首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Protein dephosphorylation by the serine/threonine protein phosphatase 2A (PP2A) modulates a broad array of cellular functions. PP2A normally acts as a heterotrimeric holoenzyme complex comprising a catalytic subunit bound by regulatory A and B subunits. Characterization of the regulatory A subunit isoforms (ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1 [RCN1], PP2AA2, and PP2AA3) of Arabidopsis thaliana PP2A has shown that RCN1 plays a primary role in controlling root and hypocotyl PP2A activity in seedlings. Here we show that hypocotyl and root growth exhibit different requirements for RCN1-mediated regulation of PP2A activity. Roots of rcn1 mutant seedlings exhibit characteristic abnormalities in cell division patterns at the root apical meristem, as well as reduced growth under ionic, osmotic, and oxidative stress conditions. We constructed chimeric A subunit genes and found that restoration of normal root tip development in rcn1 plants requires both regulatory and coding sequences of RCN1, whereas the hypocotyl elongation defect of rcn1 plants can be complemented by either RCN1 or PP2AA3 transgenes. Furthermore, the RCN1 and PP2AA3 proteins exhibit ubiquitous subcellular localization patterns in seedlings and both associate with membrane compartments. Together, these results show that RCN1-containing PP2A has unique functions that cannot be attributed to isoform-specific expression and localization patterns. Postembryonic RCN1 function is required to maintain normal auxin distribution and stem cell function at the root apex. Our data show that RCN1-regulated phosphatase activity plays a unique role in regulating postembryonic root development and stress response.  相似文献   

2.
The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.  相似文献   

3.
The heterotrimeric protein phosphatase 2A (PP2A) complex comprises a catalytic subunit and regulatory A and B subunits that modulate enzyme activity and mediate interactions with other proteins. We report here the results of a systematic analysis of the Arabidopsis (Arabidopsis thaliana) regulatory A subunit gene family, which includes the ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1 (RCN1), PP2AA2, and PP2AA3 genes. All three A subunit isoforms accumulate in the organs of seedlings and adult plants, suggesting extensive overlap in expression domains. We have isolated pp2aa2 and pp2aa3 mutants and found that their phenotypes are largely normal and do not resemble that of rcn1. Whereas rcn1 pp2aa2 and rcn1 pp2aa3 double mutants exhibit striking abnormalities in all stages of development, the pp2aa2 pp2aa3 double mutant shows only modest defects. Together, these data suggest that RCN1 performs a cardinal role in regulation of phosphatase activity and that PP2AA2 and PP2AA3 functions are unmasked only when RCN1 is absent.  相似文献   

4.
The roots curl in naphthylphthalamic acid1 (rcn1) mutant of Arabidopsis (Arabidopsis thaliana) has altered auxin transport, gravitropism, and ethylene response, providing an opportunity to analyze the interplay between ethylene and auxin in control of seedling growth. Roots of rcn1 seedlings were previously shown to have altered auxin transport, growth, and gravitropism, while rcn1 hypocotyl elongation exhibited enhanced ethylene response. We have characterized auxin transport and gravitropism phenotypes of rcn1 hypocotyls and have explored the roles of auxin and ethylene in controlling these phenotypes. As in roots, auxin transport is increased in etiolated rcn1 hypocotyls. Hypocotyl gravity response is accelerated, although overall elongation is reduced, in etiolated rcn1 hypocotyls. Etiolated, but not light grown, rcn1 seedlings also overproduce ethylene, and mutations conferring ethylene insensitivity restore normal hypocotyl elongation to rcn1. Auxin transport is unaffected by treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid in etiolated hypocotyls of wild-type and rcn1 seedlings. Surprisingly, the ethylene insensitive2-1 (ein2-1) and ein2-5 mutations dramatically reduce gravitropic bending in hypocotyls. However, the ethylene resistant1-3 (etr1-3) mutation does not significantly affect hypocotyl gravity response. Furthermore, neither the etr1 nor the ein2 mutation abrogates the accelerated gravitropism observed in rcn1 hypocotyls, indicating that both wild-type gravity response and enhanced gravity response in rcn1 do not require an intact ethylene-signaling pathway. We therefore conclude that the RCN1 protein affects overall hypocotyl elongation via negative regulation of ethylene synthesis in etiolated seedlings, and that RCN1 and EIN2 modulate hypocotyl gravitropism and ethylene responses through independent pathways.  相似文献   

5.
Pharmacological studies have led to a model in which the phytohormone abscisic acid (ABA) may be positively transduced via protein phosphatases of the type 1 (PP1) or type 2A (PP2A) families. However, pharmacological evidence also exists that PP1s or PP2As may function as negative regulators of ABA signaling. Furthermore, recessive disruption mutants in protein phosphatases that function in ABA signal transduction have not yet been identified. A guard cell-expressed PP2A gene, RCN1, which had been characterized previously as a molecular component affecting auxin transport and gravity response, was isolated. A T-DNA disruption mutation in RCN1 confers recessive ABA insensitivity to Arabidopsis. The rcn1 mutation impairs ABA-induced stomatal closing and ABA activation of slow anion channels. Calcium imaging analyses show a reduced sensitivity of ABA-induced cytosolic calcium increases in rcn1, whereas mechanisms downstream of cytosolic calcium increases show wild-type responses, suggesting that RCN1 functions in ABA signal transduction upstream of cytosolic Ca(2+) increases. Furthermore, rcn1 shows ABA insensitivity in ABA inhibition of seed germination and ABA-induced gene expression. The PP1 and PP2A inhibitor okadaic acid phenocopies the rcn1 phenotype in wild-type plants both in ABA-induced cytosolic calcium increases and in seed germination, and the wild-type RCN1 genomic DNA complements rcn1 phenotypes. These data show that RCN1 functions as a general positive transducer of early ABA signaling.  相似文献   

6.
Phototropins (phot) sense blue light through the two N-terminal chromophore binding LOV domains and activate the C-terminal kinase domain. The resulting phototropin autophosphorylation is essential for biological activity. We identified the A1 subunit of Ser/Thr protein phosphatase 2A (PP2A) as interacting with full-length phot2 in yeast and also interacting with phot2 in an in vitro protein binding assay. Phenotypic characterizations of a phot1-5 rcn1-1 (for root curling in n-naphthylphthalamic acid1) double mutant, in which phot2 is the only functional phototropin and PP2A activity is reduced, showed enhanced phototropic sensitivity and enhanced blue light–induced stomatal opening, suggesting that PP2A activity is involved in regulating phot2 function. When treated with cantharidin, a chemical inhibitor of PP2A, the phot1-5 mutant exhibited enhanced phot2-mediated phototropic responses like those of the phot1-5 rcn1-1 double mutant. Immunoblot analysis to examine phot2 endogenous phosphorylation levels and in vitro phosphorylation assays of phot2 extracted from plants during dark recovery from blue light exposure confirmed that phot2 is more slowly dephosphorylated in the reduced PP2A activity background than in the wild-type PP2A background, suggesting that phosphorylated phot2 is a substrate of PP2A activity. While reduced PP2A activity enhanced the activity of phot2, it did not enhance either phot1 dephosphorylation or the activity of phot1 in mediating phototropism or stomatal opening.  相似文献   

7.
Methyl jasmonate (MeJA) as well as abscisic acid (ABA) induces stomatal closure with their signal crosstalk. We investigated the function of a regulatory A subunit of protein phosphatase 2A, RCN1, in MeJA signaling. Both MeJA and ABA failed to induce stomatal closure in Arabidopsis rcn1 knockout mutants unlike in wild-type plants. Neither MeJA nor ABA induced reactive oxygen species (ROS) production and suppressed inward-rectifying potassium channel activities in rcn1 mutants but not in wild-type plants. These results suggest that RCN1 functions upstream of ROS production and downstream of the branch point of MeJA signaling and ABA signaling in Arabidopsis guard cells.  相似文献   

8.
9.
Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.  相似文献   

10.
Ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) can stimulate hypocotyl elongation in light-grown Arabidopsis seedlings. A mutant, designated ACC-related long hypocotyl 1 (alh1), that displayed a long hypocotyl in the light in the absence of the hormone was characterized. Etiolated alh1 seedlings overproduced ethylene and had an exaggerated apical hook and a thicker hypocotyl, although no difference in hypocotyl length was observed when compared with wild type. Alh1 plants were less sensitive to ethylene, as reflected by reduction of ACC-mediated inhibition of hypocotyl growth in the dark and delay in flowering and leaf senescence. Alh1 also had an altered response to auxin, whereas auxin levels in whole alh1 seedlings remained unaffected. In contrast to wild type, alh1 seedlings showed a limited hypocotyl elongation when treated with indole-3-acetic acid. Alh1 roots had a faster response to gravity. Furthermore, the hypocotyl elongation of alh1 and of ACC-treated wild type was reverted by auxin transport inhibitors. In addition, auxin up-regulated genes were ectopically expressed in hypocotyls upon ACC treatment, suggesting that the ethylene response is mediated by auxins. Together, these data indicate that alh1 is altered in the cross talk between ethylene and auxins, probably at the level of auxin transport.  相似文献   

11.
Several aspects of the photophysiology of wild-type Arabidopsis thaliana seedlings were compared with those of a phytochrome A null mutant, phyA-1, and a mutant, fhy1, that is putatively involved in the transduction of light signals from phytochrome A. Although phyA seedlings display a near wild-type phenotype when grown in white light (W), they nevertheless display several photomorphogenic abnormalities. Thus, whereas the germination of wild-type and fhy1 seeds is almost fully promoted by a pulse of red light (R) or by continuous far-red light (FR), phyA seed germination is responsive only to R. Following growth under day/night cycles, but not under continuous W, the hypocotyls of light-grown phyA and fhy1 seedlings are more elongated than those of wild-type seedlings. For seedlings grown under low red/far-red (R/FR) ratio light conditions, phyA and fhy1 seedlings display a more marked promotion of hypocotyl elongation than wild-type seedlings. Similarly, seedlings that are doubly null for phytochrome A and phytochrome B(phyA phyB) also have more elongated hypocotyls under low R/FR ratio conditions than phyB seedlings. This indicates that phytochrome A action in light-grown seedlings is antagonistic to the action of phytochrome B. Although wild-type, fhy1, and phyA seedlings flower at essentially the same time under both short-day and long-day conditions, an obvious consequence of phytochrome A deficiency is a pronounced late flowering under conditions where a short day of 8 h of fluorescent W is extended by 8 h of low-fluence-rate incandescent light. The evidence thus indicates that phytochrome A plays a role in seed germination, in the control of elongation growth of light-grown seedlings, and in the perception of daylength.  相似文献   

12.
Dark-grown Arabidopsis seedlings develop an apical hook by differential elongation and division of hypocotyl cells. This allows the curved hypocotyl to gently drag the apex, which is protected by the cotyledons, upwards through the soil. Several plant hormones are known to be involved in hook development, including ethylene, which causes exaggeration of the hook. We show that gibberellins (GAs) are also involved in this process. Inhibition of GA biosynthesis with paclobutrazol (PAC) prevented hook formation in wild-type (WT) seedlings and in constitutive ethylene response (ctr)1-1, a mutant that exhibits a constitutive ethylene response. In addition, a GA-deficient mutant (ga1-3) did not form an apical hook in the presence of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC). Analysis of transgenic Arabidopsis seedlings expressing a green fluorescent protein (GFP)-repressor of ga1-3 (RGA) fusion protein suggested that ACC inhibits cell elongation in the apical hook by inhibition of GA signaling. A decreased feedback of GA possibly causes an induction of GA biosynthesis based upon the expression of genes encoding copalyl diphosphate synthase (CPS; GA1) and GA 2-oxidase (AtGA2ox1). Furthermore, expression of GASA1, a GA-response gene, suggests that differential cell elongation in the apical hook might be a result of differential GA-sensitivity.  相似文献   

13.
Two holoenzymes of protein phosphatase 2A (PP2A), designated PP2AI and PP2AII, were purified from maize seedlings. The subunit composition of maize holoenzymes generally resembled those of animal PP2A. Using SDS/PAGE and Western blots with antibodies generated against peptides derived from animal PP2A, we established the subunit composition of plant protein phosphatase 2A. In both maize holoenzymes, a 38000 catalytic (PP2Ac) and a 66000 constant regulatory subunit (A) constituting the core dimer of PP2A were present. In addition, PP2AI (180000-200000) contained a protein of 57000 which reacted with antibodies generated against the peptide (EFDYLKSLEIEE) conserved in all eukaryotic Balpha regulatory subunits. In contrast, none of the proteins visualised in PP2AII (140000-160000) by double staining reacted with these antibodies. The activity of PP2AI measured with (32)P-labelled phosphorylase a in the presence of protamine and ammonium sulfate is about two times higher than that of PP2AII. PP2AI and PP2AII displayed different patterns of activation by protamine, polylysine and histone H1 and exhibit high sensitivity toward inhibition by okadaic acid. The data obtained provide direct biochemical evidence for the existence in plants of PP2A holoenzymes composed of a catalytic subunit complexed with one or two regulatory subunits.  相似文献   

14.
Protein phosphatase 2A (PP2A) is a key signal transduction intermediate in the regulation of cellular proliferation and differentiation in vitro. However, the role of PP2A in the context of a developing organ is unknown. To explore the role of PP2A in the regulation of lung development, we studied the effect of PP2A inhibition on new airway branching, induction of apoptosis, DNA synthesis, and expression of epithelial marker genes in whole organ explant cultures of embryonic (E14) rat lung. Microdissected lung primordia were cultured in medium containing one of either two PP2A inhibitors, okadaic acid (OA, 0-9 nM) or cantharidin (Can, 0-3,600 nM), or with the PP2B inhibitor deltamethrin (Del, 0-10 microM) as a control for a PP2A-specific effect for 48 h. PP2A inhibition with OA and Can significantly inhibited airway branching and overall lung growth. PP2B inhibition with Del did not affect lung growth or new airway development. Histologically, both PP2A- and PP2B-inhibited explants were similar to controls. Increased apoptosis was not the mechanism of decreased lung growth and new airway branching inasmuch as OA-treated explant sections subjected to the terminal deoxynucleotidyltransferase dUTP nick end labeling reaction demonstrated a decrease in apoptosis. However, PP2A inhibition with OA increased DNA content and 5-bromo-2'-deoxyuridine uptake that correlated with a G(2)/M cell cycle arrest. PP2A inhibition also resulted in altered differentiation of the respiratory epithelium as evidenced by decreased mRNA levels of the early epithelial marker surfactant protein C. These findings suggest that inhibition of protein phosphatases with OA and Can halted mesenchymal cell cycle progression and reduced branching morphogenesis in fetal rat lung explant culture.  相似文献   

15.
Mouse epidermal cytosol contains a protein phosphatase with Mr 38,000, which dephosphorylates the elongation factor 2 (EF-2) of protein biosynthesis and is stimulated after topical application of TPA to mouse skin [(1988) Biochem. Biophys. Res. Commun. 153, 1129-1135]. Dephosphorylation of EF-2 by this phosphatase is inhibited by okadaic acid at concentrations as low as 10(-8) M, but not by heparin up to concentrations of 600.micrograms/ml. The catalytic subunit of protein phosphatase 2A (PP2Ac) with EF-2 as a substrate exhibits the same sensitivity towards okadaic acid and insensitivity towards heparin as the EF-2 phosphatase of epidermal cytosol. The catalytic subunit of protein phosphatase 1 (PP1c) is strongly suppressed by heparin and less sensitive towards okadaic acid than PP2Ac. PP2Ac is around 50 times more efficient in dephosphorylating EF-2 than PP1c. These data indicate that the TPA-stimulated EF-2 phosphatase in epidermal cytosol is a type 2A protein phosphatase.  相似文献   

16.
17.
18.
Cantharidin, a natural toxicant of blister beetles, is a strong inhibitor of protein phosphatases types 1(PP1) and 2A (PP2A). Like okadaic acid, cantharidin inhibits the activity of the purified catalytic subunit of PP2A (IC50 = 0.16 μM) at a lower concentration than that of PPI (IC50 = 1.7 μM) and only inhibits the activity of protein phosphatase type 2B (PP2B) at high concentrations. Dose-inhibition studies conducted with whole cell homogenates indicate that cantharidin also inhibits the native forms of these enzymes. Thus, cantharidin, which is economical and readily available, may be useful as an additional probe for studying the functions of serine/threonine protein phosphatases.  相似文献   

19.
Alterations in the response of dark-grown seedlings to ethylene (the "triple response") were used to isolate a collection of ethylene-related mutants in Arabidopsis thaliana. Mutants displaying a constitutive response (eto1) were found to produce at least 40 times more ethylene than the wild type. The morphological defects in etiolated eto1-1 seedlings reverted to wild type under conditions in which ethylene biosynthesis or ethylene action were inhibited. Mutants that failed to display the apical hook in the absence of ethylene (his1) exhibited reduced ethylene production. In the presence of exogenous ethylene, hypocotyl and root of etiolated his1-1 seedlings were inhibited in elongation but no apical hook was observed. Mutants that were insensitive to ethylene (ein1 and ein2) produced increased amounts of ethylene, displayed hormone insensitivity in both hypocotyl and root responses, and showed an apical hook. Each of the "triple response" mutants has an effect on the shape of the seedling and on the production of the hormone. These mutants should prove to be useful tools for dissecting the mode of ethylene action in plants.  相似文献   

20.
Ethylene signaling in Arabidopsis begins with a family of five ethylene receptors that regulate the activity of the Raf-like kinase, CTR1. Recent work to identify novel factors required for modulating ethylene signaling resulted in the isolation of enhanced ethylene response 1 (eer1), a mutant that displays both increased sensitivity and increased amplitude of response to ethylene. Molecular cloning of eer1 reveals that its mutant phenotype results from a loss-of-function mutation in the previously characterized RCN1, one of three PP2A A regulatory subunits in Arabidopsis. Our analysis shows that neither RCN1 expression nor PP2A activity is regulated by ethylene. Instead, we found that Arabidopsis PP2A-1C, a PP2A catalytic subunit previously characterized as interacting with RCN1, associates strongly with the kinase domain of CTR1 in vitro. This likely represents a role for PP2A in modulation of CTR1 activity because an in vitro kinase assay did not reveal phosphorylation of either RCN1 or PP2A-1C by CTR1, indicating that neither of them is a substrate for CTR1. PP2A activity is required for Ras-dependent activation of mammalian Raf, with reductions in PP2A activity significantly compromising the effectiveness of this mechanism. Our genetic and biochemical results suggest that a similar requirement for PP2A activity exists for ethylene signaling, with loss-of-function mutations affecting PP2A activity possibly reducing the effectiveness of CTR1 activation, thus lowering the threshold required for manifestation of ethylene response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号