首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unsaturated medium-chain-length polyhydroxyalkanoates (MCL-PHA) were produced at a productivity of 0.63–1.09 g PHA l−1 h−1 with final PHA content ranging from 42.6 to 55.8% in single-stage, carbon-limited, fed-batch fermentations of Pseudomonas putida KT2440. A mixture of nonanoic acid (NA) and 10-undecenoic acid (UDA=) was fed exponentially to control growth rate. Varying the specific growth rate (0.14 h−1 vs. 0.23 h−1) at similar substrate feed ratios (NA:UDA= = 5:1) had little effect on the final PHA content and relative composition. However, decreasing the NA:UDA= ratio decreased the final amount of PHA produced from 56% with NA:UDA= = 5.07:1 to only 42% at NA:UDA= = 2.47:1. The molar fraction of all 3-hydroxyalkanoate monomers in the PHA product was relatively constant throughout each fermentation, indicating that the final product was homogeneous rather than a mixture of different copolymers. A linear relationship between unsaturation of the PHA produced and unsaturation of the carbon feed was found, which demonstrates the feasibility of producing unsaturated MCL-PHAs with controlled polymeric composition in a fed-batch process.  相似文献   

2.
 The synthesis of poly(3-hydroxyalkanoates) (PHA) by Pseudomonas putida KT2442 growing on long-chain fatty acids was studied in continuous cultures. The effects of the growth rate on the biomass and polymer concentration were determined and it was found that the PHA concentrations decreased with increasing growth rates. The highest volumetric productivity was 0.13 g PHA l-1 h-1 at a specific growth rate (μ) of 0.1 h-1. The molecular mass of the polymer remained constant at all growth rates but changes in the monomeric composition of the PHA synthesized were observed. Variation of the carbon to nitrogen (C/N) ratio of the substrate feed at μ=0.1 h-1 revealed optimal PHA formation at C/N=20 mol/mol. In order to optimize PHA production P. putida KT2442 was cultivated to high cell densities in oxygen-limited continuous cultures. In this way a maximum biomass concentration of 30 g/l containing approximately 23% PHA was achieved. This corresponds to a volumetric productivity of 0.69 g  l-1 h-1. Received: 14 December 1995 / Received revision: 18 April 1996 / Accepted: 22 April 1996  相似文献   

3.
Medium-chain-length polyhydroxyalkanoates (MCL-PHAs) were produced in carbon-limited, single-stage, fed-batch fermentations of Pseudomonas putida KT2440 by co-feeding nonanoic acid (NA) and glucose (G) to enhance the yield of PHA from NA. An exponential (μ = 0.25 h−1) followed by a linear feeding strategy at a NA:G ratio of 1:1 (w/w) achieved 71 g l−1 biomass containing 56% PHA. Although the same overall PHA productivity (1.44 g l−1 h−1) was obtained when NA alone was fed at the same specific growth rate, the overall yield of PHA from NA increased by 25% (0.66 g PHA g NA−1 versus 0.53 g g−1) with glucose co-feeding. Further increasing glucose in the feed (NA:G = 1:1.5) resulted in a slightly higher yield (0.69 g PHA g NA−1) but lower PHA content (48%) and productivity (1.16 g l−1 h−1). There was very little change in the PHA composition.  相似文献   

4.
Four automatic substrate feeding strategies were developed and investigated in this study to obtain rapid, repeatable, and reliable high cell densities of Pseudomonas putida KT2440 from glucose. Growth yield data of the key nutrients, Y X/Glucose, Y X/NH4, Y X/PO4, Y X/Mg, and Y CO2/Glucose, were determined to be 0.41, 5.44, 13.70, 236, and 0.65 g g−1, respectively. Although standard exponential feeding strategy worked well when the predetermined μ was set at 0.25 h−1, an exponential glucose feeding strategy with online μ max estimation resulted in a higher average biomass productivity (3.4 vs 2.8 g l−1 h−1). A CO2 production rate based pulse glucose feeding strategy also resulted in good overall productivity (3.0 g l−1 h−1) and can be used as an alternative to pH-stat or DO-stat feeding. A cumulative CO2 production based continuous feed with real-time cumulative glucose consumption estimation resulted in much higher biomass productivity (4.3 g l−1 h−1) and appears to be an excellent and reliable approach to fully automating high-cell-density fed-batch cultivation of P. putida.  相似文献   

5.
Corynebacterium acetoacidophilum RYU3161 was cultivated in al-histidine-limited fed-batch culture. To investigate the effect of cell growth on thel-proline production, 5l fed-batch culture was performed using an exponential feeding rate to obtain the specific growth rates (μ) of 0.04, 0.06, 0.08, and 0.1 h−1. The results show that the highest production ofl-proline was obtained at μ=0.04 h−1. The specificl-proline production rate (Qp) increased proportionally as a function of the specific growth rate, but decreased after it revealed the maximum value at μ=0.08 h−1. Thus, the highest productivity ofl-proline was 1.66 g L−1 h−1 at μ=0.08 h−1. The results show that the production of L-proline inC. acetoacidophilum RYU3161 has mixed growth-associated characteristics.  相似文献   

6.
The long-term performance and stability of Pseudomonas putida mt-2 cultures, a toluene-sensitive strain harboring the genes responsible for toluene biodegradation in the archetypal plasmid pWW0, was investigated in a chemostat bioreactor functioning under real case operating conditions. The process was operated at a dilution rate of 0.1 h−1 under toluene loading rates of 259 ± 23 and 801 ± 78 g m−3 h−1 (inlet toluene concentrations of 3.5 and 10.9 g m−3, respectively). Despite the deleterious effects of toluene and its degradation intermediates, the phenotype of this sensitive P. putida culture rapidly recovered from a 95% Tol population at day 4 to approx. 100% Tol+ cells from day 13 onward, sustaining elimination capacities of 232 ± 10 g m−3 h−1 at 3.5 g Tol m−3 and 377 ± 13 g m−3 h−1 at 10.9 g Tol m−3, which were comparable to those achieved by highly tolerant strains such as P. putida DOT T1E and P. putida F1 under identical experimental conditions. Only one type of Tol variant, harboring a TOL-like plasmid with a 38.5 kb deletion (containing the upper and meta operons for toluene biodegradation), was identified.  相似文献   

7.
Malaysia is the world’s leading producer of palm oil products that contribute US$ 7.5 billion in export revenues. Like any other agro-based industries, it generates waste that could be utilized as a source of organic nutrients for microalgae culture. Present investigation delves upon Isochrysis sp. culture in POME modified medium and its utilization as a supplement to Nanochloropsis sp. in rotifer cultures. The culture conditions were optimized using a 1 L photobioreactor (Temp: 23°C, illumination: 180 ∼ 200 μmol photons m−2s−1, n = 6) and scaled up to 10 L outdoor system (Temp: 26–29°C, illumination: 50 ∼ 180 μmol photons m−2s−1, n = 3). Algal growth rate in photobioreactor (μ = 0.0363 h−1) was 55% higher compared to outdoor culture (μ = 0.0163 h−1), but biomass production was 1.3 times higher in outdoor culture (Outdoor = 91.7 mg m−2d−1; Photobioreactor = 69 mg m−2d−1). Outdoor culture produced 18% higher lipid; while total fatty acids (FA) was not significantly affected by the change in culture systems as both cultures yield almost similar concentrations of fatty acids per gram of sample (photobioreactor = 119.17 mg g−1; outdoor culture = 104.50 mg g−1); however, outdoor cultured Isochrysis sp. had 26% more polyunsaturated fatty acids (PUFAs). Rotifers cultured in Isochrysis sp./ Nanochloropsis sp. (1:1, v/v) mixture gave similar growth rate as 100% Nanochoropsis sp. culture (μ = 0.40 d−1), but had 45% higher counts of rotifers with eggs (t = 7, maximum). The Isochrysis sp. culture successfully lowered the nitrate (46%) and orthophosphate (83%) during outdoor culture.  相似文献   

8.
Vo MT  Lee KW  Kim TK  Lee YH 《Biotechnology letters》2007,29(12):1915-1920
The fadBA operon in the fatty acid β-oxidation pathway of P. putida KCTC1639 was blocked to induce a metabolic flux of the intermediates to the biosynthesis of medium chain-length PHA (mcl-PHA). Succinate at 150 mg l−1 stimulated cell growth and also the biosynthesis of medium chain-length-polyhydroxyalkanoate. pH-stat fed-batch cultivation of the fadA knockout mutant P. putida KCTC1639 was carried out for 60 h, in which mcl-PHA reached 8 g l−1 with a cell dry weight of 10.3 g l−1.  相似文献   

9.
Bifidobacterium longum grew at 65 L pilot scale of the membrane bioreactor (MBR), externally fitted with ceramic membrane (0.7 m2). Cell mass at the MBR reached 22.18 g L−1 as dry cell weight in 12 h, which is 8.44 times higher than cell mass attained at the vial culture. The growth rate in the vial culture was μ = 0.385 h and at the batch culture was μ = 1.13 h in the exponential period and μ = 0.31 h−1 in the stationary period. In the fed-batch mode was μ = 1.102 h−1 for 6 h with inoculation and declined to μ = 0.456 h−1 with feeding of feed medium. The growth rate at the MBR was μ = 0.134 h−1. The number of viable cells was 6.01 × 1012 cfu L−1 at the batch culture, but increased to 1.15 × 1014 cfu L−1 at the MBR culture. The specific growth rate of viable cell number (colony-forming units per liter, per hour) improved by 6.01 times from the batch to the MBR culture. The wall shear stress mainly generated by the pump, and the membrane incorporated into the MBR was controlled during the cultivation at the MBR. The viability of B. longum declined to under 10% in the first 2 weeks of the 4-week stability test (40°C) as B. longum was exposed to over wall shear stress 713 Pa, but the viability improved to 30–40% in wall shear stress of 260 Pa or STR culture. The loss in the cell viability can be saved by managing with wall shear stress during the cultivation at the MBR.  相似文献   

10.
The recombinant Pichia pastoris harboring an improved methionine adenosyltransferase (MAT) shuffled gene was employed to biosynthesize S-adenosyl-l-methionine (SAM). Two l-methionine (l-Met) addition strategies were used to supply the precursor: the batch addition strategy (l-Met was added separately at three time points) and the continuous feeding strategies (l-Met was fed continuously at the rate of 0.1, 0.2, and 0.5 g l−1 h−1, respectively). SAM accumulation, l-Met conversion rate, and SAM productivity with the continuous feeding strategies were all improved over the batch addition strategy, which reached 8.46 ± 0.31 g l−1, 41.7 ± 1.4%, and 0.18 ± 0.01 g l−1 h−1 with the best continuous feeding strategy (0.2 g l−1 h−1), respectively. The bottleneck for SAM production with the low l-Met feeding rate (0.1 g L−1 h−1) was the insufficient l-Met supply. The analysis of the key enzyme activities indicated that the tricarboxylic acid cycle and glycolytic pathway were reduced with the increasing l-Met feeding rate, which decreased the adenosine triphosphate (ATP) synthesis. The MAT activity also decreased as the l-Met feeding rate rose. The reduced ATP synthesis and MAT activity were probably the reason for the low SAM accumulation when the l-Met feeding rate reached 0.5 g l−1 h−1.  相似文献   

11.
Cell suspension cultures of Commiphora wightii, grown in modified MS medium containing 2,4-dichlorophenoxyacetic acid (0.5 mg l−1) and kinetin (0.25 mg l−1), produced ∼5 μg guggulsterone g−1 dry wt. In a 2 l stirred tank bioreactor, the biomass was 5.5 g l−1 and total guggulsterone was 36 μg l−1.  相似文献   

12.
The production of recombinant glycoproteins in Dictyostelium discoideum by conventional cell culture methods was limited by low cell density as well as low growth rate. In this work, cotton towel with a good adsorption capability for D. discoideum cells was used as the immobilization matrix in an external fibrous bed bioreactor (FBB) system. With batch cultures in the FBB, the concentration of immobilized cells in the cotton fiber carrier increased to 1.37 × 108 cells per milliliter after 110-h cultivation, which was about tenfold higher than the maximal cell density in the conventional free-cell culture. Correspondingly, a high concentration of soluble human Fas ligand (hFasL; 173.7 μg l−1) was achieved with a high productivity (23 μg l−1 h−1). The FBB system also maintained a high density of viable cells for hFasL production during repeated-batch cultures, achieving a productivity of 9∼10 μg l−1 h−1 in all three batches studied during 15 days. The repeated-batch culture using immobilized cells of D. discoideum in the FBB system thus provides a good method for long-term and high-level production of hFasL.  相似文献   

13.
Quasi steady state growth of Lactococcus lactis IL 1403 was studied in glucose-limited A-stat cultivation experiments with acceleration rates (a) from 0.003 to 0.06 h−2 after initial stabilization of the cultures in chemostat at D = 0.2–0.3 h−1. It was shown that the high limit of quasi steady state growth rate depended on the acceleration rate used—at an acceleration rate 0.003 h−2 the quasi steady state growth was observed until μ crit = 0.59 h−1, which is also the μ max value for the culture. Lower values of μ crit were observed at higher acceleration rates. The steady state growth of bacteria stabilized at dilution rate 0.2 h−1 was immediately disrupted after initiating acceleration at the highest acceleration rate studied—0.06 h−2. Observation was made that differences [Δ(μ − D)] of the specific growth rates from pre-programmed dilution rates were the lowest using an acceleration rate of 0.003 h−2 (< 4% of preset changing growth rate). The adaptability of cells to follow preprogrammed growth rate was found to decrease with increasing dilution rate—it was shown that lower acceleration rates should be applied at higher growth rates to maintain the culture in the quasi steady state. The critical specific growth rate and the biomass yields based on glucose consumption were higher if the medium contained S 0 = 5 g L−1 glucose instead of S 0 = 10 g L−1. It was assumed that this was due to the inhibitory effect of lactate accumulating at higher concentrations in the latter cultures. Parallel A-stat experiments at the same acceleration and dilution rates showed good reproducibility—Δ(μ − D) was less than 5%, standard deviations of biomass yields per ATP produced (Y ATP), and biomass yields per glucose consumed (Y XS) were less than 15%.  相似文献   

14.
The influence of (NH4)2SO4 concentration and dilution rate (D) on actual and potential H2 photoproduction has been studied in ammonium-limited chemostat cultures of Rhodobacter capsulatus B10. The actual H2 production in a photobioreactor was maximal (approx. 80 ml h−1 l−1) at D = 0.06 h−1 and 4 mM (NH4)2SO4. However, it was lower than the potential H2 evolution (calculated from hydrogen evolution rates in incubation vials), which amounted to 100–120 ml h−1 l−1 at D = 0.03–0.08 h−1. Taking into account the fact that H2 production in the photobioreactor under these conditions was not limited by light or lactate, another limiting (inhibiting) factor should be sought. One possibility is an inhibition of H2 production by the H2 accumulated in the gas phase. This is apparent from the non-linear kinetics of H2 evolution in the vials or from its inhibition by the addition of H2; initial rates were restored in both cases after the vials had been refilled with argon. The actual H2 production in the photobioreactor at D = 0.06 h−1 was shown to increase from approximately 80 ml h−1 l−1 to approximately 100 ml h−1 l−1 under an argon flow at 100 ml min−1. Under maximal H2 production rates in the photobioreactor, up to 30% of the lactate feedstock was utilised for H2 production and 50% for biomass synthesis. Received: 22 April 1997 / Received revision: 14 July 1997 / Accepted: 27 July 1997  相似文献   

15.
Summary The cultivation of photosynthetic microorganisms such as the microalga Spirulina platensis can provide an alternative source of food. The water in Mangueira Lagoon (Rio Grande do Sul state, southern Brazil) has several required nutrients for the growth of Spirulina and could be added to culture medium to reduce the cost of producing S. platensis. Although little studied, repeated batch cultivation is a very useful technique because it has a better cost–benefit ratio than other cultivation methods. In a series of runs, we studied the influence of cell concentration, renewal rate and strain on the specific growth rate and biomass productivity of S. platensis during repeated batch cultivation, the runs taking place in 2-l Erlenmeyer flasks for 2160 h at 30 °C and a light intensity of 2500 lux under a 12 h photoperiod. The three factors studied had a significant (P < 0.05) effect on the results (specific growth rate and productivity). Using Zarrouk’s medium, the highest specific growth rate (μX) was 0.111 day−1 while the biomass productivity (P X) was 0.0423 g l−1 day−1, while Mangueira Lagoon water supplemented with 10% Zarrouk’s medium gave μX = 0.113 day−1 and a productivity P X = 0.0467 g l−1 day−1. These values were two to three times higher than the results obtained in batch cultivation, indicating that the repeated batch cultivation of S. platensis is attractive and convenient.  相似文献   

16.
l-Ribose is a rare and expensive sugar that can be used as a precursor for the production of l-nucleoside analogues, which are used as antiviral drugs. In this work, we describe a novel way of producing l-ribose from the readily available raw material l-arabinose. This was achieved by introducing l-ribose isomerase activity into l-ribulokinase-deficient Escherichia coli UP1110 and Lactobacillus plantarum BPT197 strains. The process for l-ribose production by resting cells was investigated. The initial l-ribose production rates at 39°C and pH 8 were 0.46 ± 0.01 g g−1 h−1 (1.84 ± 0.03 g l−1 h−1) and 0.27 ± 0.01 g g−1 h−1 (1.91 ± 0.1 g l−1 h−1) for E. coli and for L. plantarum, respectively. Conversions were around 20% at their highest in the experiments. Also partially purified protein precipitates having both l-arabinose isomerase and l-ribose isomerase activity were successfully used for converting l-arabinose to l-ribose.  相似文献   

17.
Studies on the chemical and biological properties of annual pack ice at a coastal station in Terra Nova Bay (74°41.72′S, 164°11.63′E) were carried out during austral spring at 3-day intervals from 5 November to 1 December 1997. Temporal changes of nutrient concentrations, algal biomasses, taxonomic composition, photosynthetic pigment spectra and P–E relationships were studied. Quantity, composition and degradation rates of organic matter in the intact sea ice were also investigated. In addition, microcosm experiments were carried out to evaluate photosynthetic and photo-acclimation processes of the sympagic flora in relation to different light regimes. High concentrations of ammonia were measured in four ice-cores (weighted mean values of the cores ranged from 4.3 ± 1.9 μM to 7.2 ± 3.4 μM), whereas nitrate and phosphate displayed high concentrations (up to 35.9 μM and 7.6 μM, respectively) only in the bottom layer (135–145 cm depth). Particulate carbohydrate and protein concentrations in the intact sea ice ranged from 0.5 to 2.3 mg l−1 and 0.2 to 2.0 mg l−1, respectively, displaying a notable accumulation of organic matter in the bottom colored layer, where bacterial enzymatic activities also reached the highest values. Aminopeptidase activity was extremely high (up to 19.7 μM l−1 h−1 ± 0.05 in the bottom layer), suggesting a rapid turnover rate of nitrogen–enriched organic compounds (e.g. proteins). By contrast, bacterial secondary production was low, suggesting that only a very small fraction of mobilized organic matter was converted into bacterial biomass (<0.01‰). The sympagic autotrophic biomass (in terms of chlorophaeopigments) of the bottom layer was high, increasing during the sampling period from 680 to 2480 μg l−1. Analyses of pigments performed by HPLC, as well as microscope observations, indicated that diatoms dominated bottom communities. The most important species were Amphiprora sp. and Nitschia cfr. stellata. Bottom sympagic communities showed an average P B max of 0.12 mgC mg Chl−1 and low photoadaptation index (E k=18 μE m−2 s−1, E m=65 μE m−2 s−1). Results of the microcosm experiment also indicated that communities were photo-oxidized when irradiance exceeded 100 μE m−2 s−1. This result suggests that micro- autotrophs inhabiting sea ice might have a minor role in the pelagic algal blooms. Accepted: 4 August 1999  相似文献   

18.
To screen stimulators from Chinese medicinal insects for mycelial growth and polysaccharides production of Ganoderma lucidum, G. lucidum was inoculated into the media with and without supplementation of medicinal insect extracts. The ethyl acetate extract of Eupolyphaga sinensis at 55 mg l−1 lead to significant increase in both biomass and intracellular polysaccharides (IPS) concentration from 8.53 ± 0.41 to 14.16 ± 0.43 and 1.28 ± 0.09 to 2.13 ± 0.11 g l−1, respectively. In addition, the ethyl acetate extract of Catharsius molossus at 55 mg l−1 significantly enhanced extracellular polysaccharides (EPS) production; the EPS yield increased from 350.9 ± 14.1 to 475.1 ± 15.3 mg l−1. There were no new components in the two types of polysaccharides obtained by the addition of the insect extracts.  相似文献   

19.
A thermostable lipase was produced in continuous cultivation of a newly isolated thermophilic Bacillus sp. strain IHI-91 growing optimally at 65 °C. Lipase activity decreased with increasing dilution rate while lipase productivity showed a maximum of 340 U l−1 h−1 at a dilution rate of 0.4 h−1. Lipase productivity was increased by 50% compared to data from batch fermentations. Up to 70% of the total lipase activity measured was associated to cells and by-products or residual substrate. Kinetic and stoichiometric parameters for the utilisation of olive oil were determined. The maximal biomass output method led to a saturation constant K S of 0.88 g/l. Both batch growth data and a washout experiment yielded a maximal specific growth rate, μmax, of 1.0 h−1. Oxygen uptake rates of up to 2.9 g l−1h−1 were calculated and the yield coefficient, Y X/O, was determined to be 0.29 g dry cell weight/g O2. From an overall material balance the yield coefficient, Y X/S, was estimated to be 0.60 g dry cell weight/g olive oil. Received: 8 January 1997 / Received revision: 30 April 1997 / Accepted: 4 May 1997  相似文献   

20.
In order to provide a better understanding of the dynamics of phytoplankton in the coastal regions of high latitudes, a study was carried out to estimate the dynamics of carbon biomass of autotrophic and heterotrophic algal groups over the austral spring-summer 1997/1998 period. At a fixed station located in the central basin (Paso Ancho) of the Straits of Magellan (53°S), surface water samples were collected at least once a week from September 1997 (early spring) to March 1998 (late summer). Quantitative analysis of biomass of phytoplankton was estimated from geometric volumes, using non-linear equations, and converted to biomass. The pattern of chlorophyll a showed a strong temporal variability, with maximum values (mean 2.8 mg m−3) at the austral spring phytoplankton increase or bloom (October/November) and minimum values during early spring (September: <0.5 mg m−3) and summer (January/March: 0.5–1.0 mg m−3). During the spring bloom, diatoms made up to 90% of the total phytoplankton carbon (0.01–189 μg l−1), followed by a maximum of thecate dinoflagellates (0.08–34 μg l−1), and sporadic high biomass of phytoflagellates during summer. Heterotrophic algal groups such as Gymnodinium and Gyrodinium spp. dominated (70%, in the 5- to 25-μm size range) shortly before the main diatom bloom, and small peaks were observed within spring and early summer periods (0–0.4 μg l−1). Phytoflagellates dominated earlier (spring) with higher carbon biomass (8 μg l−1) and post-bloom periods (summer) when carbon biomass ranged between 1 and 4 μg l−1. Accepted: 6 September 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号