. Many of these compounds are the products of non-ribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) pathways. However, current understanding of the diversification of these pathways is largely based on the chemical structure of the bioactive compounds, while the evolutionary forces driving their remarkable chemical diversity are poorly understood.

Results

We carried out a phylum-wide investigation of genetic diversification of the cyanobacterial NRPS and PKS pathways for the production of bioactive compounds. 452 NRPS and PKS gene clusters were identified from 89 cyanobacterial genomes, revealing a clear burst in late-branching lineages. Our genomic analysis further grouped the clusters into 286 highly diversified cluster families (CF) of pathways. Some CFs appeared vertically inherited, while others presented a more complex evolutionary history. Only a few horizontal gene transfers were evidenced amongst strongly conserved CFs in the phylum, while several others have undergone drastic gene shuffling events, which could result in the observed diversification of the pathways.

Conclusions

Therefore, in addition to toxin production, several NRPS and PKS gene clusters are devoted to important cellular processes of these bacteria such as nitrogen fixation and iron uptake. The majority of the biosynthetic clusters identified here have unknown end products, highlighting the power of genome mining for the discovery of new natural products.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-977) contains supplementary material, which is available to authorized users.  相似文献   

2.
An in silico model for homoeologous recombination between gene clusters encoding modular polyketide synthases (PKS) or non-ribosomal peptide synthetases (NRPS) was developed. This model was used to analyze recombination between 12 PKS clusters from Streptomyces species and related genera to predict if new clusters might give rise to new products. In many cases, there were only a limited number of recombination sites (about 13 per cluster pair), suggesting that recombination may pose constraints on the evolution of PKS clusters. Most recombination events occurred between pairs of ketosynthase (KS) domains, allowing the biosynthetic outcome of the recombinant modules to be predicted. About 30% of recombinants were predicted to produce polyketides. Four NRPS clusters from Streptomyces strains were also used for in silico recombination. They yielded a comparable number of recombinants to PKS clusters, but the adenylation (A) domains contained the largest proportion of recombination events; this might be a mechanism for producing new substrate specificities. The extreme G + C-content, the presence of linear chromosomes and plasmids, as well as the lack of a mutSL-mismatch repair system should favor production of recombinants in Streptomyces species.  相似文献   

3.
4.
《Fungal biology》2022,126(5):385-394
Endophytic fungi are capable of producing a great diversity of bioactive metabolites. However, the presence of silent and lowly expressed genes represents a main challenge for the discovery of novel secondary metabolites with different potential uses. Epigenetic modifiers have shown to perturb the production of fungal metabolites through the induction of silent biosynthetic pathways leading to an enhanced chemical diversity. Moreover, the addition of bioprecursors to the culture medium has been described as a useful strategy to induce specific biosynthetic pathways. The aim of this study was to assess the effects of different chemical modulators on the metabolic profiles of an endophytic fungal strain of Cophinforma mamane (Botryosphaeriaceae), known to produce 3 thiodiketopiperazine (TDKP) alkaloids (botryosulfuranols A-C), previously isolated and characterized by our team. Four epigenetic modifiers, 5-azacytidine (AZA), sodium butyrate (SB), nicotinamide (NIC), homoserine lactone (HSL) as well as 2 amino acids, l-phenylalanine and l-tryptophan, as bioprecursors of TDKPs, were used. The metabolic profiles were analysed by UHPLC-HRMS/MS under an untargeted metabolomics approach. Our results show that the addition of the two amino acids in C. mamane culture and the treatment with AZA significantly reduced the production of the TDKPs botryosulfuranols A, B and C. Interestingly, the treatment with HSL significantly induced the production of different classes of diketopiperazines (DKPs). The treatment with AZA resulted as the most effective epigenetic modifier for the alteration of the secondary metabolite profile of C. mamane by promoting the expression of cryptic genes.  相似文献   

5.
【目的】从菌株Streptomyces albus DSM 41398的发酵产物中发掘结构多样的由I型聚酮合酶催化形成的化合物,以期找到具有新颖结构或强生物活性的化合物。在结构鉴定的基础上,对其生物合成途径进行分析。【方法】利用HPLC分析方法,通过系统比较野生型菌株S.albus DSM 41398与I型聚酮合酶编码基因簇失活突变株的发酵产物差异,实现目标化合物的定向分离。然后,利用~1H-和~(13)C-NMR以及HR-ESI-MS进行化合物的结构鉴定。最后,利用生物信息学等方法对化合物的生物合成途径进行推测和分析。【结果】从5 L的S.albus DSM 41398发酵产物中,分离得到了2个具有抗肿瘤活性的聚酮类化合物放线吡喃酮和洋橄榄菌素,分别定位了它们的生物合成基因簇,并分别对其生物合成途径进行了推导。其中,放线吡喃酮的生物合成基因簇为首次报道。【结论】本研究一方面为基因组发掘S.albus DSM 41398中其他由I型聚酮合酶催化形成的化合物提供参考,另一方面也为相关化合物的结构修饰改造奠定了良好的基础。  相似文献   

6.
Control of organ size is the product of coordinated cell division and expansion. In plants where one of these pathways is perturbed, organ size is often unaffected as compensation mechanisms are brought into play. The number of founder cells in organ primordia, dividing cells, and the period of cell proliferation determine cell number in lateral organs. We have identified the Antirrhinum FORMOSA (FO) gene as a specific regulator of floral size. Analysis of cell size and number in the fo mutant, which has increased flower size, indicates that FO is an organ-specific inhibitor of cell division and activator of cell expansion. Increased cell number in fo floral organs correlated with upregulation of genes involved in the cell cycle. In Arabidopsis the AINTEGUMENTA (ANT) gene promotes cell division. In the fo mutant increased cell number also correlates with upregulation of an Antirrhinum ANT-like gene (Am-ANT) in inflorescences that is very closely related to ANT and shares a similar expression pattern, suggesting that they may be functional equivalents. Increased cell proliferation is thought to be compensated for by reduced cell expansion to maintain organ size. In Arabidopsis petal cell expansion is inhibited by the BIGPETAL (BPE) gene, and in the fo mutant reduced cell size corresponded to upregulation of an Antirrhinum BPE-like gene (Am-BPE). Our data suggest that FO inhibits cell proliferation by negatively regulating Am-ANT, and acts upstream of Am-BPE to coordinate floral organ size. This demonstrates that organ size is modulated by the organ-specific control of both general and local gene networks. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
杨瑞先  张拦  彭彪彪  蒙城功 《微生物学报》2017,57(10):1567-1582
【目的】研究药用植物芍药(Paeonia lactiflora Pall.)内生真菌的种群多样性,同时对其可能存在的聚酮合酶(Polyketide synthase,PKS)和非核糖体多肽合成酶(Non-ribosomal peptide synthetase,NRPS)基因多样性进行评估,预测芍药内生真菌产生活性次生代谢产物的潜力。【方法】采用组织分离法获得芍药根部内生真菌菌株,结合形态学特征和ITS序列分析,进行鉴定;利用兼并性引物对内生真菌中存在的聚酮合酶(PKS)基因和非核糖体多肽合成酶(NRPS)基因进行PCR扩增及序列测定分析,构建系统发育树,明确芍药内真菌PKS基因序列和NRPS基因序列的系统进化地位。【结果】从芍药组织块中共分离得到105株内生分离物,去重复后获得52株内生真菌,菌株ITS基因序列信息显示,52株芍药内生真菌隶属于7目、13科、15属,其中小球腔菌属(Leptosphaeria)、土赤壳属(Ilyonectria)和镰孢属(Fusarium)为优势种群;从52株内生真菌中筛选获得13株含PKS基因片段的菌株,8株含NRPS基因片段的菌株,部分菌株功能基因的氨基酸序列与Gen Bank中已知化合物的合成序列具有一定的同源性,预示芍药根部内生真菌具有合成丰富多样的次生代谢产物的潜力。【结论】药用植物芍药根部具有丰富的内生真菌资源,且具有产生活性次生代谢产物的潜力,值得进一步开发研究和应用。  相似文献   

8.
Sequence data arising from an increasing number of partial and complete genome projects is revealing the presence of the polyketide synthase (PKS) family of genes not only in microbes and fungi but also in plants and other eukaryotes. PKSs are huge multifunctional megasynthases that use a variety of biosynthetic paradigms to generate enormously diverse arrays of polyketide products that posses several pharmaceutically important properties. The remarkable conservation of these gene clusters across organisms offers abundant scope for obtaining novel insights into PKS biosynthetic code by computational analysis. We have carried out a comprehensive in silico analysis of modular and iterative gene clusters to test whether chemical structures of the secondary metabolites can be predicted from PKS protein sequences. Here, we report the success of our method and demonstrate the feasibility of deciphering the putative metabolic products of uncharacterized PKS clusters found in newly sequenced genomes. Profile Hidden Markov Model analysis has revealed distinct sequence features that can distinguish modular PKS proteins from their iterative counterparts. For iterative PKS proteins, structural models of iterative ketosynthase (KS) domains have revealed novel correlations between the size of the polyketide products and volume of the active site pocket. Furthermore, we have identified key residues in the substrate binding pocket that control the number of chain extensions in iterative PKSs. For modular PKS proteins, we describe for the first time an automated method based on crucial intermolecular contacts that can distinguish the correct biosynthetic order of substrate channeling from a large number of non-cognate combinatorial possibilities. Taken together, our in silico analysis provides valuable clues for formulating rules for predicting polyketide products of iterative as well as modular PKS clusters. These results have promising potential for discovery of novel natural products by genome mining and rational design of novel natural products.  相似文献   

9.
The filamentous fungus Penicillium paxilli contains two distinct geranylgeranyl diphosphate (GGPP) synthases, GgsA and GgsB (PaxG). PaxG and its homologues in Neotyphodium lolii and Fusarium fujikuroi are associated with diterpene secondary metabolite gene clusters. The genomes of other filamentous fungi including Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae and Fusarium graminearum also contain two or more copies of GGPP synthase genes, although the diterpene metabolite capability of these fungi is not known. The objective of this study was to understand the biological significance of the presence of two copies of GGPP synthases in P. paxilli by investigating their subcellular localization. Using a carotenoid complementation assay and gene deletion analysis, we show that P. paxilli GgsA and PaxG have GGPP synthase activities and that paxG is required for paxilline biosynthesis, respectively. In the ΔpaxG mutant background ggsA was unable to complement paxilline biosynthesis. A GgsA-EGFP fusion protein was localized to punctuate organelles and the EGFP-GRV fusion protein, containing the C-terminus tripeptide GRV of PaxG, was localized to peroxisomes. A truncated PaxG mutant lacking the C-terminus tripeptide GRV was unable to complement a ΔpaxG mutant demonstrating that the tripeptide is functionally important for paxilline biosynthesis. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Lichens are fungi that form symbiotic partnerships with algae. Although lichens produce diverse polyketides, difficulties in establishing and maintaining lichen cultures have prohibited detailed studies of their biosynthetic pathways. Creative, albeit non-definitive, methods have been developed to assign function to biosynthetic gene clusters in lieu of techniques such as gene knockout and heterologous expressions that are commonly applied to easily cultivatable organisms. We review a total of 81 completely sequenced polyketide synthase (PKS) genes from lichenizing fungi, comprising to our best efforts all complete and reported PKS genes in lichenizing fungi to date. This review provides an overview of the approaches used to locate and sequence PKS genes in lichen genomes, current approaches to assign function to lichen PKS gene clusters, and what polyketides are proposed to be biosynthesized by these PKS. We conclude with remarks on prospects for genomics-based natural products discovery in lichens. We hope that this review will serve as a guide to ongoing research efforts on polyketide biosynthesis in lichenizing fungi.  相似文献   

11.
12.
Large-scale—even genome-wide—duplications have repeatedly been invoked as an explanation for major radiations. Teleosts, the most species-rich vertebrate clade, underwent a “fish-specific genome duplication” (FSGD) that is shared by most ray-finned fish lineages. We investigate here the Hox complement of the goldeye (Hiodon alosoides), a representative of Osteoglossomorpha, the most basal teleostean clade. An extensive PCR survey reveals that goldeye has at least eight Hox clusters, indicating a duplicated genome compared to basal actinopterygians. The possession of duplicated Hox clusters is uncoupled to species richness. The Hox system of the goldeye is substantially different from that of other teleost lineages, having retained several duplicates of Hox genes for which crown teleosts have lost at least one copy. A detailed analysis of the PCR fragments as well as full length sequences of two HoxA13 paralogs, and HoxA10 and HoxC4 genes places the duplication event close in time to the divergence of Osteoglossomorpha and crown teleosts. The data are consistent with—but do not conclusively prove—that Osteoglossomorpha shares the FSGD. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Chi-hua ChiuEmail:
  相似文献   

13.
14.
聚酮化合物是通过聚酮合成途径产生的一大类结构和生物活性多样的次级代谢产物,是链霉菌产生的主要次级代谢产物,具有重要的经济价值。为了在链霉菌中提高聚酮化合物产量,以满足工业生产需求,近年来,代谢工程的方法被广泛应用,例如,过表达合成途径中限速酶或途径特异性激活蛋白、强化前体供应、去除产物反馈抑制、合成基因簇异源表达等。本文将从代谢工程改造实例入手,全面综述链霉菌中聚酮化合物高效生物合成的研究方法及进展,并对利用合成生物学策略智能动态适配各个相关途径,进而提高该类化合物产量的研究思路进行展望。  相似文献   

15.
The ever increasing microbial resistome means there is an urgent need for new antibiotics. Metagenomics is an underexploited tool in the field of drug discovery. In this study we aimed to produce a new updated assay for the discovery of biosynthetic gene clusters encoding bioactive secondary metabolites. PCR assays targeting the polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) were developed. A range of European soils were tested for their biosynthetic potential using clone libraries developed from metagenomic DNA. Results revealed a surprising number of NRPS and PKS clones with similarity to rare Actinomycetes. Many of the clones tested were phylogenetically divergent suggesting they were fragments from novel NRPS and PKS gene clusters. Soils did not appear to cluster by location but did represent NRPS and PKS clones of diverse taxonomic origin. Fosmid libraries were constructed from Cuban and Antarctic soil samples; 17 fosmids were positive for NRPS domains suggesting a hit rate of less than 1 in 10 genomes. NRPS hits had low similarities to both rare Actinobacteria and Proteobacteria; they also clustered with known antibiotic producers suggesting they may encode for pathways producing novel bioactive compounds. In conclusion we designed an assay capable of detecting divergent NRPS and PKS gene clusters from the rare biosphere; when tested on soil samples results suggest the majority of NRPS and PKS pathways and hence bioactive metabolites are yet to be discovered.  相似文献   

16.
【背景】对抗生素生物合成途径的阐明有助于提高目标化合物的产量并开发具有更高活性的新化合物。基因的同框缺失是天然产物生物合成研究的常规手段,通过分析突变菌株积累的中间产物,可以帮助推导天然产物的合成途径及相关基因的功能。天然产物生物合成基因簇的大小一般在20 kb以上,对每个基因进行同框缺失耗时耗力,因此,优化链霉菌来源的基因同框缺失的方法有重要的意义。【目的】基于PCR-targeting重新设计了一套在链霉菌柯斯文库质粒上进行基因同框缺失的方法,实现链霉菌基因在大肠杆菌中快速、高效的基因同框缺失的技术体系。【方法】使用氨苄青霉素抗性基因bla作为PCR-targeting DNA片段的筛选标记,同时使用体外的Pac I酶切和酶连系统代替体内的Flp/FRT系统来介导同框缺失的构建。【结果】利用这种方法,在6 d内完成了米多霉素生物合成基因簇中14个基因的同框缺失。【结论】此方法与传统的PCR-targeting方法相比,构建同框缺失载体的效率明显提高;Pac I识别序列在链霉菌基因组上的稀有性使得此方法在构建抗生素生物合成基因簇必需基因的同框缺失载体上具有普适性。  相似文献   

17.
A cluster encoding genes for the biosynthesis of meilingmycin, a macrolide antibiotic structurally similar to avermectin and milbemycin 11, was identified among seven uncharacterized polyketide synthase gene clusters isolated from Streptomyces nanchangensis NS3226 by hybridization with PCR products using primers derived from the sequences of aveE, aveF and a thioesterase domain of the avermectin biosynthetic gene cluster. Introduction of a 24.1-kb deletion by targeted gene replacement resulted in a loss of meilingmycin production, confirming that the gene cluster encodes biosynthesis of this important anthelminthic antibiotic compound. A sequenced 8.6-kb fragment had aveC and aveE homologues (meiC and meiE) linked together, as in the avermectin gene cluster, but the arrangement of aveF (meiF) and the thioesterase homologues differed. The results should pave the way to producing novel insecticidal compounds by generating hybrids between the two pathways.  相似文献   

18.
杨晓歌  王国君  李霄 《微生物学报》2018,58(9):1531-1541
海绵体动物分离到的聚酮类化合物很多是由其共生或附生微生物体内的trans-AT聚酮合成酶催化产生的。利用宏基因组技术克隆具有生物活性的聚酮化合物的生物合成基因簇,不但能阐明活性化合物的生物合成路径,而且可以通过异源表达获得目标化合物。本文综述了海绵体动物来源的trans-AT聚酮合成酶产生的聚酮化合物生物合成及其基因簇的研究进展。  相似文献   

19.

The fungus Fusarium fujikuroi causes bakanae disease of rice due to its ability to produce the plant hormones, the gibberellins. The fungus is also known for producing harmful mycotoxins (e.g., fusaric acid and fusarins) and pigments (e.g., bikaverin and fusarubins). However, for a long time, most of these well-known products could not be linked to biosynthetic gene clusters. Recent genome sequencing has revealed altogether 47 putative gene clusters. Most of them were orphan clusters for which the encoded natural product(s) were unknown. In this review, we describe the current status of our research on identification and functional characterizations of novel secondary metabolite gene clusters. We present several examples where linking known metabolites to the respective biosynthetic genes has been achieved and describe recent strategies and methods to access new natural products, e.g., by genetic manipulation of pathway-specific or global transcritption factors. In addition, we demonstrate that deletion and over-expression of histone-modifying genes is a powerful tool to activate silent gene clusters and to discover their products.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号